Skip to main content
Log in

Transport and deposition of suspended particles in saturated porous media: hydrodynamic effect

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

A laboratory study was undertaken to determine the transport and deposition rate of suspended particles in columns of saturated porous media (gravel and glass beads), where the porous media were subjected to steady-state flow. Silt particles with a mode of 14 μm diameter (used as the suspended particles) and fluorescein (as the conservative tracer) were injected into the columns in short pulses. The breakthrough curves were competently described with the analytical solution of a convection–dispersion equation with a first-order deposition rate. The experiments were performed using different flow rates. The suspended particle size distribution, the porous media, and the flow rates themselves were the main factors retained in this study to investigate the mechanisms governing the transport and deposition kinetics in detail. The results showed the existence of a flow rate, beyond which suspended particles travel faster than the conservative tracer. A decrease of the deposition rate of suspended particles beyond a critical flow velocity was also observed. Such behaviour led to consideration of the couple hydrodynamic-gravity forces at high flow rates. As the hydrodynamic force increases, particle deposition rates are reduced due to the effect of hydrodynamic forces inhibiting the deposition.

Résumé

Une étude expérimentale en colonne de laboratoire a été menée pour analyser le transport et la cinétique de dépôt des particules en suspension, en écoulement permanent, dans deux milieux poreux saturés (gravier et billes de verre). Des particules de limon d’un diamètre modal de 14 μm (utilisées comme particules en suspension) et de la fluorescéine (comme traceur conservatif) sont introduits dans la colonne par des injections impulsions. Les courbes de restitution sont bien décrites par la solution analytique de l’équation de convection dispersion avec une cinétique de dépôt de premier ordre. Les expériences sont réalisées avec différents débits d’écoulement. La distribution de taille des particules en suspension, le milieu poreux et la vitesse d’écoulement sont les facteurs principaux retenus dans cette étude pour analyser les mécanismes régissant le transport et la cinétique de dépôt. Les résultats ont montré l’existence d’un débit au-delà duquel les particules en suspension sont transportées plus rapidement que le traceur conservatif. La diminution de la cinétique de dépôt des particules en suspension au-delà d’une vitesse critique est aussi observée. Ce comportement est lié à la compétition entre les forces hydrodynamiques et de gravité à forts débits. La cinétique de dépôt des particules diminue à mesure que la force hydrodynamique augmente, empêchant le dépôt.

Resumen

Un estudio del laboratorio fue emprendido, para determinar la tasa de transporte y depositación de partículas suspendidas, en unas columnas de medios porosos saturados (bolitas de grava y vidrio), dónde los medios porosos fueron sometidos a un flujo estacionario. Las partículas de limo con una moda de 14 μm de diámetro (usadas como las partículas suspendidas) y la fluoresceína (como el trazador conservador), se inyectaron en las columnas a manera de pulsos cortos. Las curvas de llegada se describieron adecuadamente con la solución analítica de una ecuación de dispersión-convección, con una tasa de depositación de primer orden. Los experimentos se realizaron usando diferentes tasas de flujo. La distribución de tamaño de las partículas suspendidas, el medio poroso, y las tasas de flujo en si mismas, fueron los factores principales contenidos en este estudio, para investigar los mecanismos que gobiernan el transporte y cinética de la depositación en detalle. Los resultados mostraron la existencia de una tasa de flujo, más allá de la cual, las partículas en suspensión, viajan más rápidamente que el trazador conservador. También fue observada una disminución de la tasa de la depositación de las partículas suspendidas más allá de una velocidad de flujo crítica. Tal comportamiento llevó a la consideración de la pareja de fuerzas hidrodinámica-gravedad en tasas de flujo altas. Con el aumento de la fuerza hidrodinámica, las tasas de depositación de partículas se reducen, debido al efecto de fuerzas hidrodinámicas que inhiben la depositación.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Benamar A, Wang HQ, Ahfir ND, Alem A, Massei N, Dupont JP (2005) Inertial effects on the transport and the rate deposition of fine particles in a soil. CR Geosci 337:497–504

    Article  Google Scholar 

  • Delay F, Porel G, de Marsily G (1997) Predicting solute transport in heterogeneous media from results obtained in homogeneous ones: an experimental approach. J Cont Hydrol 25:63–84

    Article  Google Scholar 

  • Dieulin A (1980) Propagation de pollution dans un aquifère alluvial: l'effet de parcours [Pollution propagation in an alluvial aquifer: path effect]. PhD Thesis, Université Paris-6, France

  • Dodds J (1982) La chromatographie hydrodynamique [Hydrodynamic chromatography]. Analusis 10:109–119

    Google Scholar 

  • Elimelech M, Gregory J, Jia X, Williams RA (1995) Particle deposition and aggregation: measurement, modeling, and simulation. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Frey JM, Schmitz P, Dufreche I, Gohr Pinheiro I (1999) Particle deposition in porous media: analysis of hydrodynamic and weak inertial effects. Transp Porous Media 37:25–54

    Article  Google Scholar 

  • Gohr Pinheiro I, Schmitz P, Houi D (1999) Particle capture in porous media when physico–chemical effects dominate. Chem Eng Sci 54:3801–3813

    Article  Google Scholar 

  • Grolimund D, Elimelich M, Borcovec M, Barmettler K, Kretzschmar R, Sticher H (1998) Transport of in situ mobilized colloidal particles in packed soil columns. Environ Sci Technol 32:3562–3569

    Article  Google Scholar 

  • Hater T, Wagner S, Atwill ER (2000) Colloid transport and filtration of cryptosporidium parvum in sandy soils and aquifer sediments. Environ Sci Technol 34:62–70

    Article  Google Scholar 

  • Herzig JP, Leclerc DM, Le Goff P (1970) Flow of suspension through porous media: application to deep bed filtration. Ind Eng Chem 62:8–35

    Article  Google Scholar 

  • Kretzschmar R, Barmettler K, Grolimund D, Yan YD, Borkovec M, Sticher H (1997) Experimental determination of colloid deposition rates and collision efficiencies in natural porous media. Water Resour Res 33:1129–1137

    Article  Google Scholar 

  • Massei N, Lacroix M, Wang HQ, Dupont JP (2002) Transport of particulate material and dissolved tracer in a highly permeable porous medium: comparison of the transfer parameters. J Contam Hydrol 57:21–39

    Article  Google Scholar 

  • McDowell-Boyer LM, Hunt JR, Sitar N (1986) Particle transport through porous media. Water Resour Res 22:1901–1921

    Article  Google Scholar 

  • McGechan MB, Lewis DR (2002) Transport of particulate and colloid-sorbed contaminants through soil, Part 1: general principales. Biosystems Eng 83:255–273

    Article  Google Scholar 

  • Pfannkuch HO (1963) Contribution à l’étude des déplacements de fluides miscibles dans un milieu poreux [Contribution to the study of miscible fluids displacements in a porous medium]. Rev Inst Fr Pétrol 18:215–270

    Google Scholar 

  • Porel G (1988) Transfert de soluté en aquifère crayeux: Causes de modifications des résultats de traçages [Solute transport in chalk aquifer: causes of tracer modifications results]. PhD Thesis, Lille University, France

  • Ryan JN, Elimelech M (1996) Colloid mobilization and transport in groundwater. Colloids Surf A Physicochem Eng Asp 107:1–56

    Article  Google Scholar 

  • Santos A, Berdrikovtsky P (2004) Size exclusion during particle suspension transport in porous media: stochastic and averaged equations. CAM 23:259–284

    Google Scholar 

  • Song L, Elimelech M (1993) Calculation of particle deposition rate under unfavorable particle-surface interactions. J Chem Soc Trans 89:3443–3452

    Article  Google Scholar 

  • Song L, Elimelech M (1995) Particle deposition onto a permeable surface in laminar flow. J Colloid Interface Sci 173:165–180

    Article  Google Scholar 

  • Toran L, Palumbo AV (1992) Colloid transport through fractured and unfractured laboratory sand columns. J Cont Hydrol 9:289–303

    Article  Google Scholar 

  • Wang HQ (2001) Transferts de matières en milieu saturé: outils mathématiques et modélisation numérique [Mass transfer in saturated porous media: mathematical tools and numerical modelling]. Mémoire HDR, Université de Rouen, France

  • Wang HQ, Crampon N, Huberson S, Garnier JM (1987) Linear graphical method for determining Hydrodispersive characteristics in tracer experiments with instantaneous injection. J Hydrol 95:143–154

    Article  Google Scholar 

  • Wang HQ, Lacroix M, Massei N, Dupont JP (2000) Particle transport in porous medium: determination of hydrodispersive characteristics and deposition rates. CR Acad Sci Paris Sci Terre Planèt 331:97–104

    Google Scholar 

  • Yiantsios SG, Karabelas AJ (1997) The effect of gravity on deposition of micron-sized particles on smooth surfaces. Int J Multiphase Flow 24:283–293

    Article  Google Scholar 

  • Yiantsios SG, Karabelas AJ (2003) Deposition of micron-sized particles on flat surfaces: effects of hydrodynamic and physicochemical conditions on particle attachment efficiency. Chem Eng Sci 58:3105–3113

    Article  Google Scholar 

Download references

Acknowledgements

The research is supported by “Région Haute Normandie”. Irène Zimmerlin is gratefully acknowledged for her assistance in acquiring SEM images at the Laboratoire de Geologie (UMR 6143 M2C, Université de Rouen, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasre-Dine Ahfir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahfir, ND., Wang, H.Q., Benamar, A. et al. Transport and deposition of suspended particles in saturated porous media: hydrodynamic effect. Hydrogeol J 15, 659–668 (2007). https://doi.org/10.1007/s10040-006-0131-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-006-0131-3

Keywords

Navigation