Skip to main content
Log in

Can the diverse elastic properties of trabecular and cortical bone be attributed to only a few tissue-independent phase properties and their interactions?

Arguments from a multiscale approach

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

As candidates for tissue-independent phases of cortical and trabecular bone we consider (i) hydroxyapatite, (ii) collagen, (iii) ultrastructural water and non-collagenous organic matter, and (iv) marrow (water) filling the Haversian canals and the intertrabecular space. From experiments reported in the literature, we assign stiffness properties to these phases (experimental set I).

On the basis of these phase definitions, we develop, within the framework of continuum micromechanics, a two-step homogenization procedure: (i) at a length scale of 100–200 nm, hydroxyapatite (HA) crystals build up a crystal foam (“polycrystal”), and water and non-collagenous organic matter fill the intercrystalline space (homogenization step I); (ii) at the ultrastructural scale of mineralized tissues (5–10 microns), collagen assemblies composed of collagen molecules are embedded into the crystal foam, acting mechanically as cylindrical templates. At an enlarged material scale of 5–10 mm, the second homogenization step also accommodates the micropore space as cylindrical pore inclusions (Haversian and Volkmann canals, inter-trabecular space) that are suitable for both trabecular and cortical bone. The inputs for this micromechanical model are the tissue-specific volume fractions of HA, collagen, and of the micropore space. The outputs are the tissue-specific ultrastructural and microstructural (=macroscopic=apparent) elasticity tensors.

A second independent experimental set (composition data and experimental stiffness values) is employed to validate the proposed model. We report a small mean prediction error for the macroscopic stiffness values. The validation suggests that hydroxyapatite, collagen, and water are tissue-independent phases, which define, through their mechanical interaction, the elasticity of all bones, whether cortical or trabecular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akiva U, Wagner H, Weiner S (1998) Modelling the three-dimensional elastic constants of parallel-fibred and lamellar bone. J Mater Sci 33:1497–1509

    Article  CAS  Google Scholar 

  • Arnoux P, Bonnoit J, Chabrand P, Jean M, Pithioux M (2002) Numerical damage models using a structural approach: application to bones and ligaments. Eur Phys J–Appl Phys 17:65–73

    Google Scholar 

  • Ascenzi M-G (1999) A first estimation of prestress in so-called circularly fibered osteonic lamellae. J Biomech 32:935–942

    CAS  PubMed  Google Scholar 

  • Ashman R, Rho J (1988) Elastic modulus of trabecular bone material. J Biomech 21(3):177–181

    CAS  PubMed  Google Scholar 

  • Ashman R, Corin J, Turner C (1987) Elastic properties of cancellous bone: measurement by an ultrasonic technique. J Biomech 20(10):979–986

    CAS  PubMed  Google Scholar 

  • Benezra Rosen V, Hobbs L, Spector M (2002) The ultrastructure of anorganic bovine bone and selected synthetic hydroxyapatites used as bone graft substitute material. Biomaterials 23:921–928

    Article  CAS  PubMed  Google Scholar 

  • Biltz R, Pellegrino E (1969) The chemical anatomy of bone. J Bone Joint Surg 51-A(3):456–466

    Google Scholar 

  • Broe K, Hannan M, Kiely D, Cali C, Cupples L, Kiel D (2000) Predicting fractures using bone mineral density: a prospective study of long-term care residents. Osteoporosis Int 11:765–771

    Article  CAS  Google Scholar 

  • Bryant J (1983) The effect of impact on the marrow pressure of long bones in vitro. J Biomech 16(8):659–665

    CAS  PubMed  Google Scholar 

  • Bryant J (1988) On the mechanical function of marrow in long bones. Eng Med 17(2):55–58

    CAS  PubMed  Google Scholar 

  • Buckwalter J, Glimcher M, Cooper R, Recker R (1995a) Bone biology, Part I: Structure, blood supply, cells, matrix, and mineralization. The J Bone Joint Surg 77-A(8):1256–1275

    Google Scholar 

  • Buckwalter J, Glimcher M, Cooper R, Recker R (1995b) Bone biology, Part II: Formation, form, modeling, remodeling, and regulation of cell functions. J Bone Joint Surg 77-A(8):1276–1288

    Google Scholar 

  • Byers S, Moore A, Byard R, Fazzalari N (2000) Quantitative histomorphometric analysis of the human growth plate from birth to adulescence. Bone 27(4):495–501

    Article  CAS  PubMed  Google Scholar 

  • Cheal E, Hipp J, Hayes W (1993) Evaluation of Finite Element analysis for prediction of the strength reduction due to metastatic lesions in the femoral neck. J Biomech 26(3):251–264

    CAS  PubMed  Google Scholar 

  • Cody D, Gorss G, Hou F, Spencer H, Goldstein S, Fyhrie D (1999) Femoral strength is better predicted by finite element models than QCT and DXA. J Biomech 32:1013–1020

    Article  CAS  PubMed  Google Scholar 

  • Cowin S (1985) The relationship between the elasticity tensor and the fabric tensor. Mech Mater 4:137–147

    Article  Google Scholar 

  • Cowin S (1993) Bone stress adaptation models. J Biomech 115:528–533

    CAS  Google Scholar 

  • Cowin S (1999) Bone poroelasticity. J Biomech 32:217–238

    Article  CAS  PubMed  Google Scholar 

  • Cox H (1952) The elasticity and strength of paper and other fibrous materials. Brit J Appl Phys 3:72–79

    Article  Google Scholar 

  • Crolet J, Aoubiza B, Meunier A (1993) Compact bone: numerical simulation of mechanical characteristics. J Biomech 26(6):677–687

    CAS  PubMed  Google Scholar 

  • Currey J (1969) The relationship between the stiffness and the mineral content of bone. J Biomech 2:477–480

    Google Scholar 

  • Currey J (1984) The mechanical adaptations of bones. Princeton University Press, Princeton, NJ, USA

  • Cusack S, Miller A (1979) Determination of the elastic constants of collagen by Brillouin light scattering. J Mol Biol 135:39–51

    CAS  PubMed  Google Scholar 

  • Dalstra M, Huiskes R, Erning L (1995) Development and validation of a three-dimensional finite element model of the pelvic bone. J Biomech Eng–T ASME 117:272–278

    Google Scholar 

  • Ding M, Hvid I (2000) Quantification of age-related changes in the structure model type and trabecular thickness of human tibial cancellous bone. Bone 26:291–295

    Article  CAS  PubMed  Google Scholar 

  • Eshelby J (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond Ser A 241:376–396

    Google Scholar 

  • Fan Z, Swadener J, Rho J, Roy M, Pharr G (2002) Anisotropic properties of human tibial cortical bone as measured by nanoindentation. J Orthopaed Res 20:806–810

    Article  CAS  Google Scholar 

  • Farquharson C, Houston B (1998) Growth-plate chondrocytes in normal and abnormal growth of bone. In: 1997/98 Annual Report. Roslin Institute, Edinburgh, Scotland, UK. Published online at http://www.roslin.ac.uk (cited 25 February 2004)

  • Fedorov F (1968) Theory of elastic waves in crystals. Plenum, New York

  • Fenech C, Keaveny T (1999) A cellular solid criterion for predicting the axial-shear failure properties of bovine trabecular bone. J Biomech Eng–T ASME 121:414–422

    Google Scholar 

  • Fratzl P, Fratzl-Zelman N, Klaushofer K, Vogl G, Koller K (1991) Nucleation and growth of mineral crystals in bone studied by small-angle X-ray scattering. Calcified Tissue Int 48:407–413

    CAS  Google Scholar 

  • Fratzl P, Schreiber S, Klaushofer K (1996) Bone mineralization as studied by small-angle X-ray scattering. Connect Tissue Res 34(4):247–254

    Google Scholar 

  • Fung Y (2002) Celebrating the inauguration of the journal: Biomechanics and Modeling in Mechanobiology. Biomech Model Mechanobiol 1:3–4

    Article  CAS  Google Scholar 

  • Fyhrie D, Schaffler M (1995) The adaptation of bone apparent density to applied bone. J Biomech 28(2):135–146

    Article  CAS  PubMed  Google Scholar 

  • Gibson L (1985) The mechanical behavior of cancellous bone. J Biomech 18:317–28

    CAS  PubMed  Google Scholar 

  • Gilmore R, Katz J (1982) Elastic properties of apatites. J Mater Sci 17:1131–1141

    CAS  Google Scholar 

  • Gong J, Arnold J, Cohn SH (1964) Composition of trabecular and cortical bone. Anat Rec 149:325–332

    CAS  PubMed  Google Scholar 

  • Goulet R, Goldstein S, Ciarelli M, Kuhn J, Brown M, Feldkamp L (1994) The relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech 27:375–389

    CAS  PubMed  Google Scholar 

  • Hellmich C, Ulm F-J (2002a) Are mineralized tissues open crystal foams reinforced by crosslinked collagen? –some energy arguments. J Biomech 35:1199–1212

    Article  PubMed  Google Scholar 

  • Hellmich C, Ulm F-J (2002b) A micromechanical model for the ultrastructural stiffness of mineralized tissues. J Eng Mech–ASCE 128(8):898–908

    Google Scholar 

  • Hengsberger S, Kulik A, Zysset P (2002) Nanoindentation discriminates the elastic properties of individual human bone lamellae under dry and physiological conditions. Bone 30:178–184

    Article  CAS  PubMed  Google Scholar 

  • Hershey A (1954) The elasticity of an isotropic aggregate of anisotropic cubic crystals. J Appl Mech–T ASME 21:236–240

    Google Scholar 

  • Hoehn L, Niven I (1985) Averages on the move. Math Mag 58:151–156

    Google Scholar 

  • Hoffler C, Moore K, Kozloff K, Zysset P, Brown M, Goldstein S (2000) Heterogeneity of bone lamellar-level elastic moduli. Bone 26:603–609

    Article  CAS  PubMed  Google Scholar 

  • Hollister S, Fyhrie D, Jepsen K, Goldstein S (1991) Application of homogenization theory to the study of trabecular bone mechanics. J Biomech 24:825–839

    CAS  PubMed  Google Scholar 

  • Hollister S, Brennan J, Kikuchi N (1994) A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress. J Biomech 27(4):433–444

    CAS  PubMed  Google Scholar 

  • Hou F, Lang S, Hoshaw S, Reimann D, Fyhrie D (1998) Human vertebral body apparent and hard tissue stiffness. J Biomech 31:1009–1015

    Article  CAS  PubMed  Google Scholar 

  • Huiskes R, Hollister S (1993) From structure to process, from organ to cell: recent developments of FE-analysis in orthopaedic biomechanics. J Biomech Eng–T ASME 115:520–527

    Google Scholar 

  • Jäger I, Fratzl P (2000) Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys J 79:1737–1746

    PubMed  Google Scholar 

  • Katz J (1980) Anisotropy of Young’s modulus of bone. Nature 283:106–107

    CAS  PubMed  Google Scholar 

  • Katz J (1981) Composite material models for cortical bone. American Society of Mechanical Engineers (ASME), New York, pp 171–184

  • Katz J, Ukraincik K (1971) On the anisotropic elastic properties of hydroxyapatite. J Biomech 4:221–227

    Google Scholar 

  • Keaveny T, Wachtel E, Ford C, Hayes W (1994) Differences between the tensile and compressive strengths of bovine tibial trabecular bone depend on modulus. J Biomech 27(9):1137–1146

    CAS  PubMed  Google Scholar 

  • Kim H, Al-Hassani, S (2002) A morphological model of vertebral trabecular bone. J Biomech 35:1101–1114

    Article  CAS  PubMed  Google Scholar 

  • Kolsky H (1953) Stress waves in solids. Clarendon, Oxford, UK

  • Kröner E (1971) Statistical continuum mechanics. Springer, Berlin Heidelberg New York

  • Lees S (1987) Considerations regarding the structure of the mammalian mineralized osteoid from viewpoint of the generalized packing model. Connect Tissue Res 16:281–303

    CAS  PubMed  Google Scholar 

  • Lees S, Klopholz D (1992) Sonic velocity and attenuation in wet cow femur for the frequency range 5 to 100 MHz. Ultrasound Med Biol 18(3):303–308

    CAS  PubMed  Google Scholar 

  • Lees S, Heeley J, Cleary P (1979). A study of some properties of a sample of bovine cortical bone using ultrasound. Calcified Tissue International 29:107–117

    CAS  PubMed  Google Scholar 

  • Lees S, Heeley J, Cleary P (1981) Some properties of the organic matrix of a bovine cortical sample in various media. Calcified Tissue Int 33:81–86

    Google Scholar 

  • Lees S, Tao N-J, Lindsay M (1990) Studies of compact hard tissues and collagen by means of Brillouin light scattering. Connect Tissue Res 24:187–205

    CAS  PubMed  Google Scholar 

  • Lees S, Prostak K, Ingle V, Kjoller K (1994) The loci of mineral in turkey leg tendon as seen by atomic force microscope and electron microscopy. Calcified Tissue Int 55:180–189

    CAS  Google Scholar 

  • Lotz J, Cheal E, Hayes W (1991) Fracture prediction for the proximall femur using finite element models: Part I – linear analysis. J Biomech Eng–T ASME 113:353–360

    Google Scholar 

  • Mammone J, Hudson S (1993) Micromechanics of bone strength and failure. J Biomech 26:439–446

    CAS  PubMed  Google Scholar 

  • Martin R, Burr D, Sharkey N (2001). Skeletal tissue mechanics. Springer, Berlin Heidelberg New York

  • Matsushima N, Akiyama M, Terayama Y (1982) Quantitative analysis of the orientation of mineral in bone from small-angle X-ray scattering patterns. Jpn J Appl Phys 21:186–189

    Google Scholar 

  • Mayr E (1997) This is biology –the science of the living world, 1st edn. Harvard University Press, Cambridge, MA

  • McCarthy R, Jeffcott L, McCartney R (1990) Ultrasound speed in equine cortical bone: effects of orientation, density, porosity and temperature. J Biomech 23(11):1139–1143

    CAS  PubMed  Google Scholar 

  • Miller A (1984) Collagen: the organic matrix of bone. Philos Tr R Soc S–B 304:455–477

  • Moore T, Gibson L (2001) Modeling modulus reduction in bovine bone damaged in compression. J Biomech Eng–T ASME 123:613–622

    Google Scholar 

  • Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall Mater 21(5):571–574

    Article  Google Scholar 

  • Niebur G, Yuen J, Hsia A, Keaveny T (1999) Convergence behavior of high-resolution finite element models of trabecular bone. J Biomech Eng–T ASME 121:629–635

    Google Scholar 

  • Odgaard A, Kabel J, van Rietbergen B, Dalstra M, Huiskes R (1997) Fabric and elastic principal directions of cancellous bone are closely related. J Biomech 30(5):487–495

    Article  CAS  PubMed  Google Scholar 

  • Odgaard A, Kabel J, van Rietbergen B, Huiskes R (1999) Architectural 3-D parameters and anisotropic elastic properties of cancellous bone. In: Pederson P, Bendsoe M (eds) IUTAM symposium on synthesis in bio solid mechanics. Kluwer, The Netherlands, pp33–42

  • Parfitt A (1984) The cellular basis of bone remodeling: the quantum concept reexamined in light of recent advances in cell biology of bone. Calcified Tissue Int 36:S37–S45

    Google Scholar 

  • Petrtyl M, Hert J, Fiala P (1996) Spatial organization of the haversian bone in man. J Biomech 29(2):161–169

    Article  CAS  PubMed  Google Scholar 

  • Pidaparti R, Burr D (1992) Collagen fibre orientation and geometry effects on the mechanical properties of secondary osteons. J Biomech 25:869–880

    CAS  PubMed  Google Scholar 

  • Pidaparti R, Chandran A, Takano Y, Turner C (1996) Bone mineral lies mainly outside the collagen fibrils: Predictions of a composite model for osteonal bone. J Biomech 29(7):909–916

    Article  CAS  PubMed  Google Scholar 

  • Pistoia W, van Rietbergen B, Laib A, Rüegsegger P (2001) High-resolution three-dimensional-pqct images can be an adequate basis for in-vivo μFE analysis of bone. J Biomech Eng–T ASME 132:176–183

    Google Scholar 

  • Ramtani S, Zidi M (2001) A theoretical model of the effect of continuum danage on a bone adaptation model. J Biomech 34:471–479

    Article  CAS  PubMed  Google Scholar 

  • Rho J, Ashman R, Turner C (1993) Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J Biomech 26(2):111–119

    CAS  PubMed  Google Scholar 

  • Rho J, Zioupos P, Currey J, Pharr G (2002) Microstructural elasticity and regional heterogeneity in human femoral bone of various ages examined by nano-indentation. J Biomech 35:189–198

    Article  CAS  PubMed  Google Scholar 

  • Rho J-Y, Hobatho M, Ashman R (1995) Relations of mechanical properties to density and CT numbers in human bone. Med Eng Phys 17(5):347–355

    Article  CAS  PubMed  Google Scholar 

  • Rho J-Y, Tsui T, Pharr G (1997) Elastic properties of human cortical bone and trabecular lamellar bone measured by nanoindentation. Biomaterials 18:1325–1330

    Article  CAS  PubMed  Google Scholar 

  • Roschger P, Fratzl P, Eschberger J, Klaushofer K (1998) Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies. Bone 23(4):319–326

    Article  CAS  PubMed  Google Scholar 

  • Rubin M, Jasiuk I, Taylor J, Rubin J, Ganey T, Apkarian R (2003) TEM analysis of the nanostructure of normal and osteoporotic bone. Bone 33:270–282

    Article  PubMed  Google Scholar 

  • Salencon J (2001) Handbook of continuum mechanics: general concepts – thermoelasticity, 1st edn. Springer, Berlin, Germany

    Google Scholar 

  • Sasaki N (1991) Orientation of mineral in bovine bone and the anisotropic mechanical properties of plexiform bone. J Biomech 24:57–61

    CAS  PubMed  Google Scholar 

  • Sietsema W (1995) Animal models of cortical porosity. Bone 17(4):297S–305S

    Article  CAS  PubMed  Google Scholar 

  • Silva E, Ulm F-J (2001) A bio-chemo-mechanics approach to bone resorption and fracture. In: Karihaloo B (ed) Analytical and computational fracture mechanics of non-homogeneous materials – Proc IUTAM Symp (Cardiff, UK, 18–22 June 2001). Kluwer, Dordrecht, The Netherlands, pp 355–366

  • Silva M, Gibson L (1997) Modeling the mechanical behavior of vertebral trabecular bone: effects of age-related changes in the microstructure. Bone 21:191–199

    Article  CAS  PubMed  Google Scholar 

  • Taylor W, Roland E, Ploeg H, Hertig D, Klabunde R, Warner M, Hobatho M-C, Rakotomanana L, Clift S (2002) Determination of orthotropic bone elastic constants using FEA and model analysis. J Biomech 35(6):767–773

    Article  CAS  PubMed  Google Scholar 

  • Turner C, Cowin S, Rho J, Ashman R, Rice J (1990) The fabric dependence of the orthotropic elastic constants of cancellous bone. J Biomech 23(6):549–561

    CAS  PubMed  Google Scholar 

  • Uchiyama T, Tanizawa T, Muramatsu H, Endo N, Takahashi H, Hara T (1999) Three-dimensional microstructural analysis of human trabecular bonein relation to its mechanical properties. Bone 25(4):487–491

    Article  CAS  PubMed  Google Scholar 

  • Ulrich D, van Rietbergen B, Laib A, Rüegsegger P (1999) Load transfer analysis of the distal radius from in-vivo high resolution CT-imaging. J Biomech 32:821–828

    Article  CAS  PubMed  Google Scholar 

  • Urist M, DeLange R, Finerman G (1983) Bone cell differentiation and growth factors. Science 220:680–686

    CAS  PubMed  Google Scholar 

  • Vajjhala S, Kraynik A, Gibson L (2000) A cellular solid model for modulus reduction due to resorption of trabeculae in bone. J Biomech Eng–T ASME 122:511–515

    Google Scholar 

  • van Rietbergen B, Weinans H, Huiskes R, Odgaard A (1995) A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J Biomech 28:69–81

    PubMed  Google Scholar 

  • van Rietbergen B, Müller R, Ulrich D, Rüegsegger P, Huiskes R (1999) Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions. J Biomech 32:165–173

    Article  PubMed  Google Scholar 

  • Wagner H, Weiner S (1992) On the relationship between the microstructure of bone and its mechanical stiffness. J Biomech 25(11):1311–20

    CAS  PubMed  Google Scholar 

  • Weiner S, Wagner H (1998) The material bone: structure – mechanical function relations. Annu Rev Mater Sci 28:271–298

    Article  CAS  Google Scholar 

  • Weiner S, Arad T, Traub W (1991) Crystal organization in rat bone lamellae. FEBS Lett 285(1):49–54

    Article  CAS  PubMed  Google Scholar 

  • Weiner S, Arad T, Sabanay I, Traub W (1997) Rotated plywood structure of primary lamellar bone in the rat: orientation of the collagen fibril arrays. Bone 20:509–514

    Article  CAS  PubMed  Google Scholar 

  • Whitehouse W (1974) The quantitative morphology of anisotropic trabecular bone. J Microsc 101:153–168

    PubMed  Google Scholar 

  • Zaoui A (1997) Structural morphology and constitutive behavior of microheterogeneous materials. In: Suquet P (ed) Continuum micromechanics. Springer, Wien New York, pp 291–347

  • Zaoui A (2002) Continuum micromechanics: survey. J Eng Mech–ASCE 128(8):808–816

    Google Scholar 

  • Zysset P, Guo X, Hoffler E, Moore K, Goldstein S (1999) Elastic modulus and hardness of cortical and trabecular bone measured by nanoindentation in the human femur. J Biomech 32:1005–1012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of this study from the Max Kade Foundation, New York, NY, mediated through the Austrian Academy of Sciences (ÖAW), Vienna, Austria, which enabled the sabbatical leave of the first author at the Massachusetts Institute of Technology, Cambridge, USA, where essential parts of the research presented here were accomplished. They are also indebted to Eric Lemarchand and Emilio Silva for helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hellmich.

Appendix: Continuum micromechanics relationships for the definition of the two-step homogenization procedure of Figure 1

Appendix: Continuum micromechanics relationships for the definition of the two-step homogenization procedure of Figure 1

Homogenization step I

As for the polycrystal, RVE \(\hat{V}_{{\text{p}}} \), the average local strains in the two phases, ε HA and ε uw, are related to the homogeneous strains E p imposed at the boundary of \(\hat{V}_{{\text{p}}} \), by the average of the localization tensor over \(\hat{V}_{{{\text{HA}}}} \) and \(\hat{V}_{{{\text{uw}}}} \), A HA and A uw,

$$ \begin{array}{*{20}c} {{{\user2{\varepsilon }}_{{{\text{HA}}}} = {\mathbf{A}}_{{{\text{HA}}}} :{\mathbf{E}}_{{\text{p}}} ,}} & {{{\user2{\varepsilon }}_{{{\text{uw}}}} = {\mathbf{A}}_{{{\text{uw}}}} :{\mathbf{E}}_{{\text{p}}} }} \\ \end{array} $$
(A1)

An estimate for the homogenized stiffness tensor is given by the classical relation of micromechanics (Zaoui 1997),

$${\mathbf{C}}^{{{\text{est}}}}_{{\text{p}}} = {\left\langle {{\mathbf{c}}:{\mathbf{A}}^{{{\text{est}}}} } \right\rangle }_{{\hat{V}_{{\text{p}}} }} = {\sum\limits_r {\hat{f}_{r} {\mathbf{c}}_{r} :{\mathbf{A}}^{{{\text{est}}}}_{r} } }$$
(A2)

where r∈[HA,uw] is the phase index, \({\left\langle {{\left( . \right)}} \right\rangle }_{V} = 1/V{\int {_{V} {\left( . \right)}dV} }\) stands for the volume average, c r =3J k r +2K µ r denotes the (isotropic) stiffness tensor of phase r∈[HA;uw]; J, J ijkl =1/3δ ij δ kl , is the volumetric part of the fourth-order unity tensor I, I ijkl =1/2(δ ik δ jl +δ il δ kj ). δ ij is the Kronecker delta; in other words δ ij =1 for i=j, and δ ij =0 for ij. The deviatoric part of I is K=IJ. \(\hat{f}_{r} = \frac{{\hat{V}_{r} }}{{\hat{V}_{{\text{p}}} }}\) is the volume fraction of phase r, \(\hat{f}_{{{\text{HA}}}} + \hat{f}_{{{\text{uw}}}} = 1\), and \({\mathbf{A}}^{{{\text{est}}}}_{r} \) is an estimate for the localization tensor of phase r. For the polycrystal estimate, \({\mathbf{A}}^{{{\text{est}}}}_{r} \) is given by an implicit relationship,

$${\mathbf{A}}^{{{\text{est}}}}_{r} = {\left[ {{\mathbf{I}} + {\mathbf{S}}^{{{\text{Esh}}}}_{r} :{\left( {{\mathbf{C}}^{{{\text{est,}} - 1}}_{{\text{p}}} :{\mathbf{c}}_{r} - {\mathbf{I}}} \right)}} \right]}^{{ - 1}} :{\left\langle {{\left[ {{\mathbf{I}} + {\mathbf{S}}^{{{\text{Esh}}}} :{\left( {{\mathbf{C}}^{{{\text{est,}} - 1}}_{{\text{p}}} :{\mathbf{c}} - {\mathbf{I}}} \right)}} \right]}^{{ - 1}} } \right\rangle }^{{ - 1}}_{{\hat{V}_{{\text{p}}} }} $$
(A3)

Eshelby’s tensor S esh for spherical inclusions in a matrix with \({\mathbf{C}}^{{{\text{est}}}}_{{\text{p}}} \) reads as (p. 300 of Zaoui 1997):

$${\mathbf{S}}^{{{\text{Esh}}}}_{{{\text{HA}}}} = {\mathbf{S}}^{{{\text{Esh}}}}_{{{\text{uw}}}} = {\mathbf{S}}^{{{\text{Esh}}}}_{{{\text{sph}}}} = \alpha ^{{{\text{est}}}} {\mathbf{J}} + \beta ^{{{\text{est}}}} {\mathbf{K}}$$
(A4)

with

$$\begin{array}{*{20}c} {{\alpha ^{{{\text{est}}}} = \frac{{3k^{{{\text{est}}}}_{{\text{p}}} }}{{3k^{{{\text{est}}}}_{{\text{p}}} + 4\mu ^{{{\text{est}}}}_{{\text{p}}} }},}} & {{\beta ^{{{\text{est}}}} = \frac{{6{\left( {k^{{{\text{est}}}}_{{\text{p}}} + 2\mu ^{{{\text{est}}}}_{{\text{p}}} } \right)}}}{{5{\left( {3k^{{{\text{est}}}}_{{\text{p}}} + 4\mu ^{{{\text{est}}}}_{{\text{p}}} } \right)}}}}} \\ \end{array} $$
(A5)

For the solution of this implicit problem we refer to Hellmich and Ulm (2002b).

Homogenization step II

The “global” microstructural strains E m are related to the average local strains in the phases of the RVE V m (Fig. 1c) by the average concentration tensors A M, A col, and A por,

$$ \begin{array}{*{20}c} {{{\user2{\varepsilon }}_{{\text{M}}} = {\mathbf{A}}_{{\text{M}}} :{\text{E}}_{{\text{m}}} ,}} & {{{\user2{\varepsilon }}_{{{\text{col}}}} = {\mathbf{A}}_{{{\text{col}}}} :{\text{E}}_{{\text{m}}} ,}} & {{{\user2{\varepsilon }}_{{{\text{por}}}} = {\mathbf{A}}_{{{\text{por}}}} :{\mathbf{E}}_{{\text{m}}} }} \\ \end{array} $$
(A6)

The estimate for the homogenized stiffness tensor of the microstructure is given by

$${\mathbf{C}}^{{{\text{est}}}}_{{\text{m}}} = {\left\langle {{\mathbf{c}}:{\mathbf{A}}^{{{\text{est}}}} } \right\rangle }_{{V_{{\text{m}}} }} = {\sum\limits_r {f_{r} {\mathbf{c}}_{r} :{\mathbf{A}}^{{{\text{est}}}}_{r} } }$$
(A7)

where r∈[col;M;por] is the phase index, c r denotes the stiffness tensor of phase r; f r =V r /V m is the volume fraction of phase r. The matrix stiffness is known from the previous homogenization step, \({\mathbf{c}}_{{\text{M}}} = {\mathbf{C}}^{{{\text{est}}}}_{{\text{p}}} {\left( {\hat{f}_{{{\text{HA}}}} } \right)}\) (Eq. A2). Using the Mori-Tanaka (1973) scheme, the localization tensors for two families of inclusions (collagen and pores) in the HA polycrystal matrix can be estimated as

$$\begin{array}{*{20}l} {{{\mathbf{A}}^{{{\text{est}}}}_{{{\text{col}}}} } \hfill} & { = \hfill} & {{{\left[ {{\mathbf{I}} + {\mathbf{S}}^{{{\text{Esh}}}}_{{{\text{col}}}} :{\left( {{\mathbf{c}}^{{ - 1}}_{{\text{M}}} :{\mathbf{c}}_{{{\text{col}}}} - {\mathbf{I}}} \right)}} \right]}^{{ - 1}} :} \hfill} \\ {{} \hfill} & {{} \hfill} & {{{\left\langle {{\left[ {{\mathbf{I}} + {\mathbf{S}}^{{{\text{Esh}}}} :{\left( {{\mathbf{c}}^{{ - 1}}_{{\text{M}}} :{\mathbf{c}} - {\mathbf{I}}} \right)}} \right]}^{{ - 1}} } \right\rangle }^{{ - 1}}_{{V_{{\text{m}}} }} } \hfill} \\ \end{array} $$
(A8)
$$\begin{array}{*{20}l} {{{\mathbf{A}}^{{{\text{est}}}}_{{{\text{por}}}} } \hfill} & { = \hfill} & {{{\left[ {{\mathbf{I}} + {\mathbf{S}}^{{{\text{Esh}}}}_{{{\text{por}}}} :{\left( {{\mathbf{c}}^{{ - 1}}_{{\text{M}}} :{\mathbf{c}}_{{{\text{por}}}} - {\mathbf{I}}} \right)}} \right]}^{{ - 1}} :} \hfill} \\ {{} \hfill} & {{} \hfill} & {{{\left\langle {{\left[ {{\mathbf{I}} + {\mathbf{S}}^{{{\text{Esh}}}} :{\left( {{\mathbf{c}}^{{ - 1}}_{{\text{M}}} :{\mathbf{c}} - {\mathbf{I}}} \right)}} \right]}^{{ - 1}} } \right\rangle }^{{ - 1}}_{{V_{{\text{m}}} }} } \hfill} \\ \end{array} $$
(A9)
$${\mathbf{A}}^{{{\text{est}}}}_{{\text{M}}} = {\left\langle {{\left[ {{\mathbf{I}} + {\mathbf{S}}^{{{\text{Esh}}}} :{\left( {{\mathbf{c}}^{{ - 1}}_{{\text{M}}} :{\mathbf{c}} - {\mathbf{I}}} \right)}} \right]}^{{ - 1}} } \right\rangle }^{{ - 1}}_{{V_{{\text{m}}} }} $$
(A10)

For cylindrical (collagen or micropore) inclusions in the polycrystal matrix, the non-zero components of Eshelby’s tensor \({\mathbf{S}}^{{{\text{Esh}}}}_{{{\text{col}}}} = {\mathbf{S}}^{{{\text{Esh}}}}_{{{\text{por}}}} = {\mathbf{S}}^{{{\text{Esh}}}}_{{{\text{cyl}}}} \) read as

$$\begin{array}{*{20}l} {{S^{{{\text{Esh}}}}_{{{\text{1111}}}} } \hfill} & { = \hfill} & {{S^{{{\text{Esh}}}}_{{{\text{2222}}}} } \hfill} & { = \hfill} & {{\frac{9}{4}\frac{{k_{{\text{M}}} + \mu _{{\text{M}}} }}{{3k_{{\text{M}}} + 4\mu _{{\text{M}}} }}} \hfill} \\ {{S^{{{\text{Esh}}}}_{{{\text{1122}}}} } \hfill} & { = \hfill} & {{S^{{{\text{Esh}}}}_{{{\text{2211}}}} } \hfill} & { = \hfill} & {{\frac{1}{4}\frac{{3k_{{\text{M}}} + 5\mu _{{\text{M}}} }}{{3k_{{\text{M}}} + 4\mu _{{\text{M}}} }}} \hfill} \\ {{S^{{{\text{Esh}}}}_{{{\text{1133}}}} } \hfill} & { = \hfill} & {{S^{{{\text{Esh}}}}_{{{\text{2233}}}} } \hfill} & { = \hfill} & {{\frac{1}{2}\frac{{3k_{{\text{M}}} + 2\mu _{{\text{M}}} }}{{3k_{{\text{M}}} + 4\mu _{{\text{M}}} }}} \hfill} \\ {{S^{{Esh}}_{{1212}} } \hfill} & { = \hfill} & {{S^{{{\text{Esh}}}}_{{{\text{2121}}}} } \hfill} & { = \hfill} & {{\frac{1}{4}\frac{{3k_{{\text{M}}} + 7\mu _{{\text{M}}} }}{{3k_{{\text{M}}} + 4\mu _{{\text{M}}} }}} \hfill} \\ {{S^{{{\text{Esh}}}}_{{{\text{1313}}}} } \hfill} & { = \hfill} & {{S^{{{\text{Esh}}}}_{{{\text{3131}}}} } \hfill} & { = \hfill} & {{S^{{{\text{Esh}}}}_{{{\text{2323}}}} \; = \;S^{{{\text{Esh}}}}_{{{\text{3232}}}} \; = \;\frac{1}{4}} \hfill} \\ \end{array} $$
(A11)

Cylindrical inclusions are to be understood in the sense of Eshelby (1957), p. 386, as inclusions of prolate spheroid type with one axis of the ellipsoid being very much longer than the other two, which are of the same length. Homogenization of the ultrastructure (Fig. 1b) is performed by analogy to Eqs. A6A11, replacing subscript “m” by “u”, f r by \(\bar{f}_{r} \), and r∈[col,M,por] by r∈[col,M].

We have also tested the possible significance of a deviation from the cylindrical pore shape, by considering inclusions of the prolate spheroid type with length a, oriented in the x 3-direction (Fig. 1), and width b=c<a; or, in terms of a morphology parameter, ω=b/a=c/a<1. The limit case ω→0 refers to cylindrical inclusions. For prolate spheroid inclusions, the non-zero components of Eshelby’s tensor \({\mathbf{S}}^{{{\text{Esh}}}}_{{{\text{col}}}} = {\mathbf{S}}^{{{\text{Esh}}}}_{{{\text{por}}}} = {\mathbf{S}}^{{{\text{Esh}}}}_{{{\text{prsph}}}} \) read as (Eshelby 1957):

$$\begin{array}{*{20}l} {{S^{{{\text{Esh}}}}_{{{\text{1111}}}} } \hfill} & { = \hfill} & {{S^{{{\text{Esh}}}}_{{{\text{2222}}}} } \hfill} & { = \hfill} & {{Qb^{2} I_{{{\text{bb}}}} + RI_{{\text{b}}} } \hfill} \\ {{S^{{{\text{Esh}}}}_{{{\text{3333}}}} } \hfill} & { = \hfill} & {{Qa^{2} I_{{{\text{aa}}}} + RI_{{\text{a}}} } \hfill} & {{} \hfill} & {{} \hfill} \\ {{S^{{{\text{Esh}}}}_{{{\text{1122}}}} } \hfill} & { = \hfill} & {{S^{{{\text{Esh}}}}_{{{\text{2211}}}} } \hfill} & { = \hfill} & {{Qb^{2} I_{{{\text{bc}}}} - RI_{{\text{b}}} } \hfill} \\ {{S^{{{\text{Esh}}}}_{{{\text{1133}}}} } \hfill} & { = \hfill} & {{S^{{{\text{Esh}}}}_{{{\text{2233}}}} } \hfill} & { = \hfill} & {{Qa^{2} I_{{{\text{ab}}}} - RI_{{\text{b}}} } \hfill} \\ {{S^{{{\text{Esh}}}}_{{{\text{3322}}}} } \hfill} & { = \hfill} & {{S^{{{\text{Esh}}}}_{{{\text{3311}}}} } \hfill} & { = \hfill} & {{Qb^{2} I_{{{\text{ab}}}} - RI_{{\text{a}}} } \hfill} \\ {{S^{{{\text{Esh}}}}_{{{\text{1212}}}} } \hfill} & { = \hfill} & {{S^{{{\text{Esh}}}}_{{{\text{2121}}}} } \hfill} & { = \hfill} & {{Qb^{2} I_{{{\text{bc}}}} - RI_{{\text{b}}} } \hfill} \\ {{S^{{{\text{Esh}}}}_{{{\text{1313}}}} } \hfill} & { = \hfill} & {{S^{{{\text{Esh}}}}_{{{\text{3131}}}} } \hfill} & { = \hfill} & {{S^{{{\text{Esh}}}}_{{{\text{2323}}}} \; = \;S^{{{\text{Esh}}}}_{{{\text{3232}}}} \; = \;Q\frac{1}{2}{\left( {a^{2} + b^{2} } \right)}I_{{{\text{ab}}}} + R\frac{1}{2}{\left( {I_{{\text{a}}} + I_{{\text{b}}} } \right)}} \hfill} \\ \end{array} $$
(A12)

with an arbitrarily chosen value for a, and

$$\begin{array}{*{20}l} {b \hfill} & { = \hfill} & {{\omega \times a} \hfill} \\ {{I_{{\text{b}}} } \hfill} & { = \hfill} & {{\frac{{2\pi ac^{2} }}{{{\left( {a^{2} - c^{2} } \right)}^{{\frac{3}{2}}} }}{\left\{ {\frac{a}{c}{\left( {\frac{{a^{2} }}{{c^{2} }} - 1} \right)}^{{\frac{1}{2}}} - \cosh ^{{ - 1}} \frac{a}{c}} \right\}},\;\cosh ^{{ - 1}} {\left( {\cosh x} \right)} = x} \hfill} \\ {{I_{{\text{a}}} } \hfill} & { = \hfill} & {{4\pi - 2I_{{\text{b}}} } \hfill} \\ {{I_{{{\text{ab}}}} } \hfill} & { = \hfill} & {{\frac{{I_{{\text{b}}} - I_{{\text{a}}} }}{{3{\left( {a^{2} - b^{2} } \right)}}}} \hfill} \\ {{I_{{{\text{bc}}}} } \hfill} & { = \hfill} & {{\frac{\pi }{{3b^{2} }} - \frac{1}{4}I_{{{\text{ab}}}} } \hfill} \\ {{I_{{{\text{aa}}}} } \hfill} & { = \hfill} & {{\frac{{4\pi }}{{3a^{2} }} - 2I_{{{\text{ab}}}} } \hfill} \\ {{I_{{{\text{bb}}}} } \hfill} & { = \hfill} & {{\frac{{4\pi }}{{3b^{2} }} - I_{{{\text{ab}}}} - I_{{{\text{bc}}}} } \hfill} \\ {Q \hfill} & { = \hfill} & {{\frac{3}{{8\pi {\left( {1 - \nu _{{\text{M}}} } \right)}}}} \hfill} \\ {R \hfill} & { = \hfill} & {{\frac{{1 - 2\nu _{{\text{M}}} }}{{8\pi {\left( {1 - \nu _{{\text{M}}} } \right)}}}} \hfill} \\ \end{array} $$
(A13)

where ν M=(3k M–2µ M)/(6k M+2µ M), Poisson’s ratio of the matrix.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hellmich, C., Ulm, FJ. & Dormieux, L. Can the diverse elastic properties of trabecular and cortical bone be attributed to only a few tissue-independent phase properties and their interactions?. Biomech Model Mechanobiol 2, 219–238 (2004). https://doi.org/10.1007/s10237-004-0040-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-004-0040-0

Keywords

Navigation