Skip to main content
Log in

Length scale parameter of single trabecula in cancellous bone

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

In this paper, the material length scale parameter of the modified couple stress theory for trabecular bones is studied. For this reason, experimental data for the buckling of single wet and dry trabeculae from the subchondral region of the human medial tibial plateau are used from the literature. A material length scale parameter is extracted using the modified couple stress theory-based buckling relation and the experimental results. This parameter can capture the size-dependent behavior of trabeculae and can be beneficial for micro-mechanical investigation of trabecular bones. In addition, this paper proposes a size-dependent length scale parameter for trabeculae to estimate the buckling behaviors of dry and wet trabeculae, more accurately. Therefore, this paper confirms that the softening (weakening) effects of the modified couple stress theory and size-dependent behavior of the material length scale parameter can be considered for some special cases, and additionally, a correct value for the length scale parameter of the trabecula is revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Archimorph. Microscopy bone (2010). https://archimorph.com/2010/01/12/microscopy-bone/

  • Akbarzadeh Khorshidi M (2018) The material length scale parameter used in couple stress theories is not a material constant. Int J Eng Sci 133:15–25

    Google Scholar 

  • Akbarzadeh Khorshidi M (2019a) Effect of nano-porosity on postbuckling of non-uniform microbeams. SN Appl Sci 1:677. https://doi.org/10.1007/s42452-019-0704-0

    Article  Google Scholar 

  • Akbarzadeh Khorshidi M (2019b) Postbuckling of viscoelastic micro/nanobeams embedded in visco-Pasternak foundations based on the modified couple stress theory. Mech Time Depend Mater. https://doi.org/10.1007/s11043-019-09439-8

    Article  Google Scholar 

  • Akbarzadeh Khorshidi M (2020) Validation of weakening effect in modified couple stress theory: dispersion analysis of carbon nanotubes. Int J Mech Sci 170:105358

    Google Scholar 

  • Akbarzadeh Khorshidi M, Shariati M (2015) A modified couple stress theory for postbuckling analysis of Timoshenko and Reddy–Levinson single-walled carbon nanobeams. J Solid Mech 7(4):364–373

    Google Scholar 

  • Akbarzadeh Khorshidi M, Shariati M (2016a) Free vibration analysis of sigmoid functionally graded nanobeams based on a modified couple stress theory with general shear deformation theory. J Braz Soc Mech Sci Eng 38(8):2607–2619

    Google Scholar 

  • Akbarzadeh Khorshidi M, Shariati M (2016b) An investigation of stress wave propagation in a shear deformable nanobeam based on modified couple stress theory. Waves Random Complex Media 26(2):243–258

    MathSciNet  MATH  Google Scholar 

  • Akbarzadeh Khorshidi M, Shariati M (2017a) A multi-spring model for buckling analysis of cracked Timoshenko nanobeams based on modified couple stress theory. J Theor Appl Mech 55(4):1127–1139

    MATH  Google Scholar 

  • Akbarzadeh Khorshidi M, Shariati M (2017b) Buckling and postbuckling of size-dependent cracked microbeams based on a modified couple stress theory. J Appl Mech Tech Phys 58(4):717–724

    MathSciNet  MATH  Google Scholar 

  • Akbarzadeh Khorshidi M, Shariati M (2019) Investigation of flexibility constants for a multi-spring model: a solution for buckling of cracked micro/nanobeams. J Theor Appl Mech 57(1):49–58

    Google Scholar 

  • Akbarzadeh Khorshidi M, Shaat M, Abdessattar Abdelkefi A, Shariati M (2016a) Nonlocal modeling and buckling features of cracked nanobeams with von Karman nonlinearity. Appl Phys A 123:62

    Google Scholar 

  • Akbarzadeh Khorshidi M, Shariati M, Emam SA (2016b) Postbuckling of functionally graded nanobeams based on modified couple stress theory under general beam theory. Int J Mech Sci 110:160–169

    Google Scholar 

  • Alabort E, Barba D, Reed RD (2019) Design of metallic bone by additive manufacturing. Scr Mater 164:110–114

    Google Scholar 

  • Bayraktar HH, Morgan EF, Niebur GL, Morris GE, Wong EK, Keaveny TM (2004) Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J Biomech 37(1):27–35

    Google Scholar 

  • Bembey AK, Oyen ML, Bushby AJ, Boyde A (2006) Viscoelastic properties of bone as a function of hydration state determined by nanoindentation. Phil Mag 86:5691–5703

    Google Scholar 

  • Cao ShC, Liu J, Zhu L, Li L, Dao M, Lu J, Ritchie RO (2018) Nature-inspired hierarchical steels. Sci Rep 8:5088. https://doi.org/10.1038/s41598-018-23358-7

    Article  Google Scholar 

  • Charlebois M, Jirasek M, Zysset PhK (2010) A nonlocal constitutive model for trabecular bone softening in compression. Biomech Model Mechanobiol 9(5):597–611

    Google Scholar 

  • Farajpour A, Ghayesh MH, Farokhi H (2019) Nonlocal nonlinear mechanics of imperfect carbon nanotubes. Int J Eng Sci 142:201–215

    MathSciNet  MATH  Google Scholar 

  • Farokhi H, Ghayesh MH (2015a) Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams. Int J Eng Sci 91:12–33

    MathSciNet  MATH  Google Scholar 

  • Farokhi H, Ghayesh MH (2015b) Nonlinear dynamical behaviour of geometrically imperfect microplates based on modified couple stress theory. Int J Mech Sci 90:133–144

    Google Scholar 

  • Farokhi H, Ghayesh M, Amabili M (2013) Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory. Int J Eng Sci 68:11–23

    MathSciNet  MATH  Google Scholar 

  • Farokhi H, Paidoussis MP, Misra AK (2016) A new nonlinear model for analyzing the behaviour of carbon nanotube-based resonators. J Sound Vib 378:56–75

    Google Scholar 

  • Farokhi H, Misra AK, Paidoussis MP (2017a) A new electrostatic load model for initially curved carbon nanotube resonators: pull-in characteristics and nonlinear resonant behaviour. Nonlinear Dyn 88(2):1187–1211

    Google Scholar 

  • Farokhi H, Ghayesh MH, Gholipour A, Hussain Sh (2017b) Motion characteristics of bilayered extensible Timoshenko microbeams. Int J Eng Sci 112:1–17

    MathSciNet  MATH  Google Scholar 

  • Farokhi H, Paidoussis MP, Misra AK (2018) Nonlinear behaviour and mass detection sensitivity of geometrically imperfect cantilevered carbon nanotube resonators. Commun Nonlinear Sci Numer Simul 65:272–298

    MathSciNet  Google Scholar 

  • Fratzl P, Weinkamer R (2007) Nature’s hierarchical materials. Prog Mater Sci 52:1263–1334

    Google Scholar 

  • Ghayesh MH (2018a) Viscoelastically coupled dynamics of FG Timoshenko microbeams. Microsyst Technol 25:1–13

    Google Scholar 

  • Ghayesh MH (2018b) Dynamics of functionally graded viscoelastic microbeams. Int J Eng Sci 124:115–131

    MathSciNet  MATH  Google Scholar 

  • Ghayesh MH (2018c) Stability and bifurcation characteristics of viscoelastic microcantilevers. Microsyst Technol 24:4739–4746

    MathSciNet  Google Scholar 

  • Ghayesh MH (2018d) Functionally graded microbeams: simultaneous presence of imperfection and viscoelasticity. Int J Mech Sci 140:339–350

    Google Scholar 

  • Ghayesh MH (2019) Viscoelastic mechanics of Timoshenko functionally graded imperfect microbeams. Compos Struct 225:110974

    Google Scholar 

  • Ghayesh MH, Amabili M (2012) Nonlinear dynamics of axially moving viscoelastic beams over the buckled state. Comput Struct 112–113:406–421

    Google Scholar 

  • Ghayesh MH, Farajpour A (2019) A review on the mechanics of functionally graded nanoscale and microscale structures. Int J Eng Sci 137:8–36

    MathSciNet  MATH  Google Scholar 

  • Ghayesh MH, Farokhi H (2015a) Chaotic motion of a parametrically excited microbeam. Int J Eng Sci 96:34–45

    MathSciNet  MATH  Google Scholar 

  • Ghayesh MH, Farokhi H (2015b) Nonlinear dynamics of microplates. Int J Eng Sci 86:60–73

    MathSciNet  MATH  Google Scholar 

  • Ghayesh MH, Farokhi H (2018) On the viscoelastic dynamics of fluid-conveying microtubes. Int J Eng Sci 127:186–200

    MathSciNet  MATH  Google Scholar 

  • Ghayesh MH, Amabili M, Farokhi H (2013a) Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams. Int J Eng Sci 71:1–14

    MathSciNet  MATH  Google Scholar 

  • Ghayesh MH, Farokhi H, Amabili M (2013b) Nonlinear dynamics of a microscale beam based on the modified couple stress theory. Compos B Eng 50:318–324

    MATH  Google Scholar 

  • Ghayesh MH, Farokhi H, Amabili M (2014) In-plane and out-of-plane motion characteristics of microbeams with modal interactions. Compos B Eng 60:423–439

    Google Scholar 

  • Ghayesh MH, Farokhi H, Hussain Sh (2016a) Viscoelastically coupled size-dependent dynamics of microbeams. Int J Eng Sci 109:243–255

    MathSciNet  MATH  Google Scholar 

  • Ghayesh MH, Farokhi H, Alici G (2016b) Size-dependent performance of microgyroscopes. Int J Eng Sci 100:99–111

    MathSciNet  MATH  Google Scholar 

  • Ghayesh MH, Farajpour A, Farokhi H (2020) Effect of flow pulsations on chaos in nanotubes using nonlocal strain gradient theory. Commun Nonlinear Sci Numer Simul 83:105090

    MathSciNet  Google Scholar 

  • Gholipour A, Farokhi H, Ghayesh MH (2015) In-plane and out-of-plane nonlinear size-dependent dynamics of microplates. Nonlinear Dyn 79:1771–1785

    Google Scholar 

  • Goda I, Ganghoffer JF (2015) Identification of couple-stress moduli of vertebral trabecular bone based on the 3D internal architectures. J Mech Behav Biomed Mater 51:99–118

    Google Scholar 

  • Heiner A, Brown TD (2001) Structural properties of a new design of composite replicate femurs and tibias. J Biomech 34:773–781

    Google Scholar 

  • Iyo T, Maki Y, Sasaki N, Nakata M (2004) Anisotropic viscoelastic properties of cortical bone. J Biomech 37:1433–1437

    Google Scholar 

  • Ji B, Gao H (2004) Mechanical properties of nanostructure of biological materials. J Mech Phys Solids 52:1963–1990

    MATH  Google Scholar 

  • Kim T, Koh J, Ramanathan M, Zhang A (2010) Identification of critical location on a microstructural bone network. IEEE Int Conf Bioinform Biomed (BIBM). https://doi.org/10.1109/BIBM.2010.5706628

    Article  Google Scholar 

  • Lakes RS (1982) Dynamical study of couple stress effects in human compact bone. J Biomech Eng 104(1):6–11

    Google Scholar 

  • Louna Z, Goda I, Ganghoffer JF (2019) Homogenized strain gradient remodeling model for trabecular bone microstructures. Continuum Mech Thermodyn. https://doi.org/10.1007/s00161-019-00746-6

    Article  MathSciNet  MATH  Google Scholar 

  • Manda K, Wallace RJ, Xie S, Levrero-Florencio F, Pankaj P (2017) Nonlinear viscoelastic characterization of bovine trabecular bone. Biomech Model Mechanobiol 16:173–189

    Google Scholar 

  • Mano JF (2005) Viscoelastic properties of bone: mechanical spectroscopy studies on a chicken model. Mater Sci Eng, C 25:145–152

    Google Scholar 

  • Marieb EN, Hoehn K (2007) Human anatomy & physiology, 7th edn. Benjamin Cummings, San Francisco

    Google Scholar 

  • Mohammad-Abadi M, Daneshmehr AR (2014) Size dependent buckling analysis of microbeams based on modified couple stress theory with high order theories and general boundary conditions. Int J Eng Sci 74:1–14

    MathSciNet  MATH  Google Scholar 

  • Nowruzpour M, Reddy JN (2018) Unification of local and nonlocal models within a stable integral formulation for analysis of defects. Int J Eng Sci 132:45–59

    MathSciNet  MATH  Google Scholar 

  • Nowruzpour M, Sarkar S, Reddy JN, Roy D (2019) A derivative-free upscaled theory for analysis of defects. J Mech Phys Solids 122:489–501

    MathSciNet  Google Scholar 

  • Oftadeh R, Perez-Viloria M, Villa-Camacho JC, Vaziri A, Nazarian A (2015) Biomechanics and mechanobiology of trabecular bone: a review. J Biomech Eng 37:010802-1

    Google Scholar 

  • Pugh JW, Rose RM, Radin EL (1973) Elastic and viscoelastic properties of trabecular bone: dependence on structure. J Biomech 6:475–485

    Google Scholar 

  • Rho JY, Ashman RB, Turner ChH (1993) Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J Biomech 26:111–119

    Google Scholar 

  • Rohnke M, Pfitzenreuter S, Mogwitz B, Henß A, Thomas J, Bieberstein D, Gemming T, Otto SK, Ray S, Schumacher M, Gelinsky M, Alt V (2017) Strontium release from Sr2 + -loaded bone cements and dispersion in healthy and osteoporotic rat bone. J Control Release 262:159–169

    Google Scholar 

  • Sarkar S, Nowruzpour M, Reddy JN, Srinivasa AR (2017) A discrete Lagrangian based direct approach to macroscopic modelling. J Mech Phys Solids 98:172–180

    MathSciNet  Google Scholar 

  • Shaat M (2019) Size-dependence of Young’s modulus and Poisson’s ratio: effects of material dispersion. Mech Mater 133:111–119

    Google Scholar 

  • Shaat M, Akbarzadeh Khorshidi M, Abdelkefi A, Shariati M (2016) Modeling and vibration characteristics of cracked nano-beams made of nanocrystalline materials. Int J Mech Sci 115–116:574–585

    Google Scholar 

  • Shah FA, Thomsen P, Palmquist A (2019) Osseointegration and current interpretations of the bone-implant interface. Acta Biomater 84:1–15

    Google Scholar 

  • Townsend PR, Rose RM, Radin EL (1975) Buckling studies of single human trabeculae. J Biomech 8:199–201

    Google Scholar 

  • Wu D, Isaksson P, Ferguson SJ, Persson C (2018) Young’s modulus of trabecular bone at the tissue level: a review. Acta Biomater 78:1–12

    Google Scholar 

  • Yamada S, Tadano Sh, Fukuda S (2014) Nanostructure and elastic modulus of single trabecula in bovine cancellous bone. J Biomech 47:3482–3487

    Google Scholar 

  • Yamada S, Tadano Sh, Fukasawa K (2016) Micro-cantilever bending for elastic modulus measurements of a single trabecula in cancellous bone. J Biomech 49:4124–4127

    Google Scholar 

  • Yang JFC, Lakes RS (1982) Experimental study of micropolar and couple stress elasticity in compact bone in bending. J Biomech 15(2):91–98

    Google Scholar 

  • Yang F, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39:2731–2743

    MATH  Google Scholar 

  • Yoo A, Jasowik I (2003) Modeling of trabecular bone as a couple stress continuum. In: ASME 2003 international mechanical engineering congress and exposition: advances in bioengineering, IMECE2003-43171, pp 41–42. https://doi.org/10.1115/imece2003-43171

  • Yoo A, Jasowik I (2006) Couple-stress moduli of a trabecular bone idealized as a 3D periodic cellular network. J Biomech 39(12):2241–2252

    Google Scholar 

  • Yuan B, Zhu M, Chung ChY (2018) Biomedical porous shape memory alloys for hard-tissue replacement materials. Materials 11:1716. https://doi.org/10.3390/ma11091716

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Akbarzadeh Khorshidi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbarzadeh Khorshidi, M. Length scale parameter of single trabecula in cancellous bone. Biomech Model Mechanobiol 19, 1917–1923 (2020). https://doi.org/10.1007/s10237-020-01316-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-020-01316-5

Keywords

Navigation