Skip to main content
Log in

In situ analysis of interfacial reactions between negative MCMB, lithium electrodes, and gel polymer electrolyte

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The interfacial properties of mesocarbon-microbeads (MCMB) and lithium electrodes during charge process in poly (vinylidenefluoride-co-hexafluoropropylene)-based gel electrolyte were investigated by in situ Raman microscopy, in situ Fourier transform-infrared (FTIR) spectroscopic methods, and charge–discharge, electrochemical impedance spectroscopy techniques. For MCMB electrode, the series phase transitions from initial formation of the dilute stage 1 graphite intercalation compound (GIC) to a stage 4 GIC, then through a stage 3 to stage 2, and finally to stage 1 GIC was proved by in situ Raman spectroscopic measurement. The formation of solid electrolyte interface (SEI) films formed on MCMB and metal lithium electrode was studied by in situ reflectance FTIR spectroscopic method. At MCMB electrode surface, the solvent (mostly ethylene carbonate) decomposed during charging process and ROCO2Li may be the product. ROCO2Li, ROLi, and Li2CO3 were the main composites of SEI film formed on lithium electrode, not on electrodeposited lithium electrode or lithium foil electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Song JY, Wang YY, Wan CC (1999) J Power Sources 77:183

    Article  CAS  Google Scholar 

  2. Kono M, Nishiura M, Ishiko E, Sada T (2000) Electrochim Acta 45:1307

    Article  CAS  Google Scholar 

  3. Kim DW, Ko JM, Chun JH, Kim SH, Park JK (2001) Electrochem Commun 3:535

    Article  CAS  Google Scholar 

  4. Oh B, Amine K (2004) Solid State Ionics 175:785

    Article  CAS  Google Scholar 

  5. Yoshimoto N, Shirai T, Morita M (2005) Electrochim Acta 50:3866

    Article  CAS  Google Scholar 

  6. Lopes LVS, Machado GO, Pawlicka A, Donoso JP (2005) Electrochim Acta 50:3978

    Article  CAS  Google Scholar 

  7. Kumar GG, Sampath S (2005) Solid State Ionics 176:773

    Article  CAS  Google Scholar 

  8. Aurbach D, Zaban A (1994) J Electrochem Soc 141:1808

    Article  CAS  Google Scholar 

  9. Aurbach D, Zaban A, Chusid O, Weissman I (1994) Electrochim Acta 39:51

    Article  CAS  Google Scholar 

  10. Aurbach D, Zaban A, Gofer Y, Ein-Eli Y, Weissman I, Chusid O, Abramson O (1995) J Power Sources 54:76

    Article  CAS  Google Scholar 

  11. Aurbach D, Ein-Eli Y (1995) J Electrochem Soc 142:1746

    Article  CAS  Google Scholar 

  12. Aurbach D, Levi MD, Levi E, Schechter A (1997) J Phys Chem B 101:2195

    Article  CAS  Google Scholar 

  13. Ein-Eli Y, McDevitt SF (1997) J Solid State Electrochem 1:227

    Article  CAS  Google Scholar 

  14. Novák P, Joho F, Imhof R, Panitz JC, Haas O (1999) J Power Sources 81–82:212

    Article  Google Scholar 

  15. Bar-Tow D, Peled E, Burstein L (1999) J Electrochem Soc 146:824

    Article  CAS  Google Scholar 

  16. Inaba M, Kawatate Y, Funabiki A, Jeong SK, Abe T, Ogumi Z (1999) Electrochim Acta 45:99

    Article  CAS  Google Scholar 

  17. Novák P, Panitz JC, Joho F, Lanz M, Imhof R, Coluccia M (2000) J Power Sources 90:52

    Article  Google Scholar 

  18. Alliata D, Kötz R, Novák P, Siegenthaler H (2000) Electrochem Commun 2:436

    Article  CAS  Google Scholar 

  19. Novák P, Joho F, Lanz M, Rykart B, Panitz JC, Alliata D, Kötz R, Haas O (2001) J Power Sources 97–98:39

    Article  Google Scholar 

  20. Morigaki KI (2002) J Power Sources 103:253

    Article  CAS  Google Scholar 

  21. Lee S, Pyun SI (2003) J Solid State Electrochem 7:374

    CAS  Google Scholar 

  22. Levi E, Lancry E, Gofer Y, Aurbach D (2006) J Solid State Electrochem 10:176

    Article  CAS  Google Scholar 

  23. Li X, Zhao Y, Cheng L, Yan M, Zheng X, Gao Z, Jiang Z (2005) J Solid State Electrochem 9:609

    Article  CAS  Google Scholar 

  24. Zhang S, Shi P (2004) Electrochim Acta 49:1475

    CAS  Google Scholar 

  25. Levi MD, Aurbach D (1997) J Phys Chem B 101:4630

    Article  CAS  Google Scholar 

  26. Chang YC, Sohn HJ (2000) J Electrochem Soc 147:50

    Article  CAS  Google Scholar 

  27. Huang W, Frech R (1998) J Electrochem Soc 145:765

    Article  CAS  Google Scholar 

  28. Panitz JC, Joho F, Novák P (1999) Appl Spectrosc 53:1188

    Article  CAS  Google Scholar 

  29. Joho F, Novák P (2000) Electrochim Acta 45:3589

    Article  CAS  Google Scholar 

  30. Churikov AV, Gamayunova IM, Shirokov AV (2000) J Solid State Electrochem 4:216

    Article  CAS  Google Scholar 

  31. Umeda M, Dokko K, Fujita Y, Mohamedi M, Uchida I, Selman JR (2001) Electrochim Acta 47:885

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The work was supported by National Nature Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyu Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, Y., Wang, G., Yan, M. et al. In situ analysis of interfacial reactions between negative MCMB, lithium electrodes, and gel polymer electrolyte. J Solid State Electrochem 11, 310–316 (2007). https://doi.org/10.1007/s10008-006-0122-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-006-0122-2

Keywords

Navigation