Skip to main content

Advertisement

Log in

Numerical Modeling of Geothermal Use of Mine Water: Challenges and Examples

  • Technical Communication
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Geothermal energy, including the geothermal use of mine water, is increasingly important, due to ecological and economical reasons. Numerical flow and heat transport models can help to estimate the efficiency of such facilities. In addition, it is possible to test different configurations. However, the modeling of mine voids is challenging because it is necessary to simultaneously solve the heat transport in the surrounding porous medium and within the mine workings. Different modeling approaches are demonstrated, such as 2-D cross-sections, 2-D models with 1-D elements for the mine workings, and 3-D models. It is shown that numerical simulations can provide sufficient validity for specific modeling goals. However, none of the currently feasible modeling strategies can be seen as a perfect and fully physical solution. Suggestions are given on how to use the different approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  • Adams R, Younger PL (2001) A strategy for modeling ground water rebound in abandoned deep mine systems. Ground Water 39:249–261

    Article  Google Scholar 

  • Adams R, Parkin G (2002) Development of a coupled surface-groundwater-pipe network model for the sustainable management of karstic groundwater. Environ Geol. doi:10.1007/s00254-001-0513-8

  • Anderson MP (2005) Heat as a ground water tracer. Ground Water 43:951–968

    Google Scholar 

  • Bazargan Sabet B, Demollin E, Van Bergermeer J-J (2008) Geothermal use of deep flooded mines. In: Proceeding of the Post-Mining, Nancy, pp 1–11

  • Beardsmore GR, Cull JP (2001) Crustal heat flow. Cambridge University Press, Cambridge, p 324

    Google Scholar 

  • Brouyère S, Orban P, Wildemeersch S, Couturier J, Gardin N, Dassargues A (2008) The hybrid finite element mixing cell method: a new flexible method for modelling mine water problems. In: Proceedings of the 10th international mine water association congress, Karlovy Vary, pp 429–432

  • Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Oxford University Press, London, p 505

    Google Scholar 

  • Clauser C (2006) Geothermal energy. Landolt-Börnstein, group VIII: advanced materials and technologies. In: Heinloth K (ed) Renewable energies, vol 3(C). Springer, Heidelberg, p 493–604

  • Clauser C, Heitfeld M, Rosner P, Sahl H, Schetelig K (2005) Nutzung von Erdwärme in aufgelassenen Bergwerken am Beispiel des Aachener Steinkohlenreviers. Beratende Ingenieure 6:14–17

    Google Scholar 

  • Diersch H-JG (2005) FEFLOW finite element subsurface flow and transport simulation system, reference manual, WASY, Institute for Water Resources Planning and Systems Research, Berlin, 292 pp

  • Diersch H-JG, Kolditz O (2002) Variable-density flow and transport in porous media: approaches and challenges. Adv Water Resour 25:899–944

    Article  Google Scholar 

  • Goldberg D (1991) What every computer scientist should know about floating-point arithmetic. ACM Comput Surv 23(1):5–48

    Article  Google Scholar 

  • Malolepszy Z (2003) Low-temperature, man-made geothermal reservoirs in abandoned workings of underground mines. In: Proceedings of the 28th workshop on geothermal reservoir engineering, Stanford University, USA, pp 259–265

  • Pruess K (1991) TOUGH2––a general purpose numerical simulator for multiphase fluid and heat flow. Lawrence Berkeley Laboratory report LBL-29400, Berkeley, 102 pp

  • Rapantova N, Grmela A, Vojtek D, Halir J, Michalek B (2007) Ground water flow modelling applications in mining hydrogeology. Mine Water Environ. doi:10.1007/s10230-007-0017-1

  • Raymond J, Therrien R (2007) Low-temperature geothermal potential of the flooded Gaspé Mines, Québec, Canada. Geothermics. doi:10.1016/j.geothermics.2007.10.001

  • Raymond J, Therrien R, Hassani F (2008) Overview of geothermal energy resources in Québec (Canada). In: Proceeding of the 10th international mine water association congress, Karlovy Vary, p 99–100

  • Trefry MG, Muffels C (2007) FEFLOW: a finite-element ground water flow and transport modeling tool. Ground Water 45(5):525–528

    Article  Google Scholar 

  • Van Tongeren P, Dreesen R (2004) Residual space volumes in abandoned coal mines of the Belgian Campine basin and possibilities for use. Geologica Belgica 7(3–4):157–164

    Google Scholar 

  • Watzlaf GR, Ackman TE (2006) Underground mine water for heating and cooling using geothermal heat pump systems. Mine Water Environ. doi:10.1007/s10230-006-0103-9

  • White W, White E (2005) Ground water flux distribution between matrix, fractures, and conduits: constraints on modeling. Speleogenesis and Evolution of Karst Aquifers 3(2):2–6

    Google Scholar 

  • Wieber G, Pohl S (2008) Mine water: a source of geothermal energy––examples from the rhenish Massif. In: Proceedings of the 10th international mine water association congress, Karlovy Vary, pp 113–116

  • Wolkersdorfer C (2008) Water management at abandoned flooded underground mines: fundamentals, tracer tests, modelling, water treatment. Springer, Heidelberg, p 465

    Google Scholar 

Download references

Acknowledgments

Some of the data on the geological structure that we used had been collected by fellows within the project “Dynamik abgesoffener oder gefluteter Salzbergwerke und ihres Deckgebirgsstockwerks,” which was funded by the Federal Ministry of Education and Research Germany (BMBF) under contract 02 C 1516. However, the presented models should not be considered to accurately represent the subsurface there. We also thank the two anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram Rühaak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renz, A., Rühaak, W., Schätzl, P. et al. Numerical Modeling of Geothermal Use of Mine Water: Challenges and Examples. Mine Water Environ 28, 2–14 (2009). https://doi.org/10.1007/s10230-008-0063-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-008-0063-3

Keywords

Navigation