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Abstract This review describes recent advances in the
handling and manipulation of magnetic particles in mi-
crofluidic systems. Starting from the properties of
magnetic nanoparticles and microparticles, their use in
magnetic separation, immuno-assays, magnetic reso-
nance imaging, drug delivery, and hyperthermia is dis-
cussed. We then focus on new developments in magnetic
manipulation, separation, transport, and detection of
magnetic microparticles and nanoparticles in microflui-
dic systems, pointing out the advantages and prospects
of these concepts for future analysis applications.

Keywords Microfluidics - Magnetic bead
handling - Magnetic bead assay - Magnetic bead
labeling - Magnetic supraparticle structure

1 Introduction

Since the introduction of the concept of micro total
analysis systems, or uTAS, in 1990 (Manz et al. 1990),
multiple technologies for the realization of fluidic micro-
systems have been developed (see, for example, the book
of Madou (2002) and the review of Reyes et al. (2002)).
Reviews of various fluidic operations in microfluidic sys-
tems, such as sample preparation, sample injection,
sample manipulation, reaction, separation, and detection,
published in the period between 1998 and 2004 were
presented by Auroux etal. (2002) and Vilkner et al. (2004).
Three of the most important advantages of using micro-
fluidic systems of reduced dimension for analytical
applications are known to be: (1) the possibility of using
minute quantities of sample and reagents (down to pico-
liters); (2) relatively fast reaction times when molecular
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diffusion lengths are of the order of the microchannel
dimension; and (3) a large surface-to-volume ratio,
offering an intrinsic compatibility between the use of a
microfluidic system and surface-based assays.

Parallel to the boom of microfluidic systems, nanom-
aterials and nanoparticles have become a hot topic in re-
search. Functional nanoparticles and microparticles
(“beads”) prepared, for example, by emulsion polymeri-
zation or dispersion polymerization, offer a large specific
surface for chemical binding, and a polymer colloid or
microsphere solution has a low viscosity compared to
solutions having the same amount of solid, giving it spe-
cial properties. Such small particles can be advanta-
geously used as a “mobile substrate’ for bio-assays, or
even for in vivo applications; they can be easily recovered
from a dispersion, reversibly re-dispersed, etc. Several
reviews on the preparation and use of polymer particles
and polymer colloids for medical, biological, and optical
applications exist (Kruis et al. 1998; Kawaguchi 2000).
Verpoorte (2003) recently reviewed newly developed
technologies for the realization of nanoparticle and
microparticle suspension handling systems in general,
with a focus on the integration of these applications within
microfluidic systems. With respect to open microchan-
nels, microfluidic structures with packed beds of func-
tionalized beads or containing bead suspensions profit
from an even larger surface-to-volume ratio, an enhanced
interaction of reactive surfaces with passing fluids, and an
improved recuperation of reaction products.

Magnetic nanoparticles and microparticles offer still
an additional advantage: having embedded magnetic
entities, they can be magnetically manipulated using
permanent magnets or electromagnets, independently
of normal microfluidic or biological processes'. This
extra degree of freedom is the basis of a still improved

Tt is known that some micro-organisms and animals use geo-
magnetic field information for orientation. They contain biomin-
eralized magnetite [Fe3O4] particles that can interact with the
geomagnetic field, monitor its direction, and are part of a highly
sophisticated sensory system.



exposure of the functionalized bead surface to the sur-
rounding liquid and of higher sample pre-concentration
efficiencies, due to the increased relative motion of the
bead with respect to the fluid.

2 Physics of magnetic bead manipulation

Pankhurst et al. (2003) reviewed the applications of
magnetic nanoparticles in biomedicine, with a focus on
the underlying physics. Of particular interest are small
mono-domain nanoparticles. They are single domain
because they have a dimension that is typically of the or-
der or smaller than the typical thickness of a magnetic
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domain wall 6 = y/*¢=, with J being the magnetic ex-

change constant, S the total spin quantum number of each
atom, « the inter-atomic spacing, and K the magnetic
anisotropy constant of the magnetic material (Chikazumi
1964). For iron, assuming that S=1, and with
J=2.16x10"%" J, a=2.86x10"1 m and K=4.2x 10* J/m?,
one calculates a domain wall width of 42 nm. Leslie-Pel-
ecky and Rieke (1996) have reviewed the relation between
the morphology of nanostructured materials and their
magnetic properties. The time over which the magneti-
zation of a system is stable and will remain in a certain
state is of importance for probing the fundamental
mechanism of magnetization reversal. Mono-domain
magnetic particles become superparamagnetic, i.e., their
time-averaged magnetization without a magnetic field is
zero when their magnetic energy Kx(4/3)nr is lower than
about ten times the thermal energy kg7, with r being the
particle radius of a supposed spherical particle and kg the
Boltzmann constant (Leslie-Pelecky and Rieke 1996). At
room temperature, kT = 4.0x1072' J, and one finds a
maximum radius r=6 nm for a superparamagnetic
spherical particle of iron.

A typical magnetic nanoparticle consists of a mag-
netic core of diameter @, surrounded by a non-magnetic
coating for selectively binding the biomaterial of interest
(e.g., a specific cell, protein, or DNA sequence) (see
Fig. 1a). Iron oxides, such as magnetite (Fe;O4) or
maghemite (y-Fe,03) are more stable against oxidation,
and are preferentially used as core material instead of
iron. Typically, superparamagnetic particles of Fe;O4
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Fig. 1 a Schematic diagram of a spherical magnetic nanoparticle
with internal core of diameter s, surrounded by a non-magnetic
coating layer. b Schematic magnetization loop of an ensemble of
superparamagnetic particles. ¢ Schematic diagram of a nano-
particle superstructure in the presence of a magnetic field H. When
the field is removed, the superstructure decomposes into single
particles
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with diameters in the range 5-100 nm are used. The
magnetization curve of an ensemble of such supermag-
netic particles (see Fig. 1b) is hysteresis-free (at least, at
not too high frequencies). This has important conse-
quences for bio-analysis, as suspended superparamag-
netic particles tagged to the biomaterial of interest can
be removed from a matrix using a magnetic field, but
they do not agglomerate (i.c., they stay suspended) after
removal of the field (see Fig. 1¢). Hence, it is very easy to
switch on and off the magnetic interaction. Other
advantages of using small nanoparticles are the mini-
mum disturbance of the attached biomolecules (Han-
cock and Kemshead 1993) and a large surface-to-volume
ratio for chemical binding.

Larger magnetic particles (typically 0.5-5 pm in
diameter) can have a single magnetic core or have a core
composed of multiple more or less magnetically inter-
acting nanoparticles in a non-magnetic matrix (see
Fig. 2a). Such microparticles mostly have a multi-domain
structure and are characterized by a hysteretic magneti-
zation characteristic (see Fig. 2b). This means that, after
the removal of the field, they keep a non-zero remnant
magnetization M.y, leading to magnetic bead clustering
(see Fig. 2c). For example, spherical particles with radius
r=1.5um with a saturation magnetization oM g,
=0.2 T and a remnant magnetization oM e, =1 mT,
will have a remnant magnetic moment .y, = VigM-
rem=(4/3)rcr3,uOMrem = 1.4)(10720 Tm3, with Ho being
the magnetic permeability in a vacuum, and V the
magnetic particle volume; two of such particles will
have a maximum magnetic attraction energy

|Umax| = ?EZZﬁ =9.2x 107" J, much larger than the

thermal energy, resulting in strong dipolar forces between
the particles (Chikazumi 1964). As a consequence, when
exposed to an external magnetic induction field, the
magnetic microparticles acquire a magnetic dipole mo-
ment and coalesce, under the influence of the magnetic
dipole interaction, into a supraparticle structure (SPS),
consisting of chain-like ““columnar’’ structures along the
field direction. The exact shape of this SPS depends on the
parameters, such as the particle concentration and the
applied magnetic field. It is known, for example, that a
constant and homogeneous magnetic field enables the
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Fig. 2 a Schematic diagram of a spherical magnetic microparticle
with a single internal magnetic core or consisting of multiple
nanometer-sized cores of diameter s. b Schematic magnetization
loop of an ensemble of ferromagnetic particles, showing magnetic
hysteresis. ¢ Schematic diagram of a microparticle superstructure in
the presence of a magnetic field H. When the field is removed, the
particles keep a remnant moment and the superstructure does not
decompose
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generation of equally spaced arrays of columns of chains
in a microchannel (Wang et al. 1994; Sandre et al. 1999;
Hayes et al. 2001a).

To understand how a magnetic field can be used to
transport and manipulate magnetic beads, it is impor-
tant to recognize that a magnetic field gradient is re-
quired to exert a translation force—a uniform field gives
rise to a torque, but no translational action. The mag-
netic force acting on a point-like magnetic dipole or
“magnetic moment” m can be written as the derivative
of the magnetic energy (Zborowski et al. 1999)*

1 1
Fn=—V(m-B)~—(m-V)B

Ho Ho
The second part of the equation holds when the mag-
netic moment of the particle is not varying in space
(V'm=0). Note that this is only a correct assumption
when the moment is permanent, or the magnetic particle
is in such a large field that its magnetization is com-
pletely saturated. As an example, for a constant moment
m in the x direction, m-V = mx%, and a force will be
exerted on the moment, provided that there is a mag-
netic field gradient in the x direction (Chikazumi 1964).
In the case of superparamagnetic nanoparticles in a non-
magnetic medium, one can write for the moment
m= VM= VyuoyH, with M being the magnetization of
the particle and y is the magnetic susceptibility. Using
the relation B= uoH, Eq. 1 becomes:

(1)

Vi
=2
Ho

Fn B-V)B (2)
For example, when the magnetic particles are con-
strained to move in a microchannel in the x direction,

the x component of the force becomes:

Vif, 0 .9 D
Fm‘x - HO (Bx ax +B/V 8y+BZ 8Z>BX

(3)

This equation shows that both the magnitude of the
magnetic field (for inducing a large moment) and the
magnetic field gradient need to be large, to have a strong
magnetic actuation force. However, one should be re-
minded that, if both the field and the moment have a
spatial dependence, the first part of Eq. 1 needs to be
considered and the force expression becomes more
complicated.

Most magnetic actuation is done using permanent
magnets, rather than with coils. A permanent magnet is
typically characterized by a magnetic induction
B,=0.5-1T and a field gradient VB=B,/w, with w
being the typical geometrical dimension of the perma-
nent magnet. For a cylindrical permanent magnet with a
diameter @ =35 mm, one induces on a spherical particle

2Here, we use the definition of force where the moment has units of
T m?, as introduced in the book of Chikazumi (1964). An alter-
native dimension in literature for the moment is A m>, but, in this
case, the factor ug in the denominator of Eq. 1 needs to be replaced
by 1.

with radius =500 nm and y=1, a magnetic moment
m=2.6 x 107" Tm?, resulting in a magnetic force of
about 40 pN. For a current-fed coil, the generated field
is much smaller: a flat millimeter-size coil with ten
windings and a current of 0.5-1 A typically generates a
magnetic induction of 1-10 mT, at least 100 times
smaller than the permanent magnet. Consequently, the
gradient is also a factor of 100 lower, so the force of
Eq. 2 is a factor of 10* larger when using a permanent
magnet rather than a simple coil.

In many applications, a magnetically labeled material
is separated from a liquid solution by passing the fluid
mixture through a region where there is a magnetic field
gradient that can immobilize the tagged material via
magnetic forces. For in vivo applications, magnetic
particles can be transported by the blood flow and lo-
cally retained by the application of an external magnet.
In other applications, there is a magnetic translational
driving force and the liquid solution is static. In all
examples, the magnetic force needs to be larger than the
hydrodynamic drag force acting on the magnetic parti-
cle. The hydrodynamic drag force is a consequence of
the velocity difference between the magnetic particle and
the liquid Av and, for a spherical particle with radius r, is
given by (White 1999):

Fq = 6mnyrAv (4)

where 7 is the viscosity of the medium surrounding the
particle (for water, n=8.9x10"* N s/m?). Equalizing
Egs. 2 and 4 permits us to determine the maximum flow
rate that a particle can withstand when exposed to a
magnetic immobilization force, or the maximum particle
flow rate that can be generated by a magnetic force in a
surrounding static liquid:

_ 2r%(B-V)B _1

Av =—¢B-V)B 5
pon Ho ( ) ( )
with:
272 14
e=E= (6)
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being the ‘“magnetophoretic mobility” of the particle,
which is a parameter describing how magnetically
manipulable the particle is. One notes that, in general,
the quantity (B-V)B can be a strongly varying function in
space, which implies a similar spatial variation for Av.
Moreover, in the case of strong spatial variations of the
field, the magnetic moment of the particle will not be
constant when moving in space and the general form
(first part) of Eq. 1 needs to be considered, giving rise to
a more complicated expression for the magnetic force.

3 Magnetic fluids

Magnetic bead solutions or magnetic fluids are stable
dispersions of magnetic beads or encapsulated magnetic



particles in an organic or aqueous carrier medium.
Specific applications of magnetic beads require a set of
necessary particle properties. Requirements of the par-
ticle matrix, such as biocompatibility, biodegradability,
and stability in different media, must be combined with a
uniform size distribution and a correct size range and
shape. Physical properties, like the iron oxide content,
determine the magnetic behavior of the beads and must
be associated with suitable bead surface modifications
(hydrophilicity versus hydrophobicity, surface func-
tionality, etc.) in order to allow covalent bonding or
simple unspecific adsorption of biomolecules (proteins,
antibodies, nucleic acids). Usually, the magnetic beads
are tailor made for a specific final application.

3.1 Synthesis

Reviews of the synthesis of inorganic nanoparticles in
the liquid phase (not limited to magnetic materials) were
presented by Grieve et al. (2000), Trindade et al. (2001),
and Murray et al. (2000), while a review of the synthesis
of such particles from the vapor phase was presented by
Swihart (2003). The synthesis and applications of (non-
magnetic) polymer microparticles were reviewed by
Kawaguchi (2000). The articles of Landfester and Ra-
mirez (2003), Bergemann et al. (1999), and Gruttner
et al. (2001) present specific short review sections on the
synthesis and chemical modifications of magnetic beads.
The synthesis of magnetic beads is also a well covered
subject in the patent literature.

In early publications, magnetic bead solutions were
produced by grinding magnetite (Fe;O,4) with long-chain
hydrocarbons and a grinding agent (Papell 1965). Later
magnetic fluids were produced by precipitating an
aqueous Fe® " /Fe? " solution with a base, coating these
particles with an adsorbed layer of oleic acid and then
dispersing them in a non-aqueous fluid (Reimers and
Khalfalla 1974). Both types of process result in very
small magnetic particles with a surfactant coating in a
non-aqueous liquid carrier in which the hydrophobic
magnetite particles are dispersed. However, a lot of

Fig. 3 a Transmission electron (a)
microscopy (TEM) photograph
of dextran nanoparticles; the
dextran coating is not visible in
the TEM picture and the
particles have an irregular
shape (reprinted from Gruttner
and Teller 1999, with
permission from Elsevier).

b More regular polystyrene
particles with encapsulated
magnetite nanoparticles
(reprinted from Landfester and
Ramirez 2003, with permission
from The Institute of Physics
Publishing Ltd.)
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applications of magnetic beads rely on water as the
continuous phase.

A water-based magnetic fluid was realized by the
conversion of iron products to magnetic iron oxide in an
aqueous medium under controlled pH conditions (Kel-
ley 1977). Polymer-coated magnetic beads can be pro-
duced by in situ precipitation of magnetic materials in
the presence of a polymer. In this way, magnetic beads
surrounded by a hydrophilic polymer shell have been
made, choosing for the polymer the water-soluble dex-
tran (Molday 1984), poly-(ethylene imine) (Rembaum
1981), poly-(vinyl alcohol) (Lee et al. 1996), poly-(eth-
ylene glycol) (Suzuki et al. 1995), etc. Figure 3a is a
transmission electron microscopy (TEM) photograph of
dextran nanoparticles; note that the dextran is not visi-
ble in the TEM picture and that the particles have an
irregular (non-spherical) shape. Figure 3b is a TEM
photograph of more regular polystyrene particles with
encapsulated magnetite nanoparticles.

Single basic types of magnetic beads have their indi-
vidual advantages and disadvantages. Polystyrene-
coated magnetic particles are known for their excellent
size distribution and spherical shape (Dynal; Singer
1987). However, their hydrophobic surface results in a
high amount of unspecific protein and antibody binding
on the particle surface, so it needs to be modified
chemically. Magnetic silica particles are very efficient in
adsorbing proteins and DNA on their surface, but are
hardly available with a small size distribution and an
ideal spherical shape (Kleiber et al. 2001; Undis-
closed_inventors 2001). Magnetic polysaccharide parti-
cles are important for many in vivo applications. They
combine biocompatibility with availability in a size
range below 300 nm (Miltenyi et al. 1990; Gruttner and
Teller 1999), but the particles are irregular in shape and
the soft particle matrix causes them to be sensitive to
mechanical stress. Also, magnetic poly-(lactic acid)
particles play an important role in in vivo applications
(Hafeli et al. 1994; Hafeli and Pauer 1999); they are
biodegradable and their degradation time in the blood
can be adjusted by their molecular weight and exact
chemical composition. However, because of their
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hydrophobic surfaces, these particles stick to plastic
surfaces like pipette tips and plastic recipients, resulting
in problems with particle handling and analytical errors.

3.2 Applications in biomedicine

The use of magnetic bead solutions for biomedical
applications, but excluding microfluidic applications, has
been reviewed several times (Roger et al. 1999; Safarik
and Safarikova 2002; Shinkai 2002; Pankhurst et al.
2003; Bauer et al. 2004). The fact that a magnetic field
gradient can be used to either remotely position or
selectively filter biological materials attached to a mag-
netic bead has led to a number of obvious applications.
The latter broadly fall into two categories: those
involving the use in vivo and those involving the use of
magnetic beads in vitro. An important in vivo applica-
tion is using the magnetic beads to produce a distortion
in the magnetic field at a given site under examination
via magnetic resonance imaging (MRI). The presence of
magnetic beads strongly alters the contrast of cells, en-
abling visualization of hitherto impossible objects. An-
other in vivo application lies in the production of
controlled heating: a high-frequency magnetic field can
be used to selectively warm a given area and destroy
malignant tissue by a phenomenon known as hyper-
thermia. Magnetic beads can also play a role in drug
targeting, as they can be vectors for carrying the drug
and can be magnetically guided to the desired location.
For in vitro applications, the possibility of the specific
labeling of cells or biomolecules with magnetic mi-
crobeads has lead to advanced developments in cell
manipulation and biomolecule separation, DNA
sequencing, and biomolecule selection and purification.

3.2.1 MRI contrast enhancement

In MRI, image contrast is a result of the different signal
intensities that each tissue produces in response to a par-
ticular sequence of applied radio frequency pulses. This
response depends on the proton density and magnetic
relaxation times of the tissue. Target-specific superpara-
magnetic particles can serve as a dramatic source of
contrast and have become an indispensable tool for the
non-invasive study of biological processes with MRI.
Superparamagnetic particles change the local rate at
which protons decay from their excited state to the ground
state. When biocompatible dextran- or starch-coated
particles selectively bind to healthy or diseased cells, they
generate a local magnetic dipole in the large field of the
MRI setup which, by a change in the local proton relax-
ation time, is at the basis of the imaging contrast between
the different types of cells (Lawaczeck et al. 1997; Kim
et al. 2001a, 2001b, 2003). There is also a size effect: for
example, nanoparticles with diameters of ca 30 nm or
more are rapidly collected by the liver and spleen, while
particles with sizes of ca 10 nm or less are not so easily
recognized. The smaller particles, therefore, have a longer

half-life time in the blood and are collected by certain
types of cells in the lymph nodes and the bone marrow
(Ruehm et al. 2001). As tumor cells do not have the
effective type of cells to take up the nanoparticles, MRI
assisted in imaging malignant lymph nodes or liver tumors
(Semelka and Helmberger 2001).

3.2.2 Hyperthermia

Hyperthermia is one of the most promising approaches
in cancer therapy: it consists in heating and destroying
the target tissue to temperatures between 42°C and
46°C. Various methods are employed in hyperthermia,
such as the use of hot water, capacitive heating, and
inductive heating of malignant cells (Cavalier et al. 1967;
Stauffer et al. 1984; Lin and Wang 1987; Ikeda et al.
1994). The problem with hyperthermia is the difficulty of
local heating of only the tumor region until the required
temperature is reached, without damaging the sur-
rounding normal tissue. Magnetic particle hyperthermia
is appealing because it offers a way to ensure that only
the intended target tissue is heated. The concept is based
on the principle that a magnetic particle can generate
heat by hysteresis loss when placed in a high-frequency
(~1 MHz) magnetic field (Stauffer et al. 1984). Intra-
cellular hyperthermia using dextran nanoparticles dates
from 1979 (Gordon et al. 1979). The principle of heating
with superparamagnetic particles (that show no mag-
netic hysteresis at low frequencies) by an AC field has
been reviewed by Rosensweig (2002): the dissipation
results from the orientational relaxation of the particles
having thermal fluctuations in a viscous medium (Hergt
et al. 1998). A number of studies have demonstrated the
therapeutic efficacy of this form of treatment in animal
models (for a review, see, for example, Moroz et al.
(2002)), but the application of this technology to human
patients is just starting (Jordan et al. 2001).

3.2.3 Drug targeting

A disadvantage of most chemotherapies is that they are
relatively non-specific and induce secondary effects in the
healthy tissue. In magnetically targeted therapy, a cyto-
toxic drug is attached to biocompatible magnetic carriers
that are injected into the patient via the circulatory sys-
tem. When the particles have entered the bloodstream,
external high-gradient magnetic fields are used to con-
centrate the complex at a specific target site within the
body. Once the drug carrier is concentrated at the target,
the drug can be released either via enzymatic activity or
changes in physiological conditions, such as pH or tem-
perature (Alexiou 2001), and be taken up by the tumor
cells. An overview of the clinical applications of magnetic
drug targeting was given by Lubbe et al. (2001). Larger
particles with dimension> pum, comprising agglomer-
ates of superparamagnetic particles, were shown to be
more effective in withstanding flow dynamics within the
circulatory system. In most cases, the magnetic field gra-
dient is generated by a strong permanent magnet, such as



NdFeB, fixed outside the body on the target site. Limi-
tations of the technique are: (1) the possibility of embo-
lization of blood vessels in the target region due to the
accumulation of magnetic carriers; (2) difficulties in scal-
ing up from animal models due to the larger distances
between the target site and the magnet; (3) the fact that,
once the drug is released, it is no longer attracted to the
magnetic field; and (4) toxic responses to the magnetic
carriers (Pankhurst et al. 2003).

3.2.4 Magnetic separation

Separation of magnetic-bead-labeled biomolecules or
cells from a liquid solution is a well documented and
widely practiced application today, and is extremely
important in process engineering. Many types of mag-
netic particles have been developed for use in separation
processes, including purification processes and immuno-
assays (Dunnill and Lilly 1974; Mosbach and Andersson
1977; Kondo et al. 1994; Koneracka et al. 2002;
Kourilov and Steinitz 2002). Automatic DNA/RNA
purification systems based on magnetic separation are

Fig. 4 a Schematic diagram of
a classical quadrupole magnet
configuration and the
corresponding magnetic flux
lines. b Calculation, using

Eq. 2, of the force density in the
bore of the quadrupole magnet.
¢ A cylindrical capillary is
inserted into the cross-section
of a quadrupole magnetic cell
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commercially available and magnetic cell sorting has
been developed for cellular therapy applications.
Magnetic separator design can be as simple as the
application and removal of a permanent magnet to the
wall of a test tube to cause aggregation, followed by re-
moval of the supernatant. However, it is preferable to
increase the separator efficiency by producing regions
with a high magnetic field gradient to capture the mag-
netic nanoparticles as they float or flow by in the carrier
medium. Figure 4a is a schematic diagram of the so-
called quadrupole magnet configuration, where four
magnets are arranged in order to induce a maximum
magnetic field gradient at the outer side of a liquid car-
rying tube, inserted into the free space between the
magnets (Hatch and Stelter 2001). Besides this, other
permanent magnet configurations have been proposed
for separation (Haik et al. 1999; Todd et al. 2001; Ned-
elcu and Watson 2002; Hoffmann and Franzreb 2004).
Figure 4b is a calculation of the magnitude of the mag-
netic force (using Eq. 2) inside the quadrupole magnet
assembly. Williams et al. (1999) described how such a
quadrupole magnet can be combined with an annular

(b)

sorter, and a cell separation
sample is fed in at @, and
carrier fluid at »". The inlet
splitting surface (ISS)
corresponds to the inner broken
lines and the outlet splitting
surface (OSS) to the outer
broken lines. Sorted fractions
are collected at outlets ¢ and b
(Figs. a and b reprinted from
Hatch and Stelter 2001, with
permission from Elsevier; Fig. ¢
reprinted from Williams et al.
1999, with permission from the
American Chemical Society)
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fluidic circuit that is schematically shown in Figure 4c.
The separation takes place within a laminar flow of a
carrier fluid along a thin annular channel. A field gradient
is imposed across the thin dimension of the channel,
perpendicular to the direction of the flow. The sample
mixture is arranged to enter the system close to one of the
channel walls and, as the sample is carried along the
channel by the flow of the fluid, those components that
interact more strongly with the field gradient are carried
transversely across the channel thickness. A division of
the flow at the channel outlet using a stream splitter
completes the separation into fractions. The radial par-
ticle separation velocity is induced by the field gradient
and can easily be calculated using Eq. 5. Of course, the
fluid transport velocity should not exceed a maximum
limit to enable a correct separation over the magnetic
field gradient region. Using such a quadrupole magnetic
sorter, magnetic cell separation was shown to be a
function of the antibody binding capacity, which is re-
lated to the number of magnetic bead labeling sites of a
single cell (McCloskey et al. 2003a, 2003b). An alterna-
tive way to obtain an efficient magnetic separation is to
loosely pack the flow column with a magnetizable matrix
of thin wires or beads (Rheinlander et al. 2000; Ebner and
Ritter 2001), but such method can suffer from problems
of desorption of the magnetic beads from the matrix after
the removal of the field.

The magnetic separation systems discussed so far
have a macroscopic dimension from the magnet point of
view, in contrast to the microfluidic separation systems
proposed in the next section. However, from a liquid
transport point of view, they may be already called
“microfluidic,” as their functioning is based on the
presence of laminar flow patterns, like found in micro-
fluidic systems.

3.2.5 Cell biophysics

For applications like MRI imaging, hyperthermia and
separation, specific binding to, or uptake by, a certain
cell type is at the basis of the magnetically induced
contrast. Superparamagnetic particle uptake kinetics of
living cells and toxicity aspects of such uptake has been
discussed by several authors (Wilhelm et al. 2002; Tiwari
et al. 2003). Also, the incorporation of magnetic beads
into cells has provided a new tool to measure cytoskel-
eton-associated cell functions (Valberg and Butler 1987;
Wang et al. 1993) and ferromagnetic microparticles ac-
ted as inert tracers for cell function monitoring. For
example, within macrophages, the particles are stable
over weeks and months. Intracellular transport of the
particles caused stochastic disorientations of the dipole
particles, resulting in a decay of the magnetic cell field
that can be measured by a sensitive magnetic field sen-
sor. Magnetic particle twisting was used to investigate
the mechanical integrity and visco-elastic properties of
the cytoskeleton (Moller et al. 2003) and, in combination
with optical tweezers, superparamagnetic beads were at

the basis of force and torque measurement systems on
single cells (Romano et al. 2003). Recently, cell-bound
magnetic microparticles, subjected to 0.1 ms magnetic
field pulses, have been used to destruct the targeted cells
by penetration of the beads into the cells or by rupturing
the cells with the beads (Ogiue-Ikeda et al. 2003), a non-
thermal process which is different from hyperthermia.

4 Magnetic bead handling microsystems

4.1 Magnetic beads as solid phases in heterogeneous
assays

As explained in the introduction, fluidic systems of re-
duced dimension have the advantage of reduced reagent
consumption and waste generation, fast reaction times,
and a large surface-to-volume ratio, offering an intrinsic
compatibility between the use of a microfluidic system
and surface-based assays. Immuno-assays are probably
the most important analysis method for biological
molecules, as the molecular recognition reaction pro-
vides high selectivity and chemical sensitivity. Although
conventional microtiter plate assays continue to play an
important role, enzyme assays, DNA binding, and
competitive immuno-assays have been performed on
microdevices (Koutny et al. 1996; Chiem and Harrison
1997; Hadd et al. 1997). The three cited experiments
were homogeneous immuno-assays in which both the
antigen and the antibody molecules are simultaneously
introduced in a solution, complexation takes place, and
an electrophoretic separation and detection follows.
Separation was possible because electrophoretic migra-
tion times between complexed and free-form antigens or
antibodies were sufficiently different.

Heterogenous assays, where reactions occur both in
solution and in a solid phase, offer the advantage of easy
separation of chemical complexes from reactants. Bio-
molecule immobilization on a solid phase, formed by the
surface of microparticles or nanoparticles, evidently re-
sults in a small-volume and localized assay (Rashko-
vetsky et al. 1997; Sato et al. 2000). Such a solid phase
provides a high surface-to-volume ratio, reducing dif-
fusion times during the microfluidic procedures, and
increasing the density of binding sites, which is beneficial
for a high detection signal and sensitivity. In addition,
such an assay allows for a rapid regeneration and ex-
change of the solid support when needed. Magnetic
beads locally immobilized by a magnetic field clearly
offer these advantages’.

Magnetic beads have been combined with commercial
capillary electrophoresis (CE) instrumentation for per-
forming enzymatic and inhibition assays, as well as for the
analysis of biological molecules, such as antigens (Rash-
kovetsky et al. 1997). For example, a small quantity of

3The advantages related to the use of magnetic beads in micro-
fluidic systems apply equally well to the more “‘macroscopic’ mi-
crotiter plate and test tube formats.



polystyrene magnetic microbeads containing immobi-
lized biomolecules was injected into a neutral hydrophilic-
coated fused-silica capillary. The short plug (2-3 mm) of
beads was held fixed by a magnet placed in the cartridge of
the CE system. The microfluidic procedure involved
antigen capture from the sample solution to the beads,
rinsing, elution, and electrophoretic separation of the
sample. The beads could be replaced after each run,
eliminating the need to regenerate the solid support.

In another study, a small-volume heterogeneous im-
muno-assay was demonstrated using both classical
fused-silica capillaries and glass microfluidic chips
(Hayes et al. 2001b). Figure 5 is a schematic diagram of
the experimental configuration. The system demon-
strated the presence of the parathyroid hormone at
concentrations of 1 pg/l, using a sandwich assay, which
was based on the trapping or capture of the analyte by
one antibody and the detection by another (fluorescent)
antibody. Also, a calibration curve was generated at
clinically relevant levels (2-250 pg/l) for the detection of
interleukin-5, an important cytokine for asthma, im-
mune response cascades, and cancer.

Dynamic DNA hybridization was demonstrated by
immobilizing DNA targets on magnetic beads via
streptavidin-biotin conjugation or base pairing between
oligonucleotide residues (Fan et al. 1999). The DNA/
bead complex was introduced into the device, after
which, hybridization took place with a complimentary
probe. The hybridized probe was then removed by heat
denaturation to allow the DNA sample to be interro-
gated again by another probe with a different sequence
of interest. Demonstration of specific hybridization
reactions in an array format was achieved using four
synthesized DNA targets and five probes in sequence,
indicating the potential of this approach for gene
expression analysis. In another study, mRNA was

Fig. 5 Schematic
representation of a flow-based
micro-immuno-assay system.
The magnetic beads are
collected from a dilute solution
near a rare earth magnet to
form a packed bed within a
microfluidic channel. Reagents
are introduced into the packed
bed to perform standard
immuno-assays and the bed is
imaged with an epifluorescence
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isolated from total RNA in a flowing stream within a
microchip using polystyrene magnetic microbeads la-
beled with a poly-thymine tail for mRNA capture (Jiang
and Harrison 2000). A few nanograms of mRNA could
be captured per microgram of total RNA.

Choi et al. (2002) reported on the development and
characterization of an integrated microfluidic biochem-
ical detection system for fast and low-volume immuno-
assays using magnetic beads (Choi et al. 2002). First,
antibody-labeled polystyrene magnetic beads were sep-
arated from a liquid solution by a set of planar coils.
While holding the antibody-coated beads, antigens were
injected into the channel. Only target antigens were
immobilized, and, thus, separated onto the magnetic
bead surface due to the specific antibody/antigen reac-
tion. Detection of the target antigen was based on an
electrochemical enzymatic reaction in a sandwich im-
muno-assay. In another study, a fully integrated biochip
cartridge that consists of microfluidic mixers, valves,
pumps, channels, chambers, heaters, and DNA micro-
array sensors was developed to perform DNA analysis
of complex biological sample solutions (Liu et al. 2004).
Sample preparation (including magnetic-bead-based cell
capture, cell pre-concentration and purification, and cell
lysis), polymerase chain reaction (PCR), DNA hybrid-
ization, and electrochemical detection were performed in
this fully automated miniature device. Pathogenic bac-
teria detection from milliliter whole blood samples and
single-nucleotide polymorphism analysis was demon-
strated directly from diluted blood.

4.2 Magnetic beads as labels for detection

A common approach to detecting biological molecules is
to attach to the target molecule a label that produces an
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externally observable signal. Traditionally, this is
accomplished using biomolecular recognition between the
target molecule and a specific receptor (e.g., an antibody)
that is tagged with the label. The label may be a radio-
isotope, enzyme, fluorescent molecule, or charged mole-
cule, for example. Recently, magnetic beads have also
been used as labels for biosensing. Magnetic labels have
several advantages over other labels. The magnetic
properties of the beads are stable over time, in particular,
because the magnetism is not affected by reagent chem-
istry or subject to photo-bleaching (a problem with fluo-
rescent labeling). There is also no significant magnetic
background present in a biological sample and magnetic
fields are not screened by aqueous reagents or biomate-
rials. In addition, magnetism may be used to remotely
manipulate the magnetic particles. Finally, a number of
very sensitive magnetic field detection devices have been
developed during recent years, such as giant magnetore-
sistance (GMR) (Baibich et al. 1988) and spin-valve (Di-
eny et al. 1991; Freitas et al. 2000) magnetic sensors that
enable the measurement of extremely weak magnetic
fields, for example, the magnetic field generated by the
magnetization of a single magnetic microbead. A basic
GMR or spin-valve device consists of a pair of magnetic
films separated by a non-magnetic conducting layer
(Hartmann 1999). When an external magnetic field ro-
tates the magnetizations of the magnetic layers towards
alignment, spin-dependent electron scattering is reduced
at the interfaces within the device, decreasing its electrical
resistance. GMR sensors can be microscopic in size and
are sensitive to the presence of micron, and smaller, size
magnetic particles when in close proximity. Besides GMR
sensors, measurements of single magnetic beads have been
demonstrated using miniaturized silicon Hall sensors
(Besse et al. 2002) and planar Hall effect sensors based on
permalloy thin films (Ejsing et al. 2004).

A research group at the Naval Research Laboratory,
Washington DC (Baselt et al. 1998; Edelstein et al. 2000;
Miller et al. 2001; Rife et al. 2003), followed by others
(Coehoorn and Prins 2003; Graham et al. 2003), have
developed a microsystem for the capture and detection
of micron-sized, paramagnetic beads on a chip con-
taining an array of GMR sensors, the so-called bead
array counter (BARC). The BARC is based on a sand-
wich assay, where the target molecule is bound to an
immobilized probe on the GMR sensor, after which, the
magnetic label is bound to the target using specific li-
gand-receptor interactions. A schematic diagram of a
test experiment is shown in Fig. 6: thiolated DNA
probes are patterned onto a gold layer directly above the
GMR sensors on the BARC chip. To prevent non-spe-
cific adhesion of sample DNA and of the magnetic beads
to the unmodified areas of the gold surface, the arrayed
surfaces are passivated with thiolated polyethylene gly-
col (PEG). Biotinylated sample DNA is then added,
which hybridizes with the DNA probes on the surface
when the complementary sequence is present, after
which, the unbound sample DNA is washed away. Then,
streptavidin-coated magnetic beads are injected over the

chip surface, binding to biotinylated sample DNA
hybridized on the BARC chip. A magnetic field gradient
can be applied to attract magnetic beads to the chip or to
selectively pull off only those beads not bound to the
surface by specific binding. The field can be generated by
external permanent magnets or electromagnets (Lee
et al. 2000), electromagnets integrated with the chip
(Edelstein et al. 2000), or by current-carrying lines
positioned close to the chip (Lagae et al. 2002). Bound
beads are detected by the GMR sensors by applying a
uniform magnetic field perpendicular to the substrate,
imposing a magnetic moment to the superparamagnetic
beads. This induced moment generates an in-plane
magnetic field that is measured by the GMR sensor.
Applying the uniform field normal to the plane of the
GMR sensor rather than in-plane has the advantage
that, due to demagnetization effects, a much larger
magnetizing field can be applied to the beads without
saturating the sensor (Tondra et al. 2000). Figure 7
shows that single 2.8-um diameter magnetic beads can
be detected using 80x5-um> GMR sensor strips. The
graphs show the voltage signals, corresponding to the
resistance change, from 16 of the 64 sensor elements,
with and without adsorbed beads. The signal due to a
single bead varies from strip to strip, depending on
whether the bead is directly on top of the sensor (ele-
ments 2 and 15), not present (11 and 14), or near the
edge of the sensor (all others). The noise level is deter-
mined by measuring the signal before the beads are in-
jected and after they are washed off.

The GMR sensor sensitivity increases with decreasing
surface area of the sensor; however, the chemical sensi-
tivity, or the number of analyte molecules that can
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Fig. 6 Schematic diagram of the BARC chip surface chemistry and
hybridization assay. Thiolated DNA probes are patterned onto a
gold layer directly above the GMR sensors on the BARC chip.
Biotinylated sample DNA is then added, which hybridizes with the
DNA probes on the surface when the complementary sequence is
present. The unbound sample DNA is washed away. Streptavidin-
coated magnetic beads are injected over the chip surface, binding to
biotinylated sample DNA hybridized on the BARC chip. Beads
that are not specifically bound are removed by applying a magnetic
field. Bound beads are detected by the GMR sensors (reprinted
from Edelstein et al. 2000, with permission from Elsevier)



hybridize to the surface, increases with increasing sur-
face area. Theoretical modeling showed that a GMR
sensor can detect a single superparamagnetic bead of
any size (Tondra et al. 2000; Li et al. 2003; Li and Wang
2003), as long as all system dimensions (bead size, sensor
size, distance between bead and sensor) scale down
proportionally. When the sensor size can be of the size of
the bead, it should be possible to detect beads with a
radius down to 100 nm or smaller.

Most bead-sensing experiments today have been done
with 2.8-um size beads composed of magnetic y-Fe,O5
and Fe;O,4 nanoparticles dispersed in a polystyrene
matrix with an average magnetic content of 17 weight%
(Dynal). To maximize the sensor response, the magnetic
beads should have a magnetization as high as possible,
and yet, remain non-remnant to avoid clustering when
suspended in solution. With the goal of achieving larger
signals from the magnetic labels, soft ferromagnetic
beads with 100% magnetic content and a much higher
saturation magnetization have been developed (Miller
et al. 2001). NiFe beads of 1-um diameter showed a
susceptibility of ~3, the maximum obtainable value for a
uniformly magnetized sphere. Because of this property,
smaller solid ferromagnetic beads could effectively be
used as biomagnetic labels, which would also increase
the dynamic range of biosensor assays by allowing more
labels per unit area.

4.3 Separation of magnetic beads

Magnetic separation, as discussed in a previous section,
is already an important application of magnetic beads.
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Fig. 7 Detection of magnetic beads with the BARC chip. The
graphs show the signals from 16 of the 64 sensor elements, with and
without adsorbed beads. The signal due to a single bead varies from
element to element, depending on whether the bead is directly on
top of the sensor (elements 2 and 15), not present (11 and 14), or
near the edge of the sensor (all others). The noise level is
determined by measuring the signal before the beads are injected
and after they are washed off (reprinted from Edelstein et al. 2000,
with permission from Elsevier)
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While the magnetic separation systems discussed so far
have a macroscopic dimension from the magnet point of
view, some of them (Williams et al. 1999; Zborowski
et al. 1999) might be already called “microfluidic,” as
their functioning was based on the presence of laminar
flow in a fluidic channel. Also, microfluidic channels
made in silicon wafers have been combined with closely
positioned permanent magnets to separate magnetic
from non-magnetic particles into different output
channels (Blankenstein and Larsen 1998). In many of
the ‘“‘macroscopic” applications, high magnetic field
gradients were achieved by using the high background
field gradient of a permanent magnet or an electro-
magnet in combination with a filter of closely packed
steel wool. Most of the latter approaches, although
successful, have the drawback that close monitoring of
the separation process is difficult by the nature of the
filter geometry.

A truly integrated magnetic bead sorter combines
micromagnetics with microfluidics and is characterized
by a magnetic environment where particles with distinct
magnetic properties may be manipulated differently to
other particles on the length scale of the microfluidic
circuit. The group of Ahn reported several of such
integrated bead separation systems (Ahn et al. 1996;
Choi et al. 2000, 2001). Such devices can be used, for
example, for miniaturized cell sorting, where the mag-
netic beads are used as a magnetic “label” for actuation,
or in a miniaturized bio-reaction system, where the
magnetic beads play the role of the carrier substrate in
an assay (Choi et al. 2000, 2002). Figure 8 is a schematic
diagram of a sandwich immuno-assay that uses mag-
netic separation. Antibody-coated beads are introduced
on the eclectromagnet (Fig. 8a) and are separated by
applying magnetic fields. While holding the antibody-
coated beads (Fig. 8b), antigens are injected into the
channel (Fig. 8c). Only target antigens are immobilized
and, thus, separated onto the magnetic bead surface due
to antibody/antigen interaction (Fig. 8d). Other antigens
get washed out with the flow. In a subsequent optional
step, labeled secondary antibodies can be introduced
and incubated with the immobilized antigens, after
which, the chamber is rinsed to remove all unbound
secondary antibodies. Finally, the magnetic beads are
released to a sensing chamber of the bio-assay (Fig. 8e)
and the bioseparator is ready for the next sample.
Alternatively, sensing may be based on the optical
detection of an electro-chemiluminescent label attached
on the magnetic beads, and can be done directly in the
separation chamber (Choi et al. 2002). Figure 9 is an
experimental separation of I-pm diameter magnetic
beads from a liquid flow. The separation is realized
within a microfluidic channel in a silicon wafer that is
integrated on top of a set of two planar electromagnets.
Each of the electromagnets has a width of 50 um and
consists of a spiral Cu winding, electroplated in a pho-
toresist mold and integrated with a soft magnetic
permalloy yoke and backing plate. The latter serves to
enhance the generated field by about a factor of two with
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Fig. 8a—e Conceptual illustration of the use of a micromachined
magnetic separator for bio-sampling. a Injection of the magnetic
beads. b Separation and holding of the beads by a planar
electromagnet. ¢ Flowing through the sample solution. d Immobi-
lization of target antigen. e Release of the labeled magnetic beads.
(Reprinted from Choi et al. 2000, with permission from Elsevier)

Fig. 9 Separation of 1-pm diameter magnetic beads from a fluid
flow. The coil on the right is a planar electromagnet actuated with a
current of 0.3 A, while the coil on the left is without a current. The
width of the coil is 50 um. (Reprinted from Choi et al. 2001, with
permission from Elsevier)

respect to the field generated by the Cu winding only.
The coil on the right is actuated with a current of 0.3 A
and separates the beads from the flowing solution, while
the coil on the left is without a current and attracts no
magnetic beads from the flow.

An important difference between the use of a per-
manent magnet and an electromagnet is the much lower
generated magnetic induction of the latter. A permanent
magnet easily generates a magnetic induction of 0.5-1 T,
while the magnetic induction of a simple planar coil is
more in the mTesla range. Following the discussion of
Eqgs. 2 and 3, one understands that an integrated elec-
tromagnet will produce a much smaller magnetic force,
so the fluidic flow in the microchannels needs to be
strongly limited or the magnetic beads need to pass at a
very close distance with the planar coil. Therefore, an
interesting idea was to combine a nominally uniform

external magnetic field, to impose a large magnetic
moment to the beads, with integrated linear conductors
for the generation of a local magnetic field gradient
(Tondra et al. 2001). Such a setup allowed for the
application of relatively strong and very local applied
forces: 0.5 pN for 2.8-pm diameter polystyrene particles
on the scale of the microfluidic channel width.

In other work, a magnetic separation system was
realized using an array of 15-um wide electroplated Ni
posts as filtering elements placed inside microfluidic
channels made by soft lithography in poly-(dim-
ethylsiloxane) (PDMS) (Deng et al. 2002). Once mag-
netized by a magnetic field from an external NdFeB
permanent magnet, these Ni posts attracted the mag-
netic field lines and, thereby, generated strong magnetic
field gradients that could efficiently trap superpara-
magnetic beads passing them in a flowing stream of
water. These Ni post arrays were also used to separate
magnetic beads from non-magnetic beads. Similar work
was published on the trapping of magnetic particles
flowing through a microfluidic channel realized in
PDMS (Forbes et al. 2003); here, the authors have used
magnetic “‘anchors” formed by 4-um diameter magnetic
beads embedded in the sidewall of the microfluidic
channel during the PDMS molding process.

4.4 Transport of magnetic beads

Magnetic separation is different from magnetic trans-
port in the sense that, in separation, the microbeads are
retained (separated) by the action of a magnetic field,
but are transported using a liquid flow. In magnetic
transport, magnetic forces effectively transport the par-
ticles, which is a bigger challenge: it requires magnetic
fields and magnetic forces that act on a larger range than
necessary for separation, where magnetic beads ap-
proach very closely the magnetic actuation region by
means of the fluid motion. Manipulation of magnetic
beads in general, and transport in particular, is a difficult
task, as the magnetic susceptibility y of the magnetic
beads is rather weak (typically y < 1), due to small
magnetic core volumes and the demagnetization effects
of the particles (see Eq. 2). This explains why, mostly,
the large field of (mechanically moving) permanent
magnets has been used for the separation, transport, and
positioning of the magnetic microbeads (Miltenyi et al.
1990). In an approach towards miniaturization and
automation of analytical applications, a system has been
proposed in which liquid movement is substituted with
magnetically induced movement of magnetic particles
(Ostergaard et al. 1999). Fluidic channels were realized
on a plastic cartridge of centimeters in size and the
magnetic transport was induced by mechanically moving
external permanent magnets. In another approach,
magnetic particles have been transported over millimeter
distances in a microfluidic channel using an array of
electromagnets actuated in a four-phase scheme (Joung
et al. 2000). Each electromagnet consisted of a 0.3-mm



diameter magnetic needle core with a wire-wound coil of
300 turns. For coil currents of the order of 0.5 A, forces
of 0.1 pN were possible.

Besides these still “macroscopic” transport systems,
miniaturized solutions have also been proposed for bead
transport, thereby taking full profit from batch micro-
fabrication technologies. Typically, the size of the
(micropatterned) magnets determines the spatial range,
where appreciable magnetic forces acting on the mi-
crobeads exist. Serpentine gold wires micropatterned on
silicon substrates have been combined with microfluidic
structures realized in PDMS to transport 4.5-um poly-
styrene-coated magnetic beads (Deng et al. 2001). By
engineering the magnetic field generated by different
current-carrying wires, a microsystem was realized that
could generate local magnetic field maxima that trap the
magnetic beads. When the field maxima change loca-
tions, the microbeads follow those maxima. The device
allowed the precise positioning and transport over 100-
pum distances in a single actuation event, which is partly
due to the presence of a permanent magnet placed in
proximity of the microfluidic chip, the role of which,
principally, is to enhance the magnetic force by inducing
a magnetic moment in the magnetic beads. A micro-
electromagnet wire matrix, based on two layers of
mutually orthogonal arrays of linear wires, has demon-
strated magnetic transport of 1-2-um size magnetic
particles over 20-um distances in a single actuation event
(Lee et al. 2001). This is a typical working range for the
magnetic force generated by a current-carrying con-
ductor, when no external permanent magnet is used to
induce a magnetic moment to the beads. Figure 10a
demonstrates the motion of a group of superparamag-
netic particles by the application of currents through
different wires of the two-dimensional wire matrix. The
wire currents were adjusted so that they continuously
move particles by increments that are less than the wire
spacing. Figure 10b shows a group of particles that is
moving vertically by the matrix over a longer range;
Fig. 10c shows how two groups of magnetic particles
can be moved diagonally to join in a cluster at a single
location. In another approach, a simple planar-coil-ar-
ray-based magnetic transport system has been proposed
in which an individual coil is capable of displacing beads
over millimeter distances in a liquid-containing capillary
(Rida et al. 2003a). A drastic increase of the magnetic
energy and magnetic forces acting on the beads was
obtained by placing the complete coil array in a uniform
static magnetic field that imposes a permanent magnetic
moment to the microbeads. The very small magnetic
field (gradient) of a simple planar coil proved to be
sufficient to displace 1-um diameter beads over a dis-
tance of the order of the coil size. The coils were realized
using simple printed circuit board (PCB) technology
(100-um Cu winding width, 35-um winding height, 200-
pm winding pitch) and had a small number of windings
(N=4-10). A single coil typically generates a magnetic
field gradient of about 5 mT/mm for a maximum
allowed current density of 400 A/mm”. Arranging
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adjacent coils with spatial overlap over two layers of the
PCB circuit and actuating them in a specific three-phase
scheme assured the long-range displacement of the mi-
crobeads. Moreover, it was found that these polarized
beads formed cylindrical columns with a length of the
order of the microfluidic channel size, due to magnetic
dipole interactions. This column formation was partly
the basis of the strong magnetic force.

An interesting study reported on the magnetic actu-
ation and transport of magnetic beads contained in
water droplets that were suspended in a silicone oil
solution (Shikida et al. 2004). Such droplet handling can
be the basis of a new type of micro-chemical analysis
system, where droplets can be magnetically transported
thanks to their magnetic bead content, can be fused to
trigger chemical reactions, or can be split up in separate
droplets. All of these basic actions have been demon-
strated by magnetic actuation with a mechanically
moving permanent magnet and using 30-nl droplets
containing 30-um diameter magnetic beads.

4.5 Magnetic supraparticle structures in microfluidic
devices

4.5.1 Magnetic supraparticle structures

Most of the magnetic-bead-related phenomena dis-
cussed so far were based on the interaction of individual
beads with the magnetic field. However, when placed in
a field, superparamagnetic particles will acquire a mag-
netic moment and they will start interacting by means of
the magnetic dipole interaction. This interaction induces
a spontaneous clustering of the particles into larger,
often complicated, structures, which we call magnetic
supraparticle structures (SPS). The shape of an SPS
depends on the parameters, like the size of the magnetic
moment of the microbeads and the magnetic dipolar
interaction between different beads. These properties are
dependent on the amplitude and frequency of the ap-
plied magnetic field, the shape and magnetic content of
the beads, the concentration of the magnetic particles in
the fluid, the temperature, etc. Despite the complexity of
the aggregation process of a magnetic fluid into a SPS,
the physical effects of a magnetic field on such a struc-
ture are now very well understood (Liu et al. 1995;
Flores et al. 1999). When exposed to a strong, continuous
magnetic field, the magnetic fluid will rapidly form a
cross-linked network. The continuous-field structure is
determined by the kinetics of aggregation and particles
are prohibited from rearranging to minimize energy as
long as the field persists. In contrast, it was found that
the application of a pulsed field (square wave alternating
between field-on and field-off states) to a magnetic fluid
did produce an energetically determined suspension
structure (Promislow and Gast 1996; Promislow and
Gast 1997). By allowing particle diffusion during the
field-off state, a pulsed field enables the minimization of
energy through structural rearrangements and the SPS



Fig. 10 a Demonstration of moving a group of superparamagnetic
particles by application of currents through different wires of a
two-dimensional micro-electromagnet wire matrix. The wire
currents were adjusted so that they continuously move particles
by increments that are less than the wire spacing. b A group of
particles is moved vertically by the matrix over a longer range of
five wire spacings. ¢ Two groups of particles are moved diagonally
to join in a cluster at a single location (reprinted from Lee et al.
2001, with permission from the American Institute of Physics)

consists of one-dimensional periodic patterns composed
of high-concentration regions of magnetic particles
(““columns”), aligned in the field direction and sharply
separated from low-concentration regions (Wirtz and
Fermigier 1994; Liu et al. 1995; Wirtz and Fermigier
1995). Qualitatively, the dependence of the structure
complexity on the tuning parameters can be understood
from the time that it takes for the particles to aggregate
together, which depends on the ratio of the magnetic
interaction energy between particles relative to thermal
energy. Applying a bi-axial rotating magnetic field,
produced by two orthogonal pairs of Helmholtz coils in
quadrature, induced a rotation of dipolar chains of su-
perparamagnetic particles and subjected the aggregates
to magnetic forces, causing them to rotate within the
suspending fluid. It has been shown that, with both
scattering dichroism (Melle et al. 2000) and videomi-
croscopy experiments (Melle et al. 2002), magnetic fluids
have the capacity of reducing the size of the structures
they are composed of, to decrease their viscous drag
while rotating synchronously with the field.

Magnetic assembly of microbead chains onto a sur-
face has been identified as a viable method for printing
biological molecules or other nanodevices in aqueous
conditions, without using extreme temperatures or
harmful chemical solvents (Yellen et al. 2002, 2003). It
was shown that superparamagnetic particles assemble
on a micropattern of thin ferromagnetic islands, acting
as ferromagnetic traps; magnetic bead trapping could be
controlled by varying the external magnetic field bias. In

addition, a programmable self-assembly method for the
placement of two or more different types of superpara-
magnetic colloidal beads onto lithographically defined
magnetic microwell templates has been demonstrated
(Yellen and Friedman 2004).

4.5.2 Separation using magnetic supraparticle structures

In a previous section, we have discussed the separation
of magnetic beads or magnetic-bead-labeled molecules
from a liquid flow, using magnetic fields locally applied
within the channel. The present section is on the use of
magnetic SPS within a microfluidic channel as a porous
separation medium for the separation of long DNA
molecules. The structure and porosity of the SPS is a
strong function of the microfluidic channel dimension,
particle properties, applied magnetic field, etc.

Gel electrophoresis is the standard method for the
separation of DNA by length. However, the efficiency of
gel electrophoresis deteriorates seriously for DNA mol-
ecules longer than about 40,000 bp (40 kbp). This phe-
nomenon was understood in terms of electric-field-
induced aggregation of the DNA by the electric dipole—
dipole interaction (Mitnik et al. 1995). Slab gel pulsed-
field gel electrophoresis or pulsed-field capillary gel
electrophoresis, using time-varying drive voltages, can
be used to separate the longer chains of DNA (Kim and
Morris 1994).

As an alternative, an entropic trap array system with
lithographically defined constrictions comparable to the
molecular dimension was demonstrated to rapidly sep-
arate large DNA fragments using static (DC) electric
fields (Han and Craighead 2000). Thick and thin re-
gions® alternated along the channel and DNA molecules
were entropically trapped in the thick region and es-
caped with a characteristic lifetime; longer DNA was
found to escape entropic traps faster than shorter ones
(Han et al. 1999).

Also, self-assembled magnetic SPS have been used for
long DNA separation in microfluidic channels. This
represents a convenient solution, since no microlithog-
raphy is required to define geometrical constrictions that
are simply defined by the porous magnetic matrix (Doyle
et al. 2002). Figure 11a is a schematic diagram of the
microchannel and magnetic coil system. A microchannel
with a height of 11 um and defined using PDMS
molding was placed in the center of a magnetic coil. The
channel is characterized by a pinched injection design
with the reservoirs placed at the inner part of the wafer.
The chosen configuration guarantees a constant mag-
netic field (of the order of 10 mT) along the separation
channel. The chip was mounted on an inverted micro-
scope and filled before each run with a solution of 1-um

4A thick region is characterized by a channel depth that is of the
order of the radius of gyration of the DNA molecule. A thin region
has a much smaller depth, which effectively blocks the DNA in the
thick region unless it is deformed at the cost of an entropy change.



diameter magnetic microbeads. Figure 11b schemati-
cally shows the columnar SPS formed by a suspension of
superparamagnetic particles in the magnetic field. Inter-
column spacing and porosity of the SPS is a function of
the applied magnetic field. Figure 11¢ shows the fluo-
rescence intensity at 10 mm from the injection zone
versus time, corresponding to a separation of a mixture
of A-phage DNA and /-DNA digested with Xho I
(Pharmacia) (the numbers refer to the size of the DNA
fragments in kilo-base pairs), at field strengths of 4.8 V/
cm (right), 7 V/ecm (middle), and 10 (left) V/cm. Fig-
ure 11d is a separation of A-phage DNA concatemers at
a field of 3.2 V/cm at conditions identical to those in
Figure 11c. Experimental separations using the SPS
matrix have been combined with theoretical modeling
(Dorfman and Viovy 2004) and, recently, computer-pi-
loted flow control and injection of the experiment re-
sulted in a quantitative and reproducible separation of
long DNA by an SPS matrix (Minc et al. 2004).

Fig. 11 a Schematic diagram of the separation microchannel and
magnetic coil. The poly(dimethylsiloxane) microchannel was placed
in the center of a magnetic coil mounted on an inverted microscope
and filled before each run with a solution of 1-pm magnetic
microbeads. b Columnar structure formed by a suspension of
superparamagnetic particles. ¢ Fluorescence intensity at 10 mm
from the injection zone versus time. Separation of a mixture of /-
phage DNA and A-DNA digested with Xho I (Pharmacia) (the
numbers refer to the size of the DNA fragments in kilo-base pairs),
at field strengths of 4.8 V/cm (right), 7 V/cm (middle), and 10 (left)
V/em. d Separation of A-phage DNA concatemers at a field of
3.2 V/em. Other conditions are identical to those in ¢. (Reprinted
from Doyle et al. 2002, with permission from the American
Association for the Advancement of Science)
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4.5.3 Dynamic manipulation of magnetic supraparticle
structures

Besides the use of magnetic SPS as a static stationary
phase for separation in microfluidic channels, research-
ers have also been investigating the potential of manip-
ulating dynamically magnetic particle aggregates for
microfluidic applications. Despite its potential for mag-
netic-bead-based applications, only a few works are re-
ported on the active manipulation of SPS composed
from superparamagnetic particles inside microfluidic
capillaries. Under the influence of a varying magnetic
field generated by a mechanically moving permanent
magnet, magnetic SPS composed of 1-2-um diameter
superparamagnetic beads could be rotated through all
axes in a microfluidic channel, without loss of structural
form, allowing dynamic micron-scale movement without
direct mechanical, electrical, or photonic interactions
(Hayes et al. 2001a). A number of potential applications
of this phenomenon were mentioned in this paper, like
binding biomolecules on the magnetic particles for im-
muno-assays, studying subcellular biomechanics, and
microfluidic mixing in picoliter and femtoliter volumes.

Active fluid mixing was demonstrated in microchan-
nels made in a micromachined microfluidic chip of
polymethylmetacrylate (PMMA): mixing was based on
the manipulation by a local alternating magnetic field of
self-assembled porous structures of magnetic microbe-
ads that are placed over the section of the channel (Rida
et al. 2003b; Rida and Gijs 2004a; Rida and Gijs 2004b).
Using a sinusoidally varying magnetic field
(1 Hz<f<100 Hz), a rotational motion of the SPS was
induced, thereby, strongly enhancing the fluid perfusion
through the SPS that behaved as a dynamic random
porous medium. The localized time-dependent magnetic
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field was generated using a current-fed coil and a soft
magnetic yoke structure, which is partly integrated
within a plastic microfluidic chip. Figure 12a is a sche-
matic view of the magnetic SPS in a microfluidic chan-
nel, obtained using the alternating magnetic field
between the magnetic pole tips: the SPS is organized in
sheet structures, composed of columnar-like objects and
smaller rotating magnetic objects. Figure 12b and c are
video images of a dense SPS, in the absence of a liquid
flow (vo=0), at a field oscillation frequency of =35 Hz,
and field amplitudes of By=100 mT and By=5 mT,
respectively. Figure 12d and e show the longitudinal
(along the x axis) oscillation of the SPS; the images were
taken at the most downstream position in the channel at
f=5Hz, with flow velocity vy=0.4 cm/s and field
amplitudes of By=25 mT and By=20 mT, respectively.
The mixing is the result of the chaotic splitting of fluid
streams through the dynamic and randomly porous
structure of the SPS and the relative motion of magnetic
entities with respect to the fluid flow. It was quantified
by monitoring the fluorescent intensity of initially par-
allel fluorescent and non-fluorescent laminar streams. A
95% mixing efficiency over a channel length as small as
the channel width (200 pm) and at flow rates of 0.5 cm/s
was obtained, demonstrating the large lateral mass
transfer induced by the SPS as a consequence of the
highly heterogeneous and dynamic nature of the SPS
(Rida and Gijs 2004b).

Besides mixing, the agglomeration of magnetic
microbeads into an SPS has also shown to play a role in
magnetic transport. The large magnetic bead transport
velocities (10 mm/s) obtained by actuation using a planar

(a)

sheet columnar
sub-structure

Fig. 12 a Schematic view of a magnetic supraparticle structure
(SPS) in a microfluidic channel, obtained by application of an
alternating magnetic field between two soft magnetic pole tips
sandwiching the channel: the SPS is organized in sheet structures,
composed of columnar-like objects. b, ¢ Video images of a dense
SPS in the absence of a liquid flow (velocity vo=0), at a field
oscillation frequency of f=5Hz and field amplitudes of
By=100 mT and By=35 mT, respectively. d, e The longitudinal
(along the x-axis) oscillation of the SPS; images are taken at the
most downstream position in the channel at f=35 Hz, with flow
velocity vo=0.4 cm/s and field amplitudes of By=25 mT and B, =
20 mT, respectively

coil array placed in a uniform magnetostatic field could
only be explained by the formation of columnar magnetic
objects with a strongly enhanced magnetic moment
and corresponding magnetic energy (Rida et al. 2003a).

5 Conclusions and future prospects

We have given an update on recent advances in the
handling, manipulation, and detection of magnetic
beads in microfluidic systems. Starting from the physics
of magnetic actuation and the peculiar properties of
magnetic nanoparticles and microparticles, their use in
“classical” (i.e., non-microfluidic) biomedical applica-
tions, like magnetic separation, immuno-assays, MRI,
drug delivery, and hyperthermia, was first discussed.
Probably the most prominent advantage of magnetic
beads over other solid phases lies in the fact that the
particles can be magnetically probed and manipulated
using permanent magnets or electromagnets, indepen-
dent of normal chemical or biological processes. Some
of the classical applications, like magnetic separation,
have already found their way down to miniaturized
fluidic or “lab-on-a-chip” systems that strongly limit the
consumption of samples and reagents; in such systems,
magnetic beads effectively provided a chemically active
substrate with a large surface-to-volume ratio.

We hope to have shown that this novel area of min-
iaturized applications of magnetic beads offers many
exciting possibilities for future developments. It is a
highly multidisciplinary area, requiring a range of sci-
entific knowledge, from inorganic chemistry involved in
the preparation of the magnetic beads, through bio-
chemistry and medical science to allow for their func-
tionalization and, of course, the basic physics of
magnetism and magnetic materials. What is remarkable
is that nearly all important functions in a bio-assay can
be realized using magnetic beads: sample purification,
providing a solid substrate to the sample, mixing,
labeling, manipulation and transport, and, finally, sep-
aration. Therefore, magnetic assays, especially those
employing magnetic nanoparticles as specific labels, will
certainly find more applications in the near future.
Magnetic labeling is more universal and robust than
fluorescent labeling, in the sense that the magnetism of
the particles cannot be quenched at normal working
temperatures. The progress in this area will be supported
by the further development of magnetic field sensor
hardware technology, which will allow the detection of
one or just a few magnetic labels. Extremely promising is
the fact that increasingly smaller single beads can be
detected by correctly scaling down all the dimensions of
the detection system. Ultra-small nanometric beads offer
the potential to be of the same size or smaller than the
biomolecules attached to them, thereby, providing
minimum disturbance to chemical and biological pro-
cesses and benefitting from decreased diffusion times.
Combining such particles and their detection system
with the recently developed magnetic manipulation



techniques could result in highly integrated bio-assay
systems in which all functions (from sample treatment to
read-out) could be extremely miniaturized.

It is now generally recognized that nanotechnologies
and biosciences will be one of the leading and most
promising areas of research and development in the 21st
century. I hope this review made clear that magnetic
beads could play a very important role in these devel-
opments.
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