Skip to main content
Log in

Enhanced Mechanical Properties of Poly(arylene sulfide sulfone) Membrane by Co-electrospinning with Poly(m-xylene adipamide)

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The mechanical properties of poly(arylene sulfide sulfone) (PASS) electrospun membrane were significantly enhanced by co-electrospinning with semi-aromatic nylon poly(m-xylene adipamide) (MXD6), another engineering plastic with high thermal stability and good mechanical properties. The tensile strength of PASS membrane increased with increased incorporation of MXD6, and was tripled when 20% MXD6 was incorporated. The mechanism of the mechanical property improvement is the existence of hydrogen bonding interaction between PASS and MXD6 and between adjacent fibers at the intersections. Thermal properties of the PASS/MXD6 membranes were evaluated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), which showed that the membranes could be stably utilized up to 180 °C without any change in appearance and without decomposition. Contact angle measurements of all the membranes showed hydrophobic character. To demonstrate the potential applications of PASS/MXD6 blend membranes, their oil absorption capacities were evaluated with three oils of different viscosities, which proved that the PASS/MXD6 membranes are better absorbents than commercial non-woven polypropylene fibers. Therefore, PASS/MXD6 fibrous membranes produced by electrospinning have a great potential in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, Z.; Zhang, S. Y.; Huang, G. S.; Zhang, K.; Wang, X. J.; Zhang, G.; Long, S. R.; Yang, J. Effects of polyarylene sulfide sulfone on the mechanical properties of glass fiber cloth-reinforced polyphenylene sulfide composites. High Perform. Polym.2015, 27, 145–152.

    Google Scholar 

  2. Wang, X.; Zhang, M.; Liu, J.; Zhang, G.; Yang, J. Thermal degradation of poly(arylene sulfide sulfone)/N-methylpyrrolidone crystal solvate. Chinese J. Polym. Sci.2010, 28, 85–91.

    CAS  Google Scholar 

  3. Zhang, G.; Yuan, S.; Li, Z.; Long, S.; Yang, J. Poly(arylene ether sulfone) containing thioether units: Synthesis, oxidation and properties. RSC Adv.2014, 4, 23191–23201.

    CAS  Google Scholar 

  4. Kong, Y.; Huang, G. S.; Zhang, G.; Wang, X. J.; Long, S. R.; Yang, J. The influence of processing aids on the properties of poly(arylene sulfide sulfone). High Perform. Polym.2014, 26, 914–921.

    Google Scholar 

  5. Liu, Y.; Bhatnagara, A.; Ji, Q.; Riffle, J. S.; McGrath, J. E.; Geibel, J. F.; Kashiwagi, T. Influence of polymerization conditions on the molecular structure stability and physical behavior of poly(phenylene sulfide sulfone) homopolymers. Polymer2000, 41, 5137–5146.

    CAS  Google Scholar 

  6. Huang, H. M. Electrospinning of poly(arylene sulfide) nanofibers. Master’s thesis, Sichuan University (Chengdu), 2007.

    Google Scholar 

  7. Liu, L.; Wang, X. J.; Wang, Y. Y.; Li, L.; Pan, K.; Yang, J.; Cao, B. Preparation and characterization of asymmetric poly(arylene sulfide sulfone) (PASS) solvent-resistant nanofiltration membranes. Mater. Lett.2014, 132, 11–14.

    CAS  Google Scholar 

  8. Yuan, S.S.; Wang, J.; Li, X.; Zhu, J.Y.; Volodine, A.; Wang, X.; Yang, J.; van Puyvelde, P.; van der Bruggen, B. New promising polymer for organic solvent nanofiltration: Oxidized poly(arylene sulfide sulfone). J. Membr. Sci.2018, 549, 438–445.

    CAS  Google Scholar 

  9. Chu, Z.; L.; Feng, Y. J.; Seeger, S. Oil/water separation with selective superantiwetting/superwetting surface materials. Angew. Chem. Int. Ed.2015, 54, 2328–2338.

    CAS  Google Scholar 

  10. Gu, G. Q; Han, C. B.; Lu, C. X.; He, C.; Jiang, T.; Gao, Z. L.; Li, C. J.; Wang, Z. L. Triboelectric nanogenerator enhanced nanofiber air filters for efficient particulate matter removal. ACS Nano2017, 11, 6211–6217.

    CAS  PubMed  Google Scholar 

  11. Feng, X.; Wang, B.; Wang, Q. N.; Li, C. J. Preparation and properties of polyacrylonitrile nanofiber membranes used for air filtering by electrospinning. J. Text. Res.2017, 38, 6–11.

    Google Scholar 

  12. Shi, Y. Z.; Yang, D. Z.; Yu, R. M.; Liu, Y. X.; Qu, J.; Liu, B.; Yu, Z. Z. Efficient photocatalytic reduction approach for synthesizing chemically bonded N-doped TiO2/reduced graphene oxide hybrid as a freestanding electrode for high-performance lithium storage. ACS Appl. Energy Mater.2018, 1, 4186–4195.

    CAS  Google Scholar 

  13. Cheng, H. H.; Chen, F.; Yu, J.; Guo, Z. X. Gold-nanoparticledecorated thermoplastic polyurethane electrospun fibers prepared through a chitosan linkage for catalytic applications. J. Appl. Polym. Sci.2017, 134, 44336.

    Google Scholar 

  14. Xiong, X.; Li, Q.; Zhang, X. C.; Yu, J.; Guo, Z. X. Preparation, characterization and application of amine-functionalized poly(lactic acid) electrospun fibers. Chemical Journal of Chinese Universities (in Chinese) 2014, 35, 1323–1329.

    CAS  Google Scholar 

  15. Yuan, Z. Q.; Zhou, T.; Yin, Y. Y.; Cao, R.; Li, C. J.; Wang, Z. L. Transparent and flexible triboelectric sensing array for touch security applications. ACS Nano2017, 11, 8364–8369.

    CAS  PubMed  Google Scholar 

  16. Yu, X. Q.; Zhang, W. S.; Zhang, P. P.; Su, Z. Q. Fabrication technologies and sensing applications of graphene-based composite films: Advances and challenges. Biosens. Bioelectron.2017, 89, 72–84.

    CAS  PubMed  Google Scholar 

  17. Zhang, M. F.; Zhao, X. N.; Zhang, G. H.; Wei, G.; Su, Z. Q. Electrospinning design of functional nanostructures for biosensor applications. J. Mater. Chem. B2017, 5, 1699–1711.

    CAS  Google Scholar 

  18. Su, Z. Q.; Ding, J. W.; Wei, G. Electrospinning: A facile technique for fabricating polymeric nanofibers doped with carbon nanotubes and metallic nanoparticles for sensor applications. RSC Adv.2014, 4, 52598–52610.

    CAS  Google Scholar 

  19. Guan, X. Y.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Yan, X. R.; Shen, C. Y.; Guo, Z. H. Carbon nanotubes-adsorbed electrospun PA66 nanofiber bundles with improved conductivity and robust flexibility. ACS Appl. Mater. Interfaces2016, 8, 14150–14159.

    CAS  PubMed  Google Scholar 

  20. Zheng, Y. J.; Li, Y. L.; Dai, K.; Liu, M. R.; Zhou, K. K.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y. Conductive thermoplastic polyurethane composites with tunable piezoresistivity by modulating the filler dimensionality for flexible strain sensors. Compos. Part A Appl. Sci. Manuf.2017, 101, 41–49.

    CAS  Google Scholar 

  21. Lin, J. Y.; Tian, F.; Shang, Y. W.; Wang, F. J.; Ding, B.; Yu, J. Y. Facile control of intra-fiber porosity and inter-fiber voids in electrospun fibers for selective adsorption. Nanoscale2012, 4, 5316–5320.

    CAS  PubMed  Google Scholar 

  22. Yu, R. M.; Shi, Y. Z.; Yang, D. Z.; Liu, Y. X.; Qu, J.; Yu, Z. Z. Graphene oxide/chitosan aerogel microspheres with honeycomb-cobweb and radially oriented microchannel structures for broadspectrum and rapid adsorption of water contaminants. ACS Appl. Mater. Interfaces2017, 9, 21809–21819

    CAS  PubMed  Google Scholar 

  23. Liu, Y. M.; Li, Q.; Liu, H. H.; Cheng, H. H.; Yu, J.; Guo, Z. X. Antibacterial thermoplastic polyurethane electrospun fiber mats prepared by 3-aminopropyltriethoxysilane-assisted adsorption of Ag nanoparticles. Chinese J. Polym. Sci.2017, 35, 713–720.

    CAS  Google Scholar 

  24. Li, P.; Zhang, Z. F.; Su, Z. Q.; Wei, G. Thermosensitive polymeric micelles based on the triblock copolymer poly(D,L-lactide)-bpoly( N-isopropyl acrylamide)-b-poly(D,L-lactide) for controllable drug delivery. J. Appl. Polym. Sci.2017, 134, 45304.

    Google Scholar 

  25. Behrens, A. M.; Sikorski, M. J.; Kofinas, P. Hemostatic strategies for traumatic and surgical bleeding. J. Biomed. Mater. Res. A2014, 102, 4182–4194.

    PubMed  Google Scholar 

  26. Cheng, H. H.; Xiong, J.; Xie, Z. N.; Zhu, Y. T.; Liu, Y. M.; Wu, Z. Y.; Yu, J.; Guo, Z. X. Thrombin-loaded poly(butylene succinate)-based electrospun membranes for rapid hemostatic application. Macromol. Mater. Eng.2018, 303, 1700395.

    Google Scholar 

  27. Zhang, W. S.; Yu, X. Q.; Li, Y.; Su, Z. Q.; Jandt, K. D.; Wei, G. Proteinmimetic peptide nanofibers: Motif design, self-assembly synthesis, and sequence-specific biomedical applications. Prog. Polym. Sci.2018, 80, 94–124.

    CAS  Google Scholar 

  28. Khorshidi, S.; Solouk, A.; Mirzadeh, H.; Mazinani, S.; Lagaron, J. M.; Sharifi, S.; Ramakrishna, S. A review of key challenges of electrospun scaffolds for tissue-engineering applications: Challenges regarding electrospun scaffolds: A review. J. Tissue Eng. Regen. Med.2016, 10, 715–738.

    CAS  PubMed  Google Scholar 

  29. Dhandayuthapani, B.; Krishnan, U. M.; Sethuraman, S. Fabrication and characterization of chitosan-gelatin blend nanofibers for skin tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater.2010, 264–272.

    Google Scholar 

  30. Lee, J.; Tae, G.; Kim, Y. H.; Park, I. S.; Kim, S. H.; Kim, S. H. The effect of gelatin incorporation into electrospun poly(L-lactide-co-ɛ-caprolactone) fibers on mechanical properties and cytocompatibility. Biomaterials2008, 29, 1872–1879.

    CAS  PubMed  Google Scholar 

  31. Chen, L.; Cheng, H. H.; Xiong, J.; Zhu, Y. T.; Zhang, H. P.; Xiong, X.; Liu, Y. M.; Yu, J.; Guo, Z. X. The effect of gelatin incorporation into electrospun poly(L-lactide-co-ɛ-caprolactone) fibers on mechanical properties and cytocompatibility. Chinese J. Polym. Sci.2018, 36, 1063–1069.

    CAS  Google Scholar 

  32. Zhang, B. Y.; Ge, Q. S.; Guo, Z. X.; Yu, J. Effects of electrically inert fillers on the properties of poly(m-xylene adipamide)/multiwalled carbon nanotube composites. Chinese J. Polym. Sci.2016, 34, 1032–1038.

    CAS  Google Scholar 

  33. Guo, Y. L.; Zhang, R. Z.; Wu, K.; Chen, F.; Fu, Q. Preparation of nylon MXD6/EG/CNTs ternary composites with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Chinese J. Polym. Sci.2017, 35, 1497–1507.

    CAS  Google Scholar 

  34. Tan, Y. L.; Huang, C. H.; Guo, Z. X.; Yu, J. Water absorption characteristics of different polyamide resins and their effects on the diffusion and polymerization of St monomer. Chemical Journal of Chinese Universities (in Chinese) 2018, 39, 2825–2832.

    Google Scholar 

  35. Doudou, B. B.; Dargent, E.; Grenet, J. Crystallization and melting behaviour of poly(m-xylene adipamide). J. Therm. Anal. Calorim.2006, 85, 409–415.

    CAS  Google Scholar 

  36. Liu, H. H.; Li, Q.; Liang, X.; Xiong, X.; Yu, J.; Guo, Z. X. Antibacterial polycaprolactone electrospun fiber mats prepared by soluble eggshell membrane protein-assisted adsorption of silver nanoparticles. J. Appl. Polym. Sci.2016, 133, 43850.

    Google Scholar 

  37. Feng, L. D.; Bian, X. C.; Li, G.; Chen, Z. M.; Cui, Y.; Chen, X. S. Determination of ultra-low glass transition temperature via differential scanning calorimetry. Polym. Test.2013, 32, 1368–1372.

    CAS  Google Scholar 

  38. Lim, H. S.; Park, S. H.; Koo, S. H.; Kwark, Y. J.; Thomas, E. L.; Jeong, Y. J.; Cho, J. H. Superamphiphilic Janus fabric. Langmuir2010, 26, 19159–19162.

    CAS  PubMed  Google Scholar 

  39. Ma, M. L.; Hill, R. M.; Rutledge, G. C. A review of recent results on superhydrophobic materials based on micro- and nanofibers. J. Adhes. Sci. Technol.2008, 22, 1799–1817.

    CAS  Google Scholar 

  40. Li, H. Y.; Li, Y.; Yang, W. M.; Cheng, L. S.; Tan, J. Needleless meltelectrospinning of biodegradable poly(lactic acid) ultrafine fibers for the removal of oil from water. Polymers2017, 9, 3.

    CAS  PubMed Central  Google Scholar 

  41. Qiao, Y.; Zhao, L. L.; Li, P.; Sun, H. X.; Li, S. Electrospun polystyrene/polyacrylonitrile fiber with high oil sorption capacity. J. Reinf. Plast. Compos.2014, 33, 1849–1858.

    Google Scholar 

  42. Ji, H.; Zhao, R.; Li, Y. M.; Sun, B. L.; Li, Y. Z.; Zhang, N.; Qiu, J.; Li, X.; Wang, C. Robust and durable superhydrophobic electrospun nanofibrous mats via a simple Cu nanocluster immobilization for oil-water contamination. Colloids Surf. Physicochem. Eng. Asp.2018, 538, 173–183.

    CAS  Google Scholar 

  43. Lin, J. Y.; Tian, F.; Shang, Y. W.; Wang, F. J.; Ding, B.; Yu, J. Y.; Guo, Z. Co-axial electrospun polystyrene/polyurethane fibres for oil collection from water surface. Nanoscale2013, 5, 2745–2755.

    CAS  PubMed  Google Scholar 

  44. Zaarour, B.; Zhu, L.; Huang, C.; Jin, X. Y. Controlling the secondary surface morphology of electrospun PVDF nanofibers by regulating the solvent and relative humidity. Nanoscale Res. Lett.2018, 13, 285.

    PubMed  PubMed Central  Google Scholar 

  45. Wang, J.; Hou, J. B.; Marquez, E.; Moore, R. B.; Nain, A. S. Aligned assembly of nano and microscale polystyrene tubes with controlled morphology. Polymer2014, 55, 3008–3014.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank Sichuan Zhongke Xingye High-tech Materials Co., Ltd. for kindly providing the PASS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Xia Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Tuo, XL., Fan, XC. et al. Enhanced Mechanical Properties of Poly(arylene sulfide sulfone) Membrane by Co-electrospinning with Poly(m-xylene adipamide). Chin J Polym Sci 38, 63–71 (2020). https://doi.org/10.1007/s10118-019-2297-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2297-x

Keywords

Navigation