Skip to main content
Log in

Solid state ASE from an oligomer (HOTF) in polymethyl methacrylate

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Solid state laser material based on oligomer 9,9,9′,9′,9″,9″-hexakis(octyl)-2,7′,2′,7″-trifluorene (HOTF) doped poly methyl methacrylate (PMMA) was fabricated. The absorption spectrum showed only one band at 355 nm with different concentration ratios (7–12 mM); thus the broad absorption band could be attributed to the α-phase formation. In addition, there was no new band detected at the end of the spectrum as the concentration increased. This indicates the absence of the β-phase formation for all concentrations used. On the other hand, HOTF exhibited two distinct emission bands at 420 and 470 nm for 7 mM concentration. When the concentration was increased to 9 mM, the intensity of the band 470 nm increased. Further increase the concentration to 12 mM, the intensity of the band at 420 nm totally vanished and there was only one band at 470 nm. Therefore, the band at 470 could be attributed to excimer state. However, the results revealed that there is a strong correlation between quantum yield of fluorescence and fluorescence life-time, absorption cross section, and emission cross section. Under pulsed laser excitation. The ASE spectrum of HOTF has been obtained using a transverse cavity configuration where the conjugated HOTF was pumped by the third-harmonic of Nd:YAG nanosecond pulsed laser (λex = 355 nm). We demonstrate that HOTF in the solid state could produce an ASE peak at 420 nm. The obtained results were compared with the HOTF and a conducting polymer poly (9,9-dioctylfluorene) (PFO)in the liquid state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shirakawa, H., et al.: Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH) X. J. Chem. Soc. Chem. Commun. 16, 578–580 (1977)

    Article  Google Scholar 

  2. Li, G., Chang, W.H., Yang, Y.: Low-bandgap conjugated polymers enabling solution-processable tandem solar cells. Nat. Rev. Mater. 2(8), 17043 (2017)

    Article  ADS  Google Scholar 

  3. Miller, J.S.: Conducting polymers—materials of commerce. Adv. Mater. 5(9), 671–676 (1993)

    Article  Google Scholar 

  4. Brédas, J.L., Chance, R.R., Conjugated Polymeric Materials: Opportunities in Electronics, Optoelectronics, and Molecular Electronics, vol. 182. Springer Science & Business Media, Berlin (2012)

    Google Scholar 

  5. Jenekhe, S.A., Macromolecular Host–Guest Complexes: Optical, Optoelectronic, and Photorefractive Properties and Applications. Materials Research Society, San Francisco (1992)

    Google Scholar 

  6. Li, G., Zhu, R., Yang, Y.: Polymer solar cells. Nat. Photonics 6(3), 153–161 (2012)

    Article  ADS  Google Scholar 

  7. Hoppe, H., Sariciftci, N.S.: Polymer solar cells. In: Marder, S., Lee, K.-S. (eds.) Photo responsive Polymers II, pp. 1–86. Springer, Berlin (2007)

    Google Scholar 

  8. Huynh, W.U., Dittmer, J.J., Alivisatos, A.P.: Hybrid nanorod-polymer solar cells. Science 295(5564), 2425–2427 (2002)

    Article  ADS  Google Scholar 

  9. Kawase, T., et al.: Inkjet printed via-hole interconnections and resistors for all-polymer transistor circuits. Adv. Mater. 13(21), 1601 (2001)

    Article  Google Scholar 

  10. Ahles, M., et al.: Light emission from a polymer transistor. Appl. Phys. Lett. 84(3), 428–430 (2004)

    Article  ADS  Google Scholar 

  11. Mustapha, N., et al.: Improved efficiency of solar cells based on BEHP-co-MEH-PPV doped with ZnO nanoparticles. Optik Int. J. Light Electron Opt. 124(22), 5524–5527 (2013)

    Article  Google Scholar 

  12. Pei, Q., et al.: Polymer light-emitting electrochemical cells. Science 269(5227), 1086 (1995)

    Article  ADS  Google Scholar 

  13. Sirringhaus, H., Tessler, N., Friend, R.H.: Integrated optoelectronic devices based on conjugated polymers. Science 280(5370), 1741–1744 (1998)

    Article  ADS  Google Scholar 

  14. Yang, Y., Heeger, A.: Polyaniline as a transparent electrode for polymer light-emitting diodes: lower operating voltage and higher efficiency. Appl. Phys. Lett. 64(10), 1245–1247 (1994)

    Article  ADS  Google Scholar 

  15. Brabec, C.J., et al.: A low-bandgap semiconducting polymer for photovoltaic devices and infrared emitting diodes. Adv. Funct. Mater. 12(10), 709–712 (2002)

    Article  Google Scholar 

  16. Fish, D., et al.: 32.1: Invited paper: a comparison of pixel circuits for active matrix polymer/organic LED displays. In: SID Symposium Digest of Technical Papers. Wiley Online Library (2002)

  17. Huang, F., MacDiarmid, A., Hsieh, B.: An iodine-doped polymer light-emitting diode. Appl. Phys. Lett. 71(17), 2415–2417 (1997)

    Article  ADS  Google Scholar 

  18. Idriss, H., et al.: Amplified spontaneous emission from the exciplex state of a conjugated polymer “PFO” in oleic acid. Opt. Laser Technol. 83, 148–152 (2016)

    Article  ADS  Google Scholar 

  19. Masilamani, V., et al.: Laser properties of a conjugate polymer (MEH-PPV) in the liquid-excimeric state. Laser Phys. 17(12), 1367–1373 (2007)

    Article  ADS  Google Scholar 

  20. Ibnaouf, K.: Amplified spontaneous emission spectra of poly (9,9-dioctylfluorenyl-2,7-diyl) under pulsed laser excitation. Synth. Met. 209, 534–543 (2015)

    Article  Google Scholar 

  21. Ibnaouf, K.H.: Optical and amplified spontaneous emission from an efficient conducting copolymer (PFO-co-MEH-PPV) in solution. J. Luminesc. 192, 707–712 (2017)

    Article  ADS  Google Scholar 

  22. Alsalhi, M., et al.: Excimer state of a conjugate polymer (MEH-PPV) in liquid solutions. Laser Phys. 17(12), 1361–1366 (2007)

    Article  ADS  Google Scholar 

  23. Ibnaouf, K., et al.: Triple amplified spontaneous emissions from a conjugated copolymer BEHP-co-MEH-PPV in solution. Physica E 53, 66–71 (2013)

    Article  ADS  Google Scholar 

  24. Ibnaouf, K., et al.: Dual ASE spectra from “Superexciplex” TICT states of dye molecules. Laser Phys. Lawrence 15(11), 1536 (2005)

    Google Scholar 

  25. Ibnaouf, K., et al.: Amplified spontaneous emission spectra from the superexciplex of coumarin 138. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 97, 1145–1151 (2012)

    Article  ADS  Google Scholar 

  26. Laquai, F., et al.: Amplified spontaneous emission of poly(ladder-type phenylene)s—the influence of photophysical properties on ASE thresholds. Adv. Func. Mater. 18(20), 3265–3275 (2008)

    Article  Google Scholar 

  27. McGehee, M.D., et al.: Semiconducting polymer distributed feedback lasers. Appl. Phys. Lett. 72(13), 1536–1538 (1998)

    Article  ADS  Google Scholar 

  28. McGehee, M.D., et al.: Amplified spontaneous emission from photopumped films of a conjugated polymer. Phys. Rev. B 58(11), 7035 (1998)

    Article  ADS  Google Scholar 

  29. Xia, R., et al.: Fluorene-based conjugated polymer optical gain media. Org. Electron. 4(2), 165–177 (2003)

    Article  Google Scholar 

  30. Ibnaouf, K., et al.: Evidence for the double excimer state of conjugated polymer in a liquid solution. J. Eur. Opt. Soc. Rapid Publ. 8, 13001-1–13001- 5 (2013)

    Article  Google Scholar 

  31. Prasad, S., et al.: High power amplified spontaneous emission from an oligomer in solution. J. Lumin. 168, 109–113 (2015)

    Article  Google Scholar 

  32. Pisignano, D., et al.: Amplified spontaneous emission and efficient tunable laser emission from a substituted thiophene-based oligomer. Appl. Phys. Lett. 81(19), 3534–3536 (2002)

    Article  ADS  Google Scholar 

  33. Shimizu, K., Mori, Y., Hotta, S.: Laser oscillation from hexagonal crystals of a thiophene/phenylene co-oligomer. J. Appl. Phys. 99(6), 063505 (2006)

    Article  ADS  Google Scholar 

  34. Birnbaum, D., Fichou, D., Kohler, B.E.: The lowest energy singlet state of tetrathiophene, an oligomer of polythiophene. J. Chem. Phys. 96(1), 165–169 (1992)

    Article  ADS  Google Scholar 

  35. Nagawa, M., et al.: Emission gain narrowing from single crystals of a thiophene/phenylene co-oligomer. Appl. Phys. Lett. 80(4), 544–546 (2002)

    Article  ADS  Google Scholar 

  36. Zaman, S., et al.: Influence of the polymer concentration on the electroluminescence of ZnO nanorod/polymer hybrid light emitting diodes. J. Appl. Phys. 112(6), 064324 (2012)

    Article  ADS  Google Scholar 

  37. Rickard, D., et al.: Quantifying the contributions of inner-filter, re-absorption and aggregation effects in the photoluminescence of high-concentration conjugated polymer solutions. J. Lumin. 128(1), 31–40 (2008)

    Article  Google Scholar 

  38. Ibnaouf, K., et al.: Evidence for amplified spontaneous emission from double excimer of conjugated polymer (PDHF) in a liquid solution. Polymer 54(9), 2401–2405 (2013)

    Article  Google Scholar 

  39. Ibnaouf, K.: Excimer state of a conjugated polymer (MEH-PPV) in thin films. Opt. Laser Technol. 48, 401–404 (2013)

    Article  ADS  Google Scholar 

  40. Prasad, S., et al.: Laser from the dimer state of a conjugated polymer (PFO) in solution. Polymer 55(3), 727–732 (2014)

    Article  Google Scholar 

  41. Mujamammi, W.M., et al.: Relaxation oscillation with picosecond spikes in a conjugated polymer laser. Polymers 8(10), 364 (2016)

    Article  Google Scholar 

  42. Misaki, M., et al.: Highly efficient polarized polymer light-emitting diodes utilizing oriented films of β-phase poly(9,9-dioctylfluorene). Appl. Phys. Lett. 93(2), 250 (2008)

    Article  Google Scholar 

  43. Zainelabdin, A., et al.: Stable white light electroluminescence from highly flexible polymer/ZnO nanorods hybrid heterojunction grown at 50 C. Nanoscale Res. Lett. 5(9), 1442 (2010)

    Article  ADS  Google Scholar 

  44. Nagy, A.M., et al.: Fluorescence lifetimes of rhodamine dyes in vacuo. J. Photochem. Photobiol. A 244, 47–53 (2012)

    Article  Google Scholar 

  45. Williams, A.T.R., Winfield, S.A., Miller, J.N.: Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer. Analyst 108(1290), 1067–1071 (1983)

    Article  ADS  Google Scholar 

  46. Horiba, J.Y.: A guide to recording fluorescence quantum yields (2009). http://www.horiba.com/fileadmin/uploads/Scientific/Documents/Fluorescence/quantumyieldstrad.pdf

  47. Fischer, M., Georges, J.: Fluorescence quantum yield of rhodamine 6G in ethanol as a function of concentration using thermal lens spectrometry. Chem. Phys. Lett. 260(1–2), 115–118 (1996)

    Article  ADS  Google Scholar 

  48. Skoog, D.A., Holler, F., Timothy, A.D.A.: Principios de análisis instrumental. McGraw-Hill Interamericana de España, España (2001)

    Google Scholar 

  49. Magde, D., Wong, R., Seybold, P.G.: Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields. Photochem. Photobiol. 75(4), 327–334 (2002)

    Article  Google Scholar 

  50. Sabry, M., et al.: Fluorescence and laser activity of some pyrazinyl schiff-base derivatives. Journal de chimie physique 86, 2163–2172 (1989)

    Article  ADS  Google Scholar 

  51. Wegmann, G., et al.: Laser emission from a solid conjugated polymer: gain, tunability, and coherence. Phys. Rev. B 57(8), R4218 (1998)

    Article  ADS  Google Scholar 

  52. Tapia, M.J., et al.: β-Phase formation of poly (9,9-dioctylfluorene) induced by liposome phospholipid bilayers. J. Phys. Chem. B 115(19), 5794–5800 (2011)

    Article  Google Scholar 

  53. del Valle, J.C., Kasha, M., Catalán, J.: Spectroscopy of amplified spontaneous emission laser spikes in phenyloxazoles. Prototype classes. J. Phys. Chem. A 101(18), 3260–3272 (1997)

    Article  Google Scholar 

  54. Al-Shamiri, H.A.S., Badr, Y., Kana, M.T.A.: Optical, photo-physical properties and photostability of laser dyes impregnated in sol–gel matrix. In: Electronics, Communications and Photonics Conference (SIECPC), 2011 Saudi International. IEEE (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. H. Ibnaouf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibnaouf, K.H., Taha, K.K., Idriss, H. et al. Solid state ASE from an oligomer (HOTF) in polymethyl methacrylate. Opt Rev 26, 103–110 (2019). https://doi.org/10.1007/s10043-018-0485-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-018-0485-5

Keywords

Navigation