Skip to main content
Log in

FMR and TEM Studies of Co and Ni Nanoparticles Implanted in the SiO2 Matrix

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Fused silica plates have been implanted with 40 keV Co+ or Ni+ ions to high doses in the range of (0.25–1.0) × 1017 ions/cm2, and magnetic properties of the implanted samples have been studied with ferromagnetic resonance (FMR) technique supplemented by transmission electron microscopy, electron diffraction and energy dispersive X-ray spectroscopy. The high-dose implantation with 3d-ions results in the formation of cobalt and nickel metal nanoparticles in the irradiated subsurface layer of the SiO2 matrix. Co and Ni nanocrystals with hexagonal close packing and face-centered cubic structures have a spherical shape and the sizes of 4–5 nm (for cobalt) and 6–14 nm (for nickel) in diameter. Room-temperature FMR signals from ensembles of Co and Ni nanoparticles implanted in the SiO2 matrix exhibit an out-of-plane uniaxial magnetic anisotropy that is typical for thin magnetic films. The dose and temperature dependences of FMR spectra have been analyzed using the Kittel formalism, and the effective magnetization and g-factor values have been obtained for Co- and Ni-implanted samples. Nonsymmetric FMR line shapes have been fitted by a sum of two symmetrical curves. The dependences of the magnetic parameters of each curve on the implantation dose and temperature are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. X. Batlle, A. Labarta, J. Phys. D: Appl. Phys. 35, R15 (2002)

    Article  ADS  Google Scholar 

  2. S. Bedanta, W. Kleemann, J. Phys. D: Appl. Phys. 42, 013001 (2009)

    Article  ADS  Google Scholar 

  3. A. Meldrum, R.F. Haglund, L.A. Boatner, C.W. White, Adv. Mater. 13, 1431 (2001)

    Article  Google Scholar 

  4. F. Gonella, Rev. Adv. Mater. Sci 14, 134 (2007)

    Google Scholar 

  5. R.I. Khaibullin, B.Z. Rameev, C. Okay, A.L. Stepanov, V.A. Zhikharev, I.B. Khaibullin, L.R. Tagirov, B. Aktas, in Nanostructured Magnetic Materials and Their Applications, eds. by B. Aktas, L. Tagirov, F. Mikailov, NATO science series: II. Math. Phys. Chem., vol. 143, pp. 33–54 (Acad. Publishers, Kluwer, 2004)

  6. A.L. Stepanov, in High-power and Femtosecond Lasers, eds. by P.H. Barret, M. Palmer, pp. 27–70 (Nova Science Publications, New York, 2009)

  7. A.L. Stepanov, in Silver Nanoparticles, ed. by D.P. Perez, pp. 93–119 (In-tech, Vukovar, 2010)

  8. H. Inouye, K. Tanaka, I. Tanahashi, Y. Kondo, K. Hirao, Jpn. J. Appl. Phys. 39, 5132 (2000)

    Article  ADS  Google Scholar 

  9. R.A. Ganeev, J. Opt. A: Pure Appl. Opt. 7, 717 (2005)

    Article  ADS  Google Scholar 

  10. R.I. Khaibullin, L.R. Tagirov, B.Z. Rameev, Sh.Z. Ibragimov, F. Yildiz, B. Aktas, J. Phys. Condens. Matter 16, L443 (2004)

    Article  ADS  Google Scholar 

  11. I.S. Edel’man, O.V. Vorotinova, V.A. Seredkin, V.N. Zabluda, R.D. Ivancov, Yu.I. Gatiyatova, V.F. Valeev, R.I. Khaibullin, A.L. Stepanov, Phys. Solid State 50, 2088 (2008)

    Article  ADS  Google Scholar 

  12. O.A. Aktsipetrov, E.M. Kim, R.V. Kapra, T.V. Murzina, A.F. Kravets, M. Inoue, S.V. Kuznetsova, M.V. Ivanchenko, V.G. Lifshits, Phys. Rev. B 73, 140404 (2006)

    Article  ADS  Google Scholar 

  13. E. Cattaruzza, F. Gonella, G. Mattei, P. Mazzoldi, D. Gatteschi, C. Sangregorio, M. Falconieri, G. Salvetti, G. Battaglin, Appl. Phys. Lett. 73, 1176 (1998)

    Article  ADS  Google Scholar 

  14. B.Z. Rameev, F. Yildiz, B. Aktas, C. Okay, R.I. Khaibullin, E.P. Zheglov, J.C. Pivin, L.R. Tagirov, Microelectron. Eng. 69, 330 (2003)

    Article  Google Scholar 

  15. B. Rameev, C. Okay, F. Yildiz, R.I. Khaibullin, V.N. Popok, B. Aktas, J. Magn. Magn. Mater. 278, 164 (2004)

    Article  ADS  Google Scholar 

  16. C. Okay, B.Z. Rameev, R.I. Khaibullin, M. Okutan, F. Yildiz, V.N. Popok, B. Aktas, Phys. Stat. Sol. A 203, 1525 (2006)

    Article  ADS  Google Scholar 

  17. F. Yildiz, H.J. Lee, Y.H. Jeong, S. Kazan, B. Aktas, J.H. Song, J. Korean Phys. Soc. 53, 3699 (2008)

    Article  ADS  Google Scholar 

  18. U. Netzelman, J. Appl. Phys. 68, 1800 (1990)

    Article  ADS  Google Scholar 

  19. M. Rubinstein, B.N. Das, N.C. Koon, D.B. Chrisey, J. Horwitz, Phys. Rev. B 50, 184 (1994)

    Article  ADS  Google Scholar 

  20. Y.W. Yu, J.W. Harrell, W.D. Doyle, J. Appl. Phys. 75, 5550 (1994)

    Article  ADS  Google Scholar 

  21. K.S. Buchanan, A. Krichevsky, M.R. Freeman, A. Meldrum, Phys. Rev. B 70, 174436 (2004)

    Article  ADS  Google Scholar 

  22. S. Tomita, M. Hagiwara, T. Kashiwagi, C. Tsuruta, Y. Matsui, M. Fujii, S. Hayashi, J. Appl. Phys. 95, 8194 (2004)

    Article  ADS  Google Scholar 

  23. S.P. Gubin, Yu.I. Spichkin, Yu.A. Koksharov, G.Yu. Yurkov, A.V. Kozinkin, T.I. Nedoseikina, M.S. Korobov, A.M. Tishin, J. Magn. Magn. Mater. 265, 234 (2003)

    Article  ADS  Google Scholar 

  24. R.B. Morgunov, A.I. Dmitriev, G.I. Dzhardimalieva, A.D. Pomogalo, A.S. Rozenberg, Y. Tanimoto, M. Leonowicz, E. Sowka, Phys. Solid State 49, 1436 (2007)

    Google Scholar 

  25. I.-W. Park, M. Yoon, Y.M. Kim, Y. Kim, J.H. Kim, S. Kim, V. Volkov, J. Appl. Phys. 272–276, 1413 (2004)

    Google Scholar 

  26. J. Gómez, A. Butera, Physica B 354, 145 (2004)

    Article  ADS  Google Scholar 

  27. J. Gómez, A. Butera, J.A. Arnard, Phys. Rev. B 70, 054428 (2004)

    Article  ADS  Google Scholar 

  28. M.J.M. Pires, J.C. Denardin, E.C. da Silva, M. Knobel, J. Appl. Phys. 99, 063908 (2006)

    Article  ADS  Google Scholar 

  29. J. Dubowik, Phys. Rev. B 54, 1088 (1996)

    Article  ADS  Google Scholar 

  30. J. Dubowik, Phys. Rev. B 62, 727 (2000)

    Article  ADS  Google Scholar 

  31. G.N. Kakazei, A.F. Kravets, N.A. Lesnik, M.M. Pereira de Azevedo, G. Yu, J. Pogorelova, B. Sousa, J. Appl. Phys. 85, 5654 (1999)

    Article  ADS  Google Scholar 

  32. V.A. Ignatchenko, I.S. Edelman, D.A. Petrov, Phys. Rev. B 81, 054419 (2010)

    Article  ADS  Google Scholar 

  33. B.R. Pujada, E.H.C.P. Sinnecker, A.M. Rossi, A.P. Guimarães, Phys. Rev. B 64, 184419 (2001)

    Article  ADS  Google Scholar 

  34. N.A. Lesnik, R. Gontarz, G.N. Kakazei, A.F. Kravets, P.E. Wigen, J. Dubowik, Phys. Stat. Sol. A 196, 157 (2003)

    Article  ADS  Google Scholar 

  35. G.N. Kakazei, Yu.G. Pogorelova, M.D. Costa, V.O. Golub, J.B. Sousa, P.P. Freitas, S. Cardoso, P.E. Wigen, J. Appl. Phys. 97, 10723 (2005)

    Article  Google Scholar 

  36. D.S. Schmool, R. Rocha, J.B. Sousa, J.A.M. Santos, G. Kakazei, J. Magn. Magn. Mater. 300, 331 (2006)

    Article  ADS  Google Scholar 

  37. V.F. Meshcheryakov, Y.K. Fetisov, A.A. Stashkevich, G. Viau, J. Appl. Phys. 104, 063910 (2008)

    Article  ADS  Google Scholar 

  38. N. Guskos, J. Typek, M. Maryniak, Phys. Stat. Sol. B 244, 859 (2007)

    Article  ADS  Google Scholar 

  39. S. Tomita, K. Akamatsu, H. Shinkai, S. Ikeda, H. Nawafune, C. Mitsumata, T. Kashiwagi, M. Hagiwara, Phys. Rev. B 71, 180414 (2005)

    Article  ADS  Google Scholar 

  40. S.A. Haque, A. Matsuo, Y. Yamamoto, H. Hori, J. Magn. Magn. Mater. 247, 117 (2002)

    Article  ADS  Google Scholar 

  41. A.L. Stepanov, R.I. Khaibullin, B.Z. Rameev, A. Reinholdt, U. Kreibig, Tech. Phys. Lett. 30, 151 (2004)

    Article  ADS  Google Scholar 

  42. C.D. Orleans, C. Cerruti, C. Estournes, J.J. Grob, J.L. Guille, F. Haas, D. Muller, M. Richard-Plouet, J.P. Stoquert, Nucl. Instrum. Meth. Phys. Res. B 209, 316 (2003)

    Article  ADS  Google Scholar 

  43. S. Zhu, L.M. Wang, X.T. Zu, X. Xiang, Appl. Phys. Lett. 88, 043107 (2006)

    Article  ADS  Google Scholar 

  44. A. Butera, J.N. Zhou, J.A. Barnard, Phys. Rev. B 60, 12270 (1999)

    Article  ADS  Google Scholar 

  45. Ch. Kittel, Introduction to Solid State Physics, (Wiley, New York, 1967). Translated into Russian Nauka, Moscow, 1978, p. 618

  46. L.M.Z. Billas, A. Chatelain, W.A. de Heer, Surf. Rev. Lett. 3, 429 (1996)

    Article  Google Scholar 

  47. O. Kitakami, H. Sato, Y. Shimada, F. Sato, M. Tanaka, Phys. Rev. B 56, 13849 (1997)

    Article  ADS  Google Scholar 

  48. S.P. Gubin, A.Yu. Koksharov, Neorg. Mater. 38, 1287 (2002)

    Article  Google Scholar 

  49. S.V. Komogortsev, R.S. Iskhakov, Ch.N. Barnakov, N.A. Momot, V.K. Maltsev, A.P. Kozlov, Phys. Metal. Metallogr. 109, 130 (2010)

    Article  ADS  Google Scholar 

  50. H.P. Myers, W. Sucksmith, Proc. R. Soc. London. Ser. A: Math. Phys. Sci. 207, 427 (1951)

  51. P. Weiss, R. Forrer, Ann. Phys.

Download references

Acknowledgments

The work was supported in part by the Russian Foundation for Basic Research, grant no. 11-02-00972-а, Ministry of Education and Science of the Russian Federation, Federal Target Program “Scientific and scientific-pedagogical personnel of innovative Russia”, contract no. 02.740.11.0797, and State Program “Development of the Scientific Potential of the Higher Education School”, project no. 2.1.1/6038. S.M. Zharkov acknowledges the financial support of the Russian government contract no. 02.740.11.0568. The electron microscopy investigations were carried out at the Joint Center of the Siberian Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. I. Khaibullin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edelman, I.S., Petrakovskaja, E.A., Petrov, D.A. et al. FMR and TEM Studies of Co and Ni Nanoparticles Implanted in the SiO2 Matrix. Appl Magn Reson 40, 363–375 (2011). https://doi.org/10.1007/s00723-011-0218-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-011-0218-4

Keywords

Navigation