Skip to main content
Log in

Inhibitory action of purified hydroxytyrosol from stored olive mill waste on intestinal disaccharidases and lipase activities and pancreatic toxicity in diabetic rats

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

This study was established that after 3 months storage, olive mill waste (OMW) was enriched with hydroxytyrosol (HT) (2,652 mg/L) and contained only phenolic monomers. It also showed that HT supplementation to surviving diabetic rats decreases considerably intestinal maltase, lactase, sucrose, and lipase activities by 49, 31, 42, and 40%, respectively. In addition, HT enhanced the superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) activities by 330, 170, and 301%, respectively and reduced gluthation (GSH) level by 79% in pancreas compared to diabetic rats. Moreover, a significant decrease in the thiobarbituric acid reactive substances (TBARs) level and lactate dehydrogenase (LDH) activity in diabetic rats pancreas by 34 and 49% respectively after administration of HT. In addition, HT improved plasma triglyceride and cholesterol levels in diabetic rats by lowering low density lipoprotein (LDL)-cholesterol and triglycerides (TG) by 27 and 53%, respectively and increasing high density lipoprotein (HDL)-cholesterol content by 72%. These properties of HT are interesting regarding its use as therapeutic agent in biotechnological applications, especially in developing anti-diabetic and hypocholesterolemic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smyth S, Heron A. Diabetes and obesity: The twin epidemics. Nat. Med. 12: 75–80 (2006)

    Article  CAS  Google Scholar 

  2. Kowluru RA, Kanwar M. Oxidative stress and the development of diabetic retinopathy: Contributory role of matrix metalloproteinase-2. Free Radical Bio. Med. 46: 1677–1685 (2009)

    Article  CAS  Google Scholar 

  3. Hamden K, Allouche N, Damak M, Elfeki A. Hypoglycemic and antioxidant effects of phenolic extracts and purified hydroxytyrosol from olive mill waste in vitro and in rats. Chem. Biol. Interact. 180: 421–432 (2009)

    Article  CAS  Google Scholar 

  4. Hamden K, Ayadi F, Jamoussi K, Masmoudi H, Elfeki A. Therapeutic effect of phytoecdysteroids rich extract from Ajuga iva on alloxan induced diabetic rats liver, kidney, and pancreas. Biofactors 33: 165–175 (2008)

    Article  CAS  Google Scholar 

  5. Raman R, Rani PK, Gnanamoorthy P, Sudhir RR, Kumaramanikavel G, Sharma T. Association of obesity with diabetic retinopathy: Sankara Nethralaya Diabetic Retinopathy Epidemiology and Molecular Genetics Study (SN-DREAMS Report no. 8). Acta Diabetol. (2009)

  6. Tapp RJ, Tikellis G, Wong TY, Harper CA, Zimmet PZ, Shaw JE. Longitudinal association of glucose metabolism with retinopathy: Results from the Australian diabetes obesity and lifestyle (AusDiab) study. Diabetes Care 31: 1349–1354 (2008)

    Article  CAS  Google Scholar 

  7. Heo SJ, Hwang JY, Choi JI, Han JS, Kim HJ, Jeon YJ. Diphlorethohydroxycarmalol isolated from Ishige okamurae, brown algae, a potent alpha-glucosidase and alpha-amylase inhibitor, alleviates postprandial hyperglycemia in diabetic mice. Eur. J. Pharmacol. 615: 252–256 (2009)

    Article  CAS  Google Scholar 

  8. Kast RE. Acarbose related diarrhea: Increased butyrate upregulates prostaglandin E. Inflamm. Res. 51: 117–118 (2002)

    Article  CAS  Google Scholar 

  9. Obied HK, Allen MS, Bedgood DR, Prenzler PD, Robards K, Stockmann R. Bioactivity and analysis of biophenols recovered from olive mill waste. J. Agr. Food Chem. 53: 823–837 (2005)

    Article  CAS  Google Scholar 

  10. Leger CL, Carbonneau MA, Michel F, Mas E, Monnier L, Cristol JP, Descomps B. A thromboxane effect of a hydroxytyrosol-rich olive oil wastewater extract in patients with uncomplicated type I diabetes. Eur. J. Clin. Nutr. 59: 727–730 (2005)

    Article  CAS  Google Scholar 

  11. Dudley JI, Lekli I, Mukherjee S, Das M, Bertelli AA, Das DK. Does white wine qualify for French paradox? Comparison of the cardioprotective effects of red and white wines and their constituents: Resveratrol, tyrosol, and hydroxytyrosol. J. Agr. Food Chem. 56: 9362–9373 (2008)

    Article  CAS  Google Scholar 

  12. Deiana M, Incani A, Rosa A, Corona G, Atzeri A, Loru D, Paola Melis M, Assunta Dessi M. Protective effect of hydroxytyrosol and its metabolite homovanillic alcohol on H2O2 induced lipid peroxidation in renal tubular epithelial cells. Food Chem. Toxicol. 46: 2984–2990 (2008)

    Article  CAS  Google Scholar 

  13. Allouche N, Fki I, Sayadi S. Toward a high yield recovery of antioxidants and purified hydroxytyrosol from olive mill wastewaters. J. Agr. Food Chem. 52: 267–273 (2004)

    Article  CAS  Google Scholar 

  14. Obied HK, Allen MS, Bedgood DR, Prenzler PD, Robards K. Investigation of Australian olive mill waste for recovery of biophenols. J. Agr. Food Chem. 53: 9911–9920 (2005)

    Article  CAS  Google Scholar 

  15. Tahara A, Matsuyama-Yokono A, Nakano R, Someya Y, Hayakawa M, Shibasaki M. Effects of the combination of dipeptidyl peptidase-IV inhibitor ASP8497 and antidiabetic drugs in streptozotocin-nicotinamide-induced mildly diabetic mice. Eur. J. Pharmacol. 605: 170–176 (2009)

    Article  CAS  Google Scholar 

  16. Dahlqvist A. Assay of intestinal disaccharidases. Scand. J. Clin. Lab. Inv. 44: 169–172 (1984)

    Article  CAS  Google Scholar 

  17. Tietz NW, Fiereck EA. A specific method for serum lipase determination. Clin. Chim. Acta 13: 352–358 (1966)

    Article  CAS  Google Scholar 

  18. Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol. 52: 302–310 (1978)

    Article  CAS  Google Scholar 

  19. Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47: 469–474 (1974)

    Article  CAS  Google Scholar 

  20. Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 70: 158–169 (1967)

    CAS  Google Scholar 

  21. Aebi H. Catalase in vitro. Methods Enzymol. 105: 121–126 (1984)

    Article  CAS  Google Scholar 

  22. Ellman GL. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82: 70–77 (1959)

    Article  CAS  Google Scholar 

  23. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275 (1951)

    CAS  Google Scholar 

  24. Akasbi M, Shoeman DW, Csallany AS. High-performance liquid chromatography of selected phenolic compounds in olive oils. J. Am. Oil Chem. Soc. 70: 367–370 (1993)

    Article  CAS  Google Scholar 

  25. Feki M, Allouche N, Bouaziz M, Guargoubi A, Sayadi S. Effect of storage of olive mill waste waters on hydroxytyrosol concentration. Eur. J. Lipid Sci. Tech. 108: 1021–1027 (2006)

    Article  CAS  Google Scholar 

  26. Capasso R, Evidente A, Visca C. Production of hydroxytyrosol from olive oil vegetation waters. Agrochimica 38: 166–171 (1994)

    Google Scholar 

  27. Chung HY, Yoo MK, Kawagishi H. Characteristics of water-soluble polysaccharide, showing inhibiting activity on α-glucosidase, in Cordyceps militaris. Food Sci. Biotechnol 18: 667–671 (2009)

    CAS  Google Scholar 

  28. Kim DS, Kwon HJ, Jang HD, Kwon YI. In vitro α-glucosidase inhibitory potential and antioxidant activity of selected Lamiaceae species inhabited in Korean penninsula. Food Sci. Biotechnol 18: 239–244 (2009)

    Google Scholar 

  29. Adisakwattana S, Charoenlertkul P, Yibchok-Anun S. α-Glucosidase inhibitory activity of cyanidin-3-galactoside and synergistic effect with acarbose. J. Enzym. Inhib. Med. Chem. 24: 65–69 (2009)

    Article  CAS  Google Scholar 

  30. Nasi R, Patrick BO, Sim L, Rose DR, Pinto BM. Studies directed toward the stereochemical structure determination of the naturally occurring glucosidase inhibitor, kotalanol: Synthesis and inhibitory activities against human maltase glucoamylase of seven-carbon, chain-extended homologues of salacinol. J. Org. Chem. 73: 6172–6181 (2008)

    Article  CAS  Google Scholar 

  31. Johannsen TH, Kamstrup PR, Andersen RV, Jensen GB, Sillesen H, Tybjaerg-Hansen A, Nordestgaard BG. Hepatic lipase, genetically elevated high-density lipoprotein, and risk of ischemic cardiovascular disease. J. Clin. Endocr. Metab. 94: 1264–1273 (2009)

    Article  CAS  Google Scholar 

  32. Lee HS, Hong CO, Lee KW. Advanced glycation endproduct-induced diabetic complications. Food Sci. Biotechnol. 17: 1131–1138 (2008)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Hamden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamden, K., Allouche, N., Jouadi, B. et al. Inhibitory action of purified hydroxytyrosol from stored olive mill waste on intestinal disaccharidases and lipase activities and pancreatic toxicity in diabetic rats. Food Sci Biotechnol 19, 439–447 (2010). https://doi.org/10.1007/s10068-010-0062-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-010-0062-6

Keywords

Navigation