Skip to main content
Log in

Tumorvolumenbestimmung

Anforderungen der Strahlentherapie an die moderne radiologische Bildgebung

Tumor volume determination

Demands of radiotherapy on modern radiological imaging

  • Leitthema
  • Published:
Der Onkologe Aims and scope

Zusammenfassung

Hintergrund

Bei der kurativen Strahlentherapie handelt es sich um ein lokales Therapieverfahren, dessen Ziel die Vernichtung aller vitalen Tumorzellen bei gleichzeitig bestmöglicher Schonung des umliegenden Normalgewebes ist. Nur durch die Eradikation aller rezidivfähiger Tumorstammzellen, einer spezifischen Subpopulation innerhalb eines Tumors, kann eine dauerhafte lokale Tumorkontrolle erreicht werden.

Ergebnisse

Für eine präzise Zielvolumenbestimmung sind hochauflösende Bildgebungsmethoden von essenzieller Bedeutung. Nur durch die korrekte Einbeziehung aller Tumoranteile kann eine dauerhafte lokale Tumorkontrolle erzielt werden. Aktuelle Entwicklungen im Bereich des Bio-Imagings eröffnen neue Perspektiven innerhalb der Strahlentherapie durch die Verknüpfung anatomischer Informationen mit zusätzlichen biologischen Eigenschaften des Tumors.

Schlussfolgerung

Der Einsatz dieser modernen Bildgebungsverfahren zur genaueren Festlegung der Bestrahlungsvolumina bildet somit die Grundlage für die Anwendung moderner Bestrahlungstechniken in der Radioonkologie.

Abstract

Background

The aim of radiotherapy as a local treatment method is the eradication of all vital tumor cells in order to achieve permanent local tumor control. From a clinical point of view this means that a patient suffering from cancer can only be cured if all cancer stem cells as a specific subpopulation within a tumor are eliminated by the treatment.

Results

New radiation techniques often employ lower normal tissue doses with less toxicity and/or the possibility to apply higher radiation doses to the target volume. High-resolution imaging is hereby mandatory for precise tumor volume definition as a basis of local tumor control. New developments in the field of bioimaging lead to further perspectives in radiotherapy.

Conclusion

By combining anatomical information with biological characteristics of the tumor, additional benefits for treatment planning and outcome can be achieved. Thus, the use of these modern imaging methods to define irradiation target volumes more clearly forms the basis for the application of modern radiation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Abramyuk A, Appold S, Zophel K et al (2013) Modification of staging and treatment of head and neck cancer by FDG-PET/CT prior to radiotherapy. Strahlenther Onkol 189:197–201

    Article  CAS  PubMed  Google Scholar 

  2. Baumann M, Dubois W, Suit HD (1990) Response of human squamous cell carcinoma xenografts of different sizes to irradiation: relationship of clonogenic cells, cellular radiation sensitivity in vivo, and tumor rescuing units. Radiat Res 123:325–330

    Article  CAS  PubMed  Google Scholar 

  3. Baumann M, Krause M, Hill R (2008) Exploring the role of cancer stem cells in radioresistance. Nature reviews. Cancer 8:545–554

    CAS  PubMed  Google Scholar 

  4. Baumann M, Krause M, Thames H et al (2009) Cancer stem cells and radiotherapy. Int J Radiat Biol 85:391–402

    Article  CAS  PubMed  Google Scholar 

  5. Brunner TB, Kunz-Schughart LA, Grosse-Gehling P et al (2012) Cancer stem cells as a predictive factor in radiotherapy. Semin Radiat Oncol 22:151–174

    Article  PubMed  Google Scholar 

  6. Bütof R, Dubrovska A, Baumann M (2013) Clinical perspectives of cancer stem cell research in radiation oncology. Radiother Oncol 108:388–396

    Article  PubMed  Google Scholar 

  7. Castaldi P, Rufini V, Bussu F et al (2012) Can „early“ and „late“18F-FDG PET-CT be used as prognostic factors for the clinical outcome of patients with locally advanced head and neck cancer treated with radio-chemotherapy? Radiother Oncol 103:63–68

    Article  PubMed  Google Scholar 

  8. Clarke MF, Dick JE, Dirks PB et al (2006) Cancer stem cells – perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 66:9339–9344

    Article  CAS  PubMed  Google Scholar 

  9. Dingli D, Michor F (2006) Successful therapy must eradicate cancer stem cells. Stem Cells 24:2603–2610

    Article  CAS  PubMed  Google Scholar 

  10. Hentschel M, Appold S, Schreiber A et al (2011) Early FDG PET at 10 or 20 Gy under chemoradiotherapy is prognostic for locoregional control and overall survival in patients with head and neck cancer. Eur J Nucl Med Mol Imaging 38:1203–1211

    Article  PubMed  Google Scholar 

  11. Horne ZD, Clump DA, Vargo JA et al (2014) Pretreatment SUVmax predicts progression-free survival in early-stage non-small cell lung cancer treated with stereotactic body radiation therapy. Radiat Oncol 9:41

    Article  PubMed Central  PubMed  Google Scholar 

  12. Kim G, Kim YS, Han EJ et al (2011) FDG-PET/CT as prognostic factor and surveillance tool for postoperative radiation recurrence in locally advanced head and neck cancer. Radiat Oncol J 29:243–251

    Article  PubMed Central  PubMed  Google Scholar 

  13. Koch U, Krause M, Baumann M (2010) Cancer stem cells at the crossroads of current cancer therapy failures – radiation oncology perspective. Semin Cancer Biol 20:116–124

    Article  PubMed  Google Scholar 

  14. Krause M, Yaromina A, Eicheler W et al (2011) Cancer stem cells: targets and potential biomarkers for radiotherapy. Clin Cancer Res 17:7224–7229

    Article  CAS  PubMed  Google Scholar 

  15. Lee IH, Piert M, Gomez-Hassan D et al (2009) Association of 11C-methionine PET uptake with site of failure after concurrent temozolomide and radiation for primary glioblastoma multiforme. Int J Radiat Oncol Biol Phys 73:479–485

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Mak D, Corry J, Lau E et al (2011) Role of FDG-PET/CT in staging and follow-up of head and neck squamous cell carcinoma. Q J Nucl Med Mol Imaging 55:487–499

    CAS  PubMed  Google Scholar 

  17. Matsuo M, Miwa K, Tanaka O et al (2012) Impact of [11C]methionine positron emission tomography for target definition of glioblastoma multiforme in radiation therapy planning. Int J Radiat Oncol Biol Phys 82:83–89

    Article  PubMed  Google Scholar 

  18. Munro TR, Gilbert CW (1961) The relation between tumour lethal doses and the radiosensitivity of tumour cells. Br J Radiol 34:246–251

    Article  CAS  PubMed  Google Scholar 

  19. Nawara C, Rendl G, Wurstbauer K et al (2012) The impact of PET and PET/CT on treatment planning and prognosis of patients with NSCLC treated with radiation therapy. Q J Nucl Med Mol Imaging 56:191–201

    CAS  PubMed  Google Scholar 

  20. Petersen C, Baumann M, Dubben HH et al (1998) Linear-quadratic analysis of tumour response to fractionated radiotherapy: a study on human squamous cell carcinoma xenografts. Int J Radiat Biol 73:197–205

    Article  CAS  PubMed  Google Scholar 

  21. Shirai K, Nakagawa A, Abe T et al (2012) Use of FDG-PET in radiation treatment planning for thoracic cancers. Int J Mol Imaging 2012:609545

    Article  PubMed Central  PubMed  Google Scholar 

  22. Soliman M, Yaromina A, Appold S et al (2013) GTV differentially impacts locoregional control of non-small cell lung cancer (NSCLC) after different fractionation schedules: subgroup analysis of the prospective randomized CHARTWEL trial. Radiother Oncol 106:299–304

    Article  PubMed  Google Scholar 

  23. Yaromina A, Krause M, Thames H et al (2007) Pre-treatment number of clonogenic cells and their radiosensitivity are major determinants of local tumour control after fractionated irradiation. Radiother Oncol 83:304–310

    Article  CAS  PubMed  Google Scholar 

  24. Yaromina A, Thames H, Zhou X et al (2010) Radiobiological hypoxia, histological parameters of tumour microenvironment and local tumour control after fractionated irradiation. Radiother Oncol 96:116–122

    Article  PubMed  Google Scholar 

  25. Zips D, Zophel K, Abolmaali N et al (2012) Exploratory prospective trial of hypoxia-specific PET imaging during radiochemotherapy in patients with locally advanced head-and-neck cancer. Radiother Oncol 105:21–28

    Article  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. R. Bütof und M. Krause geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Krause.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bütof, R., Krause, M. Tumorvolumenbestimmung. Onkologe 21, 382–387 (2015). https://doi.org/10.1007/s00761-014-2813-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-014-2813-0

Schlüsselwörter

Keywords

Navigation