Skip to main content
Log in

The preparation of conducting polyaniline–silver and poly(p-phenylenediamine)–silver nanocomposites in liquid and frozen reaction mixtures

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The oxidation of aniline with silver nitrate in 1 mol L−1 acetic acid at 20 °C yielded a composite of two conducting components, polyaniline and silver; the acceleration with 1 mol% of p-phenylenediamine is needed for efficient synthesis. The yield and molecular weight increased when aniline was copolymerized with 10 mol% p-phenylenediamine. Such product displayed metallic conductivity below 180 K and semiconductor type above this temperature. As the result, the conductivity was the same at 100 and 300 K. The oxidation of p-phenylenediamine alone with silver nitrate also produced a conducting composite having the conductivity of 1,750 S cm−1 despite the assumed nonconductivity of poly(p-phenylenediamine). The present study demonstrates that all oxidations proceeded also in frozen reaction mixtures at −24 °C, i.e., in the solid state. In most cases, molecular weights of polymer component increased, the conductivity of composites with silver improved, to 2,990 S cm−1 for poly(p-phenylenediamine)–silver, and remained high after deprotonation with 1 mol L−1 ammonium hydroxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stejskal J, Gilbert RG (2002) Pure Appl Chem 74:857

    Article  CAS  Google Scholar 

  2. Sapurina I, Stejskal J (2008) Polym Int 57:1295

    Article  CAS  Google Scholar 

  3. Stejskal J, Sapurina I, Trchová M (2010) Prog Polym Sci 35:1420

    Article  CAS  Google Scholar 

  4. Blinova NV, Stejskal J, Trchová M, Sapurina I, Ćirić-Marjanović G (2009) Polymer 50:50

    Article  CAS  Google Scholar 

  5. Blinova NV, Bober P, Hromádková J, Trchová M, Stejskal J, Prokeš J (2010) Polym Int 59:437

    Article  CAS  Google Scholar 

  6. Gniadek M, Bak E, Stojek Z, Donten M (2010) J Solid State Electrochem 14:1303

    Article  CAS  Google Scholar 

  7. de Azevedo WM, de Barros RA, da Silva EF Jr (2008) J Mater Sci 43:1400

    Article  CAS  Google Scholar 

  8. Li X, Gao Y, Liu FH, Gong J, Qu LY (2009) Mater Lett 63:467

    Article  CAS  Google Scholar 

  9. Karim MR, Lim KT, Lee CJ, Bhuiyan TI, Kim HJ, Park L-S, Lee MS (2007) J Polym Sci A Polym Chem 45:5741

    Article  CAS  Google Scholar 

  10. Huang ZH, Shi L, Zhu QR, Zou JT, Chen T (2010) Chin J Chem Phys 23:701

    Article  CAS  Google Scholar 

  11. Du JM, Liu ZM, Han BX, Li ZH, Zhang JL, Huang Y (2005) Micropor Mesopor Mater 84:254

    Article  CAS  Google Scholar 

  12. Stejskal J, Kratochvíl P, Špírková M (1995) Polymer 36:4135

    Article  CAS  Google Scholar 

  13. Duić L, Kralić M, Grigić S (2004) J Polym Sci A Polym Chem 42:1599

    Article  Google Scholar 

  14. Tran HD, Norris I, D’Arcy JM, Tsang H, Wang Y, Mattes BR, Kaner RB (2008) Macromolecules 41:7405

    Article  CAS  Google Scholar 

  15. Tran HD, Wang Y, D’Arcy JM, Kaner RB (2008) ACS Nano 2:1841

    Article  CAS  Google Scholar 

  16. Shenashen MA, Ayad MM, Salahuddin N, Youssif MA (2010) React Funct Polym 70:843

    Article  CAS  Google Scholar 

  17. Guan H, Fan L-Z, Zhang HC, Qu XH (2010) Electrochim Acta 56:964

    Article  CAS  Google Scholar 

  18. Bober P, Stejskal J, Trchová M, Prokeš J, Sapurina I (2010) Macromolecules 43:10406

    Article  CAS  Google Scholar 

  19. Prokeš J, Křivka I, Stejskal J (1997) Polym Int 43:117

    Article  Google Scholar 

  20. Prokeš J, Stejskal J, Křivka I, Tobolková E (1999) Synth Met 102:1205

    Article  Google Scholar 

  21. Haldorai Y, Lyoo WS, Shim J-J (2009) Colloid Polym Sci 287:1273

    Article  CAS  Google Scholar 

  22. Cataldo F (1996) Eur Polym J 32:43

    Article  CAS  Google Scholar 

  23. Sulimenko T, Stejskal J, Prokeš J (2001) J Colloid Interface Sci 236:328

    Article  CAS  Google Scholar 

  24. MacDiarmid AG, Epstein AJ (1992) Mater Res Soc Symp Proc 247:565

    Article  CAS  Google Scholar 

  25. Mattoso LHC, MacDiarmid AG, Epstein AJ (1994) Synth Met 68:1

    Article  CAS  Google Scholar 

  26. Stejskal J, Riede A, Hlavatá D, Prokeš J, Helmstedt M, Holler P (1998) Synth Met 96:55

    Article  CAS  Google Scholar 

  27. Adams PN, Laughlin PJ, Monkman AP, Kenwright AM (1996) Polymer 37:3411

    Article  CAS  Google Scholar 

  28. Adams PN, Monkman AP (1997) Synth Met 87:165

    Article  CAS  Google Scholar 

  29. Laska J, Widlarz J (2005) Polymer 46:1485

    Article  CAS  Google Scholar 

  30. Zengin HY, Spencer HG, Zengin GL, Gregory RV (2007) Synth Met 157:147

    Article  CAS  Google Scholar 

  31. Stejskal J, Špírková M, Riede A, Helmstedt M, Mokreva P, Prokeš J (1999) Polymer 40:2487

    Article  CAS  Google Scholar 

  32. Konyushenko EN, Stejskal J, Trchová M, Blinova NV, Holler P (2008) Synth Met 158:927

    Article  CAS  Google Scholar 

  33. Matsumoto S, Ihori H, Fujii M (2009) Synth Met 159:2296

    Article  CAS  Google Scholar 

  34. Ma H-Y, Gao Y, Li Y-H, Gong J, Li X, Fan B, Deng Y-L (2009) J Phys Chem C 113:9047

    Article  CAS  Google Scholar 

  35. Manivel P, Sathiyanarayanan S, Venkatachari G (2008) J Appl Polym Sci 110:2807

    Article  CAS  Google Scholar 

  36. Aoki M, Tsujino Y, Kano K, Ikeda T (1996) Langmuir 61:5610

    CAS  Google Scholar 

  37. Huang M-R, Peng Q-Y, Li X-G (2006) Chem Eur J 12:4341

    Article  CAS  Google Scholar 

  38. Sestrem RH, Ferreira DC, Landers R, Temperini MLA (2009) Polymer 50:6043

    Article  CAS  Google Scholar 

  39. Yang C-H, Wen T-C (1994) J Appl Electrochem 24:166

    Article  CAS  Google Scholar 

  40. Yao B, Wang GC, Li XW, Zhang ZP (2009) J Appl Polym Sci 112:1988

    Article  CAS  Google Scholar 

  41. Rani M, Ramachandran R, Kabilan S (2010) Synth Met 160:678

    Article  CAS  Google Scholar 

  42. Bober P, Stejskal J, Trchová M, Hromádková J, Prokeš J (2010) React Funct Polym 70:656

    Article  CAS  Google Scholar 

  43. Bober P, Trchová M, Prokeš J, Varga M, Stejskal J (2011) Electrochim Acta 56:3580

  44. Dennany L, Innis PC, McGovern ST, Wallace GG, Forster RJ (2011) Phys Chem Chem Phys 13:3303

    Article  CAS  Google Scholar 

  45. Blinova NV, Stejskal J, Trchová M, Prokeš J, Omastová M (2007) Eur Polym J 43:2331

    Article  CAS  Google Scholar 

  46. Trchová M, Stejskal J (2011) Pure Appl Chem (in press)

  47. Socrates G (2001) Infrared and Raman characteristic group frequencies. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

The support from the Ministry of Education, Youth and Sports of the Czech Republic (MSM 0021620834 and LA09028) is gratefully acknowledged. Thanks are due to P. Holler from the Institute of Macromolecular Chemistry for the determination of molecular weights.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrycja Bober.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bober, P., Stejskal, J., Trchová, M. et al. The preparation of conducting polyaniline–silver and poly(p-phenylenediamine)–silver nanocomposites in liquid and frozen reaction mixtures. J Solid State Electrochem 15, 2361–2368 (2011). https://doi.org/10.1007/s10008-011-1414-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1414-8

Keywords

Navigation