Skip to main content
Log in

The role of fabric in the quasi-static compressive mechanical properties of human trabecular bone from various anatomical locations

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Osteoporosis leads to an increased risk of bone fracture. While bone density and architecture can be assessed in vivo with increasing accuracy using CT and MRI, their relationship with the critical mechanical properties at various anatomical sites remain unclear. The objective of this study was to quantify the quasi-static compressive mechanical properties of human trabecular bone among different skeletal sites and compare their relationships with bone volume fraction and a measure of microstructural anisotropy called fabric. Over 600 trabecular bone samples from six skeletal sites were assessed by \(\upmu CT\) and tested in uniaxial compression. Bone volume fraction correlated positively with elastic modulus, yield stress, ultimate stress, and the relationships depended strongly on skeletal site. The account of fabric improved these correlations substantially, especially when the data of all sites were pooled together, but the fabric–mechanical property relationships remained somewhat distinct among the anatomical sites. The study confirms that, beyond volume fraction, fabric plays an important role in determining the mechanical properties of trabecular bone and should be exploited in mechanical analysis of clinically relevant sites of the human skeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bouxsein ML, Courtney AC, Hayes WC (1995) Ultrasound and densitometry of the calcaneus correlate with the failure loads of cadaveric femurs. Calcif Tissue Int 56(2):99–103

    Article  Google Scholar 

  • Carter DR, Hayes WC (1977) The compressive behaviour of bone as a two phase porous structure. J Bone Joint Surg Am 59-A:954–962

    Google Scholar 

  • Chevalier Y, Allmer H, Pahr D, Charlebois M, Zysset PhK (2006) Validation of a voxel-based fe method for prediction of the uniaxial stiffness of human trabecular bone using macroscopic mechanical tests and nanoindentation. J Biomech 39(S1):S17

    Article  Google Scholar 

  • Courtney AC, Wachtel EF, Myers ER, Hayes WC (1994) Effects of loading rate on strength of the proximal femur. Calcif Tissue Int 55(1):53–58

    Article  Google Scholar 

  • Courtney AC, Wachtel EF, Myers ER, Hayes WC (1995) Age-related reductions in the strength of the femur tested in a fall-loading configuration. J Bone Joint Surg Am 77(3): 387–395

    Google Scholar 

  • Cowin SC (1985) The relationship between the elasticity tensor and the fabric tensor. Mech Mater 4:137–147

    Article  Google Scholar 

  • Cowin SC (1986) Fabric dependence of an anisotropic strength criterion. Mech Mater 5:251

    Article  Google Scholar 

  • Curnier A (2004) Mécanique des Solides Déformables. Presses Polytechniques et Universitaires Romandes, Lausanne

    Google Scholar 

  • Currey JD, Brear K, Zioupos P, Reilly GC (1995) Effect of formaldehyde fixation on some mechanical properties of bovine bone. Biomaterials 16(16):1267–1271

    Article  Google Scholar 

  • Goulet RW, Goldstein SA, Ciarelli MJ, Kuhn JL, Brown MB, Feldkamp LA (1994) The relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech 27(4):375–389

    Article  Google Scholar 

  • Harrigan TP, Mann RW (1984) Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. J Mater Sci 19:761–767

    Article  Google Scholar 

  • Hildebrand T, Laib A, Müller R, Dequeker J, Rüegsegger P (1999) Direct three dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest and calcaneus. J Bone Miner Res 14(7):1167–1174

    Article  Google Scholar 

  • Hodgskinson R, Currey JD (1990) The effect of variation in structure on the young’s modulus of cancellous bone: a comparison of human and non-human material. Proc Invest Mech Eng 204:115–121

    Google Scholar 

  • Homminga J, McCreadie BR, Weinans H, Huiskes R (2003) The dependence of the elastic properties of osteoporotic cancellous bone on volume fraction and fabric. J Biomech 36(10):1461–1467

    Article  Google Scholar 

  • Kabel J, van Rietbergen B, Odgaard A, Huiskes R (1997) Fabric and volume fraction can accurately predict mechanical properties for a wide range of trabecular architectures. In: Transactions of the 43rd annual meeting of the ORS San Francisco, vol 2, p 800

  • Keaveny TM, Borchers RE, Gibson JG, Hayes WC (1993) Trabecular bone modulus and strength can depend on specimen geometry. J Biomech 26(8):991–1000

    Article  Google Scholar 

  • Keaveny TM, Wachtel EF, Guo XE, Hayes WC (1994) Mechanical behavior of damaged trabecular bone. J Biomech 27(11): 1309–1318

    Article  Google Scholar 

  • Keaveny TM, Pinilla TP, Crawford RP, Kopperdahl DL, Lou A (1997) Systematic and random errors in compression testing of trabecular bone. J Orthop Res 15:101–110

    Article  Google Scholar 

  • Laib A, Barou O, Vico L, Lafage-Proust MH, Alexandre C, Rüegsegger P (2000) 3D micro-computed tomography of trabecular and cortical bone architecture with application to a rat model of immobilisation osteoporosis. Med Biol Eng Comput 38:326–332

    Article  Google Scholar 

  • Linde F, Sorensen HCF (1993) The effect of different storage methods on the mechanical properties of trabecular bone. J Biomech 26(10):1249–1252

    Article  Google Scholar 

  • Lochmüller EM, Lill CA, Kuhn V, Schneider E, Eckstein F (2002) Radius bone strength in bending, compression, and falling and its correlation with clinical densitometry at multiple sites. J Bone Miner Res 17(9):1629–1638

    Article  Google Scholar 

  • Morgan EF, Keaveny TM (2001) Dependence of yield strain of human trabecular bone on anatomic site. J Biomech 34(5):569–577

    Article  Google Scholar 

  • Morgan EF, Bayraktar HH, Keaveny TM (2003) Trabecular bone modulus-density relationships depend on anatomic site. J Biomech 36:897–904

    Article  Google Scholar 

  • Morgan EF, Bayraktar HH, Yeh OC, Majumdar S, Burghardt A, Keaveny TM (2004) Contribution of inter-site variations in architecture to trabecular bone apparent yield strains. J Biomech 37:1413–1420

    Article  Google Scholar 

  • Nagele E, Kuhn V, Vogt H, Link TM, Müller R, Lochmüller EM, Eckstein F (2004) Technical considerations for microstructural analysis of human trabecular bone from specimens excised from various skeletal sites. Calcif Tissue Int 75(1):15–22

    Article  Google Scholar 

  • Nicholson PH, Lowet G, Cheng XG, Boonen S, van der Perre G, Dequeker J (1997) Assessment of the strength of the proximal femur in vitro: relationship with ultrasonic measurements of the calcaneus. Bone 20(3):219–24

    Article  Google Scholar 

  • Oxlund H, Barckman M, Ortoft G, Andreassen TT (1995) Reduced concentrations of collagen links are associated with reduced strength of bone. Bone 17(4):365–371

    Article  Google Scholar 

  • Rho JY, Tsui T, Pharr O (1997) Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials 18(29):1325–1330

    Article  Google Scholar 

  • Rice JC, Cowin SC, Bowman JA (1988) On the dependence of the elasticity and strength of cancellous bone on apparent density. J Biomech 21(2):155–168

    Article  Google Scholar 

  • Rincón-Kohli L (2003) Identification of a multiaxial failure criterion for human trabecular bone. PhD thesis, Ecole Polytechnique Fédérale de Lausanne

  • van Rietbergen B, Odgaard A, Kabel J, Huiskes R (1998) Relationship between bone morphology and bone elastic properties can be accurately quantified using high-resolution computer reconstructions. J Orthop Res 16:23–28

    Article  Google Scholar 

  • Weaver JK (1966) The microscopic hardness of bone. J Bone Joint Surg Am 48(2):273–288

    Google Scholar 

  • Zhu M, Keller TS, Spengler DM (1994) Effects of specimen load-bearing and free surface layers on the compressive mechanical proerties of cellular materials. J Biomech 27(1):57–66

    Article  Google Scholar 

  • Zysset PhK (2003) A review of morphology-elasticity relationships in human trabecular bone: theories and experiments. J Biomech 36(10):1469–1485

    Article  Google Scholar 

  • Zysset PhK (1994) A constitutive law for trabecular bone. PhD thesis, Ecole Polytechnique Fédérale de Lausanne

  • Zysset PhK, Curnier A (1995) An alternative model for anisotropic elasticity of trabecular bone. In: Bioengineering conference of the ASME, Beaver Creek, Colorado, p 359

  • Zysset PhK, Curnier A (1996) A 3D damage model for trabecular bone based on fabric tensors. J Biomech 29(12):1549–1558

    Google Scholar 

  • Zysset PhK, Rincón-Kohli L (2006) An alternative fabric-based yield and failure criterion for trabecular bone. In: Holzapfel GA, Ogden RW (eds) Mechanics of biological tissue. Springer, Berlin, pp 457–470

    Chapter  Google Scholar 

  • Zysset PhK, Goulet RW, Hollister SJ (1998) A global relationship between trabecular morphology and homogenized elastic properties. J Biomech Eng 120:640–646

    Google Scholar 

  • Zysset PhK, Guo XE, Hoffler CE, Moore K, Goldstein SA (1999) Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J Biomech 32:1005–1012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe K. Zysset.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuura, M., Eckstein, F., Lochmüller, EM. et al. The role of fabric in the quasi-static compressive mechanical properties of human trabecular bone from various anatomical locations. Biomech Model Mechanobiol 7, 27–42 (2008). https://doi.org/10.1007/s10237-006-0073-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-006-0073-7

Keywords

Navigation