Skip to main content
Log in

Stress generation and fracture in lithium insertion materials

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A mathematical model that calculates volume expansion and contraction and concentration and stress profiles during lithium insertion into and extraction from a spherical particle of electrode material has been developed. The maximum stress in the particle has been determined as a function of dimensionless current, which includes the charge rate, particle size, and diffusion coefficient. The effects of pressure-driven diffusion and nonideal interactions between the lithium and host material have also been described. The model predicts that carbonaceous particles will fracture in high-power applications such as hybrid-electric vehicle batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Notes

  1. The fit is contained in the Fortran program Dualfoil.f, which is available on our website at http://www.cchem.berkeley.edu/~jsngrp. The fit has been modified slightly so as to avoid any regions in which \( dU/dx > 0 \), which corresponds to a negative thermodynamic factor. Specifically, the coefficient of the fourth hyperbolic tangent has been changed from 0.0351 to 0.0347.

  2. Although it is not shown on the potential scale of Fig. 15, which has been expanded to compare it with the overpotential for extraction (Fig. 16), the overpotential for insertion (Fig. 15) starts at less than −1.65 V.

References

  1. Beaulieu LY, Eberman KW, Turner RL, Krause LJ, Dahn JR (2001) Electrochem Solid State Lett 4:A137

    Article  CAS  Google Scholar 

  2. Thomas KE (2002) Dissertation. University of California, Berkeley

  3. Ohzuku T, Tomura H, Sawai K (1997) J Electrochem Soc 144:3496

    Article  CAS  Google Scholar 

  4. Sawai K, Yoshikawa K, Tomura H, Ohzuku T (1998) Prog Batteries Battery Mater 17:201

    CAS  Google Scholar 

  5. Kostecki R, McLarnon F (2003) J Power Sources 119:550

    Article  CAS  Google Scholar 

  6. Hirschfelder JO, Curtiss CF, Bird RB (1954) Molecular theory of gases and liquids. Wiley, New York, p 714 (corrected printing with notes added, 1964)

    Google Scholar 

  7. Curtiss CF, Bird RB (1999) Ind Eng Chem Res 38:2515

    Article  CAS  Google Scholar 

  8. Battaglia VS (1993) Dissertation. University of California, Berkeley

  9. Kröger FA, Vink HJ (1956) In: Seitz F, Turnbull D (eds) Solid state physics: advances in research and applications, vol 3. Academic, New York, p 310

    Google Scholar 

  10. Kröger FA, Vink HJ (1958) J Phys Chem Solids 5:208

    Article  Google Scholar 

  11. Malvern LE (1969) Introduction to the mechanics of a continuous medium. Prentice-Hall, Englewood Cliffs, p 159

    Google Scholar 

  12. Bird RB, Stewart WE, Lightfoot EN (2002) Transport phenomena. Wiley, New York, p 19

    Google Scholar 

  13. Timoshenko S (1934) Theory of elasticity. McGraw-Hill, New York, p 203

    Google Scholar 

  14. Garcia RE, Chiang YM, Carter WC, Limthongkul P, Bishop CM (2005) J Electrochem Soc 152:A255

    Article  CAS  Google Scholar 

  15. Boresi AP (1965) Elasticity in engineering materials. Prentice-Hall, Englewood Cliffs, p 71

    Google Scholar 

  16. Ogumi Z, Inaba M (2002) In: van Schalkwijk WA, Scrosati B (eds) Advances in lithium-ion batteries, vol. Kluwer/Plenum, New York, p 79

    Chapter  Google Scholar 

  17. Inagaki M (2000) New carbons: control of structure and functions. Elsevier, New York, p 199

    Google Scholar 

  18. Billaud D, McRae E, Hérold A (1979) Mater Res Bull 14:857

    Article  CAS  Google Scholar 

  19. Kganyago KR, Ngoepe PE (2003) Phys Rev B 68:205111

    Article  CAS  Google Scholar 

  20. Nicklow R, Smith HG, Wakabaya N (1972) Phys Rev B 5:4951

    Article  Google Scholar 

  21. Hertzberg RW (1996) Deformation and fracture mechanics of engineering materials. Wiley, New York, p 526

    Google Scholar 

  22. Winter M, Besenhard JO, Albering JH, Yang J, Wachtler M (1998) Prog Batteries Battery Mater 17:208

    CAS  Google Scholar 

  23. Zaghib K, Nadeau G, Kinoshita K (2000) J Electrochem Soc 147:2110

    Article  CAS  Google Scholar 

  24. Winter M, Novák P, Monnier A (1998) J Electrochem Soc 145:428

    Article  CAS  Google Scholar 

  25. Fuller TF, Newman J (1993) Int J Heat Mass Transfer 36:347

    Article  CAS  Google Scholar 

  26. Fuller TF (1992) Dissertation. University of California, Berkeley

  27. Levich VG (1962) Physicochemical hydrodynamics. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  28. Sengers JV (1972) Ber Bunsen Ges 76:234

    CAS  Google Scholar 

  29. Cussler EL (1976) Multicomponent diffusion. Elsevier, New York

    Google Scholar 

  30. Krichevsky IR, Tshekhanskaya YV (1956) Zhurnal Fizicheskoi Khimii 30:2315

    Google Scholar 

  31. Vitagliano V, Sartorio R, Chiaravalle E, Ortona O (1980) J Chem Eng Data 25:121

    Article  CAS  Google Scholar 

  32. Darling RM (1998) Dissertation. University of California, Berkeley

  33. Verbrugge MW, Koch BJ (1996) J Electrochem Soc 143:600

    Article  CAS  Google Scholar 

  34. Newman J, Thomas-Alyea KE (2004) Electrochemical systems. Wiley-Interscience, Hoboken, p 142

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of FreedomCAR and Vehicle Technologies of the US Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Christensen.

Appendix

Appendix

Thermodynamics and kinetics

For lithium insertion into a generic host material, we consider the following reversible electrochemical reaction:

$$ {\text{LiS}} \to {\text{Li}}^{ + } + {\text{e}}^{ - } + S, $$
(125)

where S represents the host material. The OCP, U, of the intercalation material relative to a lithium reference is given by the equation

$$ FU = \mu ^{0}_{{{\text{Li}}}} + \mu _{{\text{S}}} - \mu _{{{\text{LiS}}}} {\text{,}} $$
(126)

where F is Faraday’s constant and \( \mu ^{0}_{{{\text{Li}}}} \) is the chemical potential of pure lithium metal, which does not depend upon the composition of the host material. As in Eq. (6), the chemical potential of a species can be expressed in terms of its mole fraction, activity coefficient, and secondary reference chemical potential:

$$ \mu _{i} = \mu ^{\theta }_{i} + RT\ln {\left( {\gamma _{i} x_{i} } \right)}. $$
(127)

Expanding the chemical potentials in Eq. (126), we have

$$ FU = FU^{\theta } + RT\ln {\left( {\frac{{x_{{\text{S}}} }} {{x_{{{\text{LiS}}}} }}} \right)} + RT\ln {\left( {\frac{{\gamma _{{\text{S}}} }} {{\gamma _{{{\text{LiS}}}} }}} \right)}, $$
(128)

where

$$ FU^{\theta } = \mu ^{0}_{{{\text{Li}}}} + \mu ^{\theta }_{{\text{S}}} - \mu ^{\theta }_{{{\text{LiS}}}} {\text{.}} $$
(129)

Differentiating Eq. (126) with respect to x LiS yields

$$ F\frac{{\partial U}} {{\partial x_{{{\text{LiS}}}} }} = \frac{{\partial \mu _{{\text{S}}} }} {{\partial x_{{{\text{LiS}}}} }} - \frac{{\partial \mu _{{{\text{LiS}}}} }} {{\partial x_{{{\text{LiS}}}} }}. $$
(130)

The species S and LiS are not independent of each other; the amounts of the two species sum to a constant, and their chemical potentials are related by the Gibbs–Duhem equation:

$$ x_{{{\text{LiS}}}} d\mu _{{{\text{LiS}}}} + x_{{\text{S}}} d\mu _{{\text{S}}} = 0. $$
(131)

Thus, Eq. (130) becomes

$$ \frac{{\partial \mu _{{{\text{LiS}}}} }} {{\partial x_{{{\text{LiS}}}} }} = - F{\left( {1 - x_{{{\text{LiS}}}} } \right)}\frac{{\partial U}} {{\partial x_{{{\text{LiS}}}} }}. $$
(132)

Applying the analog of Eq. (7), the thermodynamic factor is therefore

$$ 1 + \frac{{\partial \ln \gamma _{{{\text{LiS}}}} }} {{\partial \ln x_{{{\text{LiS}}}} }} = \frac{{x_{{{\text{LiS}}}} }} {{RT}}\frac{{\partial \mu _{{{\text{LiS}}}} }} {{\partial x_{{{\text{LiS}}}} }} = - \frac{F} {{RT}}x_{{{\text{LiS}}}} {\left( {1 - x_{{{\text{LiS}}}} } \right)}\frac{{\partial U}} {{\partial x_{{{\text{LiS}}}} }}. $$
(133)

For an ideal solution,

$$ U = U^{\theta } + \frac{{RT}} {F}\ln {\left( {\frac{{1 - x_{{{\text{LiS}}}} }} {{x_{{{\text{LiS}}}} }}} \right)}, $$
(134)

and the thermodynamic factor is unity. The derivation shown here follows the development of Darling [32], and avoids invoking the excess free energy, which is used by Verbrugge and Koch to derive a similar relationship between the thermodynamic factor and OCP via interaction parameters [33]. Our approach is more general than that of Verbrugge and Koch, in that it accommodates the wide variety of empirical OCP fits available in the literature. However, care must be taken when the empirical fits do not correctly approach the dilute limits or when they result in negative values for the thermodynamic factor.

A kinetic model is required to determine the effect of nonidealities in the electrode and electrolyte upon the exchange current density. Typically, the concentrations of reactants and products are used, but here, we use their activities for the sake of generality. The current associated with reaction Eq. (125) (i.e., lithium insertion into a generic host material) can be expressed as

$$ i = F{\left[ {k_{{\text{f}}} \prime a_{{{\text{LiS}}}} \exp {\left( {\frac{{{\left( {1 - \beta } \right)}FV}} {{RT}}} \right)} - k_{{\text{b}}} \prime a_{{\text{S}}} a_{{{\text{Li}}^{ + } }} \exp {\left( {\frac{{ - \beta FV}} {{RT}}} \right)}} \right]}, $$
(135)

where a LiS and a S are activities of lithium-filled and lithium-void sites in the host material, respectively; a Li+ is the activity of lithium ions in solution; \( k_{{\text{f}}} \prime \) and \( k_{{\text{b}}} \prime \) are the forward and backward rate constants, respectively; and V is the difference between the electrode potential and the potential in the solution near the electrode, relative to a lithium reference electrode in contact with electrolyte of a particular lithium ion concentration (e.g., 1 M).

The thermodynamic OCP is obtained by setting the current to zero:

$$ k_{{\text{f}}} \prime a_{{{\text{LiS}}}} \exp {\left( {\frac{{{\left( {1 - \beta } \right)}FU\prime }} {{RT}}} \right)} = k_{{\text{b}}} \prime a_{{\text{S}}} a_{{{\text{Li}}^{ + } }} \exp {\left( {\frac{{ - \beta FU\prime }} {{RT}}} \right)}{\text{.}} $$
(136)

We emphasize that U′ is different from the measured OCP given in Eq. (128), which is independent of the activity of lithium ions. In describing solid diffusion phenomena in the electrode, the activity of lithium ions is irrelevant and can be set arbitrarily to the reference activity.

We can rearrange Eq. (136) to solve for the forward rate preexponential factor:

$$ k_{{\text{f}}} \prime a_{{{\text{LiS}}}} = k_{{\text{b}}} \prime a_{{\text{S}}} a_{{{\text{Li}}^{ + } }} \exp {\left( {\frac{{ - FU\prime }} {{RT}}} \right)}{\text{.}} $$
(137)

Substituting this expression into Eq. (135), we have

$$ i = Fk_{{\text{b}}} \prime a_{{\text{S}}} a_{{{\text{Li}}^{ + } }} \exp {\left( {\frac{{ - \beta FU\prime }} {{RT}}} \right)}{\left[ {\exp {\left( {\frac{{{\left( {1 - \beta } \right)}F\eta _{{\text{s}}} }} {{RT}}} \right)} - \exp {\left( {\frac{{ - \beta F\eta _{{\text{s}}} }} {{RT}}} \right)}} \right]}{\text{,}} $$
(138)

where

$$ \eta _{{\text{s}}} = V - U\prime $$
(139)

is the surface overpotential of the reaction. Equations (137) and (138) can subsequently be combined to yield

$$ i = F{\left( {k_{{\text{f}}} \prime a_{{{\text{LiS}}}} } \right)}^{\beta } {\left( {k_{{\text{b}}} \prime a_{{\text{S}}} a_{{{\text{Li}}^{ + } }} } \right)}^{{1 - \beta }} {\left[ {\exp {\left( {\frac{{{\left( {1 - \beta } \right)}F\eta _{{\text{s}}} }} {{RT}}} \right)} - \exp {\left( {\frac{{ - \beta F\eta _{{\text{s}}} }} {{RT}}} \right)}} \right]}{\text{.}} $$
(140)

The activities of the solid species are given by

$$ a_{i} = a^{\theta }_{i} \gamma _{i} x_{i} {\text{,}} $$
(141)

where \( a^{\theta }_{i} \) is the activity at a particular secondary reference state (i.e., it is a function of temperature and pressure, but not of composition), and γ i is the mole fraction activity coefficient. For lithium ions, we use an activity that is independent of electrical state. That is,

$$ a_{{{\text{Li}}^{ + } }} = a^{\theta }_{{{\text{Li}}^{ + } ,n}} f_{{{\text{Li}}^{ + } ,n}} c_{{{\text{Li}}^{ + } }} {\text{,}} $$
(142)

where \( a^{\theta }_{{{\text{Li}}^{ + } ,n}} \) and \( f_{{{\text{Li}}^{ + } ,n}} \) are, respectively, the reference activity and activity coefficient of lithium ions with respect to a reference species, n, in solution (see Eqs. (3), (4), (5), (6), (7), (8), (9), (10), (11), (12), (13), (14), (15), (16), (17), (18), (19) of reference [34]). The reference species must be ionic, and, in our binary electrolyte, is limited to lithium ions and the corresponding anion. Because the reference electrode used here is lithium metal, lithium ions are the natural choice for the reference ion. Accordingly,

$$ f_{{{\text{Li}}^{ + } ,n}} = \frac{{f_{{{\text{Li}}^{ + } }} }} {{f^{{{\text{ref}}}}_{{{\text{Li}}^{ + } }} }} $$
(143)

where \( f^{{{\text{ref}}}}_{{Li^{ + } }} \) is the ionic activity coefficient at the reference concentration of lithium ions (i.e., the concentration adjacent to the reference electrode). The ratio does not depend upon an ill-defined electrical state, and therefore, neither does the activity of lithium ions used in the kinetic model. Note that with this choice of reference ion, \( a^{\theta }_{{{\text{Li}}^{ + } ,n}} = 1 \).

From the above definitions of activity, Eqs. (138) and (140) can be expressed as

$$ i = Fk_{{\text{b}}} \gamma _{{\text{S}}} x_{{\text{S}}} f_{{{\text{Li}}^{ + } ,n}} c_{{{\text{Li}}^{ + } }} \exp {\left( {\frac{{ - \beta FU\prime }} {{RT}}} \right)}{\left[ {\exp {\left( {\frac{{{\left( {1 - \beta } \right)}F\eta _{{\text{s}}} }} {{RT}}} \right)} - \exp {\left( {\frac{{ - \beta F\eta _{{\text{s}}} }} {{RT}}} \right)}} \right]} $$
(144)

and

$$ i = Fk^{\beta }_{{\text{f}}} k^{{1 - \beta }}_{{\text{b}}} \gamma ^{\beta }_{{{\text{LiS}}}} \gamma ^{{1 - \beta }}_{{\text{S}}} x^{\beta }_{{{\text{LiS}}}} x^{{1 - \beta }}_{{\text{S}}} {\left( {f_{{{\text{Li}}^{ + } ,n}} c_{{{\text{Li}}^{ + } }} } \right)}^{{1 - \beta }} \times {\left[ {\exp {\left( {\frac{{{\left( {1 - \beta } \right)}F\eta _{{\text{s}}} }} {{RT}}} \right)} - \exp {\left( {\frac{{ - \beta F\eta _{{\text{s}}} }} {{RT}}} \right)}} \right]}{\text{,}} $$
(145)

where \( k_{{\text{f}}} = k_{{\text{f}}} \prime a^{\theta }_{{{\text{LiS}}}} \) and \( k_{{\text{b}}} = k_{{\text{b}}} \prime a^{\theta }_{{\text{S}}} \). Equation (21) is the familiar Butler–Volmer equation, with the preexponential group constituting the exchange current density.

Solving for U′ in Eq. (145), using the Eqs. (141) and (142) for the activities, we have

$$ U\prime = U\prime ^{\theta } + \frac{{RT}} {F}\ln {\left( {\frac{{x_{{\text{S}}} }} {{x_{{{\text{LiS}}}} }}} \right)} + \frac{{RT}} {F}\ln {\left( {\frac{{\gamma _{{\text{S}}} }} {{\gamma _{{{\text{LiS}}}} }}} \right)} + \frac{{RT}} {F}\ln {\left( {f_{{{\text{Li}}^{ + } ,n}} c_{{{\text{Li}}^{ + } }} } \right)}{\text{,}} $$
(146)

where

$$ U\prime ^{\theta } = \frac{{RT}} {F}\ln {\left( {\frac{{k_{{\text{b}}} }} {{k_{{\text{f}}} }}} \right)}. $$
(147)

In contrast to the reference potential given in Eq. (128), this term is complicated by the fact that the ratio k b/k f has units of inverse molarity. Essentially, it is the reference potential from Eq. (128), with the dependence upon lithium ion concentration removed. This is why we distinguish between the thermodynamic U′ and the measured U; the latter has no ionic composition dependence. Section 5.7 of reference [34] elaborates further upon this subject.

Presumably, the OCP is Nernstian in the limit of small LiC6 concentration. That is,

$$ {\mathop {\lim }\limits_{x_{{{\text{LiS}}}} \to 0} }U\prime = U\prime ^{\theta } + \frac{{RT}} {F}\ln {\left( {\frac{{x_{{\text{S}}} }} {{x_{{{\text{LiS}}}} }}} \right)} + \frac{{RT}} {F}\ln {\left( {f_{{{\text{Li}}^{ + } ,n}} c_{{{\text{Li}}^{ + } }} } \right)}. $$
(148)

Let g(x LiS) represent the deviation from Nernstian behavior over the entire stoichiometric range of the material. In other words, let

$$ U\prime = U\prime ^{\theta } + \frac{{RT}} {F}\ln {\left( {\frac{{x_{{\text{S}}} }} {{x_{{{\text{LiS}}}} }}} \right)} + \frac{{RT}} {F}\ln {\left( {f_{{{\text{Li}}^{ + } ,n}} c_{{{\text{Li}}^{ + } }} } \right)} + g{\left( {x_{{{\text{LiS}}}} } \right)}. $$
(149)

Comparing Eq. (149) with Eq. (146), we see that

$$ g{\left( {x_{{{\text{LiS}}}} } \right)} = \frac{{RT}} {F}\ln \frac{{\gamma _{{\text{S}}} }} {{\gamma _{{{\text{LiS}}}} }}. $$
(150)

From the Gibbs–Duhem equation [Eq. (131)] and the relationship between the chemical potential of a species and its thermodynamic factor [Eq. (7)], we can show that the thermodynamic factor for species S is identical to the thermodynamic factor for species LiS. Hence, by Eq. (133), we have

$$ 1 + \frac{{\partial \ln \gamma _{{\text{S}}} }} {{\partial \ln x_{{\text{S}}} }} = - \frac{F} {{RT}}x_{{{\text{LiS}}}} {\left( {1 - x_{{{\text{LiS}}}} } \right)}\frac{{\partial U^{'} }} {{\partial x_{{{\text{LiS}}}} }}. $$
(151)

Here, we have made use of the fact that the dependence of U′ upon x LiS is identical to that of U.

In defining our reference state, we specify that the activity coefficient of a species approaches unity in the limit of dilute lithium (i.e., vacant host material):

$$ \gamma _{i} \to 1\,{\text{as}}\,x_{{{\text{LiS}}}} \to 0. $$
(152)

Thus, rearranging and integrating (151) yields:

$$ \gamma _{{\text{S}}} = \frac{1} {{1 - x_{{{\text{LiS}}}} }}\exp {\left( { - \frac{{F{\left[ {{\int_{{\text{ }}0}^{{\text{ }}x_{{{\text{LiS}}}} } {U\prime {\left( x \right)}dx} } - x_{{{\text{LiS}}}} U\prime {\left( {x_{{{\text{LiS}}}} } \right)}} \right]}}} {{RT}}} \right)}{\text{.}} $$
(153)

Insertion of this result into Eq. (144) yields

$$ i = Fk_{{\text{b}}} f_{{{\text{Li}}^{ + } ,n}} c_{{{\text{Li}}^{ + } }} \exp {\left( { - \frac{{F{\left[ {{\int_{{\text{ }}0}^{{\text{ }}x_{{{\text{LiS}}}} } {U\prime {\left( x \right)}dx} } + {\left( {\beta - x_{{{\text{LiS}}}} } \right)}U\prime {\left( {x_{{{\text{LiS}}}} } \right)}} \right]}}} {{RT}}} \right)} \times {\left[ {\exp {\left( {\frac{{{\left( {1 - \beta } \right)}F\eta _{{\text{s}}} }} {{RT}}} \right)} - \exp {\left( {\frac{{ - \beta F\eta _{{\text{s}}} }} {{RT}}} \right)}} \right]}{\text{.}} $$
(154)

The resulting exchange current density is a function of electrode composition via the OCP:

$$ i_{0} = Fk_{{\text{b}}} f_{{{\text{Li}}^{ + } ,n}} c_{{{\text{Li}}^{ + } }} \times \exp {\left( { - \frac{{F{\left[ {{\int_{{\text{ }}0}^{{\text{ }}x_{{{\text{LiS}}}} } {U\prime {\left( x \right)}dx} } + {\left( {\beta - x_{{{\text{LiS}}}} } \right)}U\prime {\left( {x_{{{\text{LiS}}}} } \right)}} \right]}}} {{RT}}} \right)}{\text{.}} $$
(155)

Substituting Eq. (149) into (155), we can write the exchange current density in terms of the nonideal portion of the OCP:

$$ i_{0} = Fk^{{1 - \beta }}_{{\text{b}}} k^{\beta }_{{\text{f}}} f^{{1 - \beta }}_{{{\text{Li}}^{ + } ,n}} c^{{1 - \beta }}_{{{\text{Li}}^{ + } }} {\left( {1 - x_{{{\text{LiS}}}} } \right)}^{{1 - \beta }} x^{\beta }_{{{\text{LiS}}}} \times \exp {\left( { - \frac{{F{\left[ {{\int_{{\text{ }}0}^{{\text{ }}x_{{{\text{LiS}}}} } {g{\left( x \right)}dx} } + {\left( {\beta - x_{{{\text{LiS}}}} } \right)}g{\left( {x_{{{\text{LiS}}}} } \right)}} \right]}}} {{RT}}} \right)}{\text{.}} $$
(156)

In dimensionless form,

$$ I_{0} = {\left( {1 - x_{{{\text{LiS}}}} } \right)}^{{1 - \beta }} x^{\beta }_{{{\text{LiS}}}} \Gamma {\left( {x_{{{\text{LiS}}}} } \right)}{\text{.}} $$
(157)

where

$$ I_{0} = \frac{{i_{0} }} {{Fk^{{1 - \beta }}_{{\text{b}}} k^{\beta }_{{\text{f}}} f^{{1 - \beta }}_{{{\text{Li}}^{ + } ,n}} c^{{1 - \beta }}_{{{\text{Li}}^{ + } }} }}, $$
(158)
$$ \Gamma {\left( {x_{{{\text{LiS}}}} } \right)} = exp{\left[ { - {\int_{{\text{ }}0}^{{\text{ }}x_{{{\text{LiS}}}} } {\overline{g} {\left( x \right)}dx} } - {\left( {\beta - x_{{{\text{LiS}}}} } \right)}\overline{g} {\left( {x_{{{\text{LiS}}}} } \right)}} \right]}{\text{,}} $$
(159)

and

$$ \overline{g} = \frac{{Fg}} {{RT}}. $$
(160)

For potentiostatic lithium extraction and insertion, the galvanostatic boundary condition Eq. (105) is replaced with

$$ {\text{N}}_{{{\text{LiS}}}} - \theta x_{{{\text{LiS}}}} \frac{{d\chi }} {{d\tau }} = \delta {\left( {1 - x_{{{\text{LiS}}}} } \right)}^{{1 - \beta }} x^{\beta }_{{{\text{LiS}}}} \Gamma {\left( {x_{{{\text{LiS}}}} } \right)} \times {\left\{ {\exp {\left[ {{\left( {1 - \beta } \right)}{\rm H}} \right]} - \exp {\left( { - \beta {\rm H}} \right)}} \right\}}\,{\text{at}}\,\xi = 1{\text{,}} $$
(161)

where

$$ {\text{H}} = \frac{{F\eta _{{\text{s}}} }} {{RT}} $$
(162)

and

$$ \delta = \frac{{k^{{1 - \beta }}_{{\text{b}}} f^{{1 - \beta }}_{{{\text{Li}}^{ + } ,n}} c^{{1 - \beta }}_{{{\text{Li}}^{ + } }} k^{\beta }_{{\text{f}}} {\text{R}}_{0} M_{{\text{S}}} }} {{{\text{D}}_{{{\text{LiS,S}}}} \rho ^{0}_{{\text{S}}} }}{\text{.}} $$
(163)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christensen, J., Newman, J. Stress generation and fracture in lithium insertion materials. J Solid State Electrochem 10, 293–319 (2006). https://doi.org/10.1007/s10008-006-0095-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-006-0095-1

Keywords

Navigation