Skip to main content
Log in

Magnetic Resonance Study of Detonation Nanodiamonds with Surface Chemically Modified by Transition Metal Ions

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

We report on electron magnetic resonance (EMR) and nuclear magnetic resonance (NMR) study of detonation nanodiamonds (DND) with the surface modified by copper and cobalt ions. The EMR spectrum of the pure DND sample shows an intense singlet originating from broken carbon bonds, while the spectra of copper- and cobalt-modified samples reveal additional signals with g > 2 and pronounced hyperfine structure (for copper). Increase in the Cu/Co concentration causes an increase of the corresponding EMR signals and broadening of the intense carbon-inherited singlet line. Subsequent annealing of the copper-modified samples in a hydrogen gas stream at 550 and 900°C causes narrowing of the singlet line and reduction of the Cu2+-related components. Applying the same annealing process to the cobalt-modified samples leads to broadening of the singlet line, reduction of Co2+ component and appearance of new intense low-field signals. NMR data correlate well with the EMR findings and yield information on interactions and locations of transition metal ions. 13C nuclear spin–lattice relaxation rate R 1 in pure DND is driven by the interaction of nuclear spins with unpaired electron spins of broken bonds. Chemical modification of the DND surface by Cu and Co causes an increase in the relaxation rate, revealing appearance of paramagnetic Cu2+ and Co2+ complexes at the DND surface and their interaction with the carbon nuclear spins, both directly and via a coupling of Cu2+ and Co2+ electrons with those of the broken bonds. The aforementioned annealing of the Cu- and Co-DND results in an inverse process, i.e., a reduction of the relaxation rate, indicating that these complexes are destroyed and metal ions presumably join each other forming copper and cobalt nanoclusters. In the case of Co the nanoclusters are ferromagnetic, which results in the noticeable broadening of the 13C NMR lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. O. Shenderova, D. Gruen (eds.), Ultrananocrystalline Diamond: Synthesis, Properties and Applications (William-Andrew Publishing, New York, 2006)

  2. O.A. Shenderova, V.V. Zhirnov, D.W. Brenner, Crit. Rev. Solid. State. Mater. Sci. 27, 227–356 (2002)

    Article  ADS  Google Scholar 

  3. Y. Hu, O.A. Shenderova, Z. Hu, C.W. Padgett, D.W. Brenner, Rep. Prog. Phys. 69, 1847–1895 (2006)

    Article  ADS  Google Scholar 

  4. J.Y. Raty, G. Galli, Nat. Mater. 2, 792–795 (2003)

    Article  ADS  Google Scholar 

  5. J.Y. Raty, G. Galli, C. Bostedt, T.W. van Buuren, L.J. Terminello, Phys. Rev. Lett. 90, 037401 (2003)

    Article  ADS  Google Scholar 

  6. A. Barnard, in Synthesis, Properties and Applications of Ultrananocrystalline Diamond, NATO Science Series II, vol. 192, ed. by D.M. Gruen, O.A. Shenderova, A.Ya. Vul’ (Springer, The Netherlands, 2005), pp. 25–38

  7. A.I. Shames, A.M. Panich, W. Kempiński, A.E. Alexenskii, M.V. Baidakova, A.T. Dideikin, V.Yu. Osipov, V.I. Siklitski, E. Osawa, M. Ozawa, A.Ya. Vul’, J. Phys. Chem. Solids 63, 1993–2001 (2002)

    Article  ADS  Google Scholar 

  8. A.M. Panich, A.I. Shames, H.-M. Vieth, E. Ōsawa, M. Takahashi, A.Ya. Vul’, Eur. Phys. J. B 52, 397–402 (2006)

    Article  ADS  Google Scholar 

  9. A.M. Panich, Diam. Relat. Mater. 16, 2044–2049 (2007)

    Article  Google Scholar 

  10. X.Q. Shi, X.H. Jiang, L.D. Lu, X.J. Yang, X. Wang, Mater. Lett. 62, 1238–1240 (2008)

    Article  Google Scholar 

  11. V.Yu. Osipov, T. Enoki, K. Takai, K. Takahara, M. Endo, T. Hayashi, Y. Hishiyama, Y. Kaburagi, A.Ya. Vul’, Carbon 44, 1225–1234 (2006)

    Article  Google Scholar 

  12. V.Yu. Osipov, A.I. Shames, T. Enoki, K. Takai, M.V. Baidakova, A.Ya. Vul’, Diam. Relat. Mater. 16, 2035–2038 (2007)

    Article  Google Scholar 

  13. A.E. Aleksenskii, M.A. Yagovkina, A.Ya. Vul’, Phys. Solid State 46, 685–686 (2004). Translated from Fizika Tverdogo Tela 46, 668–669 (2004)

    Google Scholar 

  14. M. Baidakova, A. Vul, J. Phys. D: Appl. Phys. 40, 6300–6311 (2007)

    Article  ADS  Google Scholar 

  15. A. Krueger, M. Ozawa, G. Jarre, Yu. Liang, J. Stegk, L. Lu, Phys. Stat. Sol. (a) 204, 2881–2887 (2007)

    Article  Google Scholar 

  16. E. Fukushima, S.B.W. Roeder, Experimental Pulse NMR: A Nuts and Bolts Approach (Addison-Wesley, Reading, MA, 1981)

    Google Scholar 

  17. A.I. Shames, A.M. Panich, W. Kempiński, M.V. Baidakova, V.Yu. Osipov, T. Enoki, A.Ya. Vul’ in Magnetic Resonance Study of Nanodiamonds. NATO Science Series II, vol. 192, ed. by D.M. Gruen, O.A. Shenderova, A.Ya. Vul’ (Springer, The Netherlands, 2005), pp. 271–282

  18. T.M. Duncan, J. Phys. Chem. Ref. Data 16, 125–151 (1987)

    MathSciNet  ADS  Google Scholar 

  19. M.J. Duijvestijn, C. van der Lugt, J. Smidt, R.A. Wind, K.W. Zilm, D.C. Staplin, Chem. Phys. Lett. 102, 25–28 (1983)

    Article  ADS  Google Scholar 

  20. H.L. Retcofsky, R.A. Friedel, J. Phys. Chem. 77, 68–71 (1973)

    Article  Google Scholar 

  21. W. Blumberg, Phys. Rev. 119, 79–84 (1960)

    Article  ADS  Google Scholar 

  22. G.B. Furman, E.M. Kunoff, S.D. Goren, V. Pasquier, D. Tinet, Phys. Rev B 52, 10182–10187 (1996)

    Article  ADS  Google Scholar 

  23. G.B. Furman, A.M. Panich, A. Yochelis, E.M. Kunoff, S.D. Goren, Phys. Rev. B 55, 439–444 (1997)

    Article  ADS  Google Scholar 

  24. G.R. Khutsishvili, Sov. Phys. Uspekhi 8, 743 (1966) [Usp. Fiz. Nauk 87, 211–254 (1965)]

    Google Scholar 

  25. D. Tse, I. Lowe, J. Phys. Rev. 166, 292–302 (1968)

    Article  ADS  Google Scholar 

Download references

Acknowledgment

The authors thank New Energy Development Organization of Japan (NEDO, 305 grant # 04IT4) as well as Israeli Ministry of Science, Culture and Sport and Russian Foundation for Basic Research (MOST-RFBR grant # 3-5708; RFBR 09-02-92477-MNKS a) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Shames.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panich, A.M., Shames, A.I., Medvedev, O. et al. Magnetic Resonance Study of Detonation Nanodiamonds with Surface Chemically Modified by Transition Metal Ions. Appl Magn Reson 36, 317–329 (2009). https://doi.org/10.1007/s00723-009-0028-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-009-0028-0

Keywords

Navigation