Innovation and Employment: Evidence from Italian Microdata

Mariacristina Piva and Marco Vivarelli Università Cattolica S.Cuore - Piacenza

Technology and employment: theory

- At the macroeconomic level, concern about **negative employment impact of technology** is not new (Hobsbawm, 1968).
- The fear comes especially from the **labour-saving** effect of **process innovation** (Ricardo, 1951).
- Some "compensation mechanisms" can counterbalance the employment negative impact of technology (Marx, 1961; Vivarelli, 1995).

Technology and employment: empirical evidence (1)

- Empirical literature is developed at **three levels** depending on the **disaggregation of data** (macroeconomic, sectoral and firm level analysis) and using **different proxies** for **technology**.
- Focusing on **firm level analysis**, empirical evidence **cannot capture all** the sectoral and macroeconomic **effects of innovation** (*business stealing*), but fully captures the **direct** labour-saving effect of innovation.

Technology and employment: empirical evidence (2)

- **Previous empirical evidence** at the **firm level** shows a generalised **positive impact** of technology on employment both in *cross-section and panel data* analysis in Germany (Entorf-Pohlmeier, 1990; Smolny, 1998), UK (Blanchflower *et al.* 1991; Van Reenen, 1997), France (Greenan-Guellec, 1996), US (Doms *et al.*, 1997), Australia (Blanchflower-Burgess, 1998).
- **Negative** employment **impact** of technology just in the Netherlands (Brouwer *et al.*, 1993) and Norway (Klette-Førre, 1998).

Microeconometric analysis on Italian firm level data

- The aim of this analysis is to assess the microeconometric employment impact of innovation in Italy mainly characterised by capital-embodied intermediate technologies.
- Firm level data come from **Mediocredito Centrale**. A **balanced panel** dataset of **575 manufacturing firms** (with no less than 11 employees) covering the **1992-1997** period has been used.

The model (1)

• Starting from a **perfectly competitive firm** maximising profits under a **CES function**:

$$Y = A[(\alpha L)^{\rho} + (\beta K)^{\rho}]^{1/\rho}$$

 The stochastic version of labour demand augmented by innovation (inn) can be derived for a panel of firms (i) over time (t):

$$l_{i,t} = \beta_{i} y_{i,t} + \beta_{2} w_{i,t} + \beta_{3} inn_{i,t} + (\varepsilon_{i} + v_{i,t})$$

where i = 1, ..., n and t = 1, ..., T.

The model (2)

• In order to introduce dynamic regressors (employment and innovation) and to avoid biased and inconsistent estimators, the first difference specification is adopted:

$$\Delta l_{i,t} = \alpha \Delta l_{i,t-1} + \beta_1 \Delta y_{i,t} + \beta_2 \Delta w_{i,t} + \beta_{3,1} \Delta inn_{i,t} + \beta_{3,2} \Delta inn_{i,t-1} + \Delta v_{i,t}$$

- l = number of employees
- y = sales
- w = average wage per employee
- *inn* = value of innovative investments (peculiarities of Italian manufacturing)
- v = usual error term

Estimation method

- In order to overcome common problems concerning the **endogeneity of the lagged depend variable** (correlation $\Delta l_{i,t-1}$ and $\Delta v_{i,t}$) and **other potentially endogenous** variables, it is necessary to rely on **instrumental** variables **techniques**: *GMM-DIF* and *GMM-SYS* (Arellano-Bond, 1991; Blundell-Bond, 1998).
- **GMM-SYS estimate** turns out to be the most **efficient** due to:
- 1) persistence of the dependent variable
- 2) $(\sigma_{\nu})^2/(\sigma_{\nu})^2$ large in short panels
- 3) Differenced Sargan test

Table 1: Descriptive statistics: 575 Italian manufacturing firms (1992-1997)

	All firms		Innovators		Occasional innovators		Non innovators	
	Mean	S.D.	Mean	S.D.	Mean	S.D.	Mean	S.D.
Output	96196	339341	86381	144344	124147	528650	34010	60875
Average output growth (1992-1997)	5.12%	10.21	4.54%	8.23	6.42%	12.87	3.12%	8.35
Employment	271	550	291	567	270	567	132	254
Average employment growth (1992-1997)	2.34%	8.62	2.25%	8.54	2.67%	9.44	1.41%	3.89
Real wage	54.13	18.74	55.22	19.32	53.42	18.65	49.47	13.47
Innovative investments	2351	7755	2989	6628	1892	9762	0	0
Number of firms	575		318		212		45	
Observations	34	-50	19	08	12	72	27	0

Table 2: Dependent variable: **employment**

	(1)	(2)	(3)
	OLS	WITHIN	GMM-SYS
Employment (-1)	0.93***	0.52***	0.86***
	(0.005)	(0.016)	(0.040)
Sales	0.06***	0.14***	0.13***
	(0.004)	(0.009)	(0.031)
Wages	-0.12***	-0.35***	-0.20***
	(0.009)	(0.016)	(0.034)
Innovative investments	0.007***	0.004***	0.005**
	(0.001)	(0.001	(0.002)
Innovative investments (-1)	-0.003**	-0.002*	-0.003
	(0.001)	(0.001)	(0.002)
Constant	0.11*** (0.035)		0.13 (0.147)
Time dummies	Yes	Yes	Yes
AR (1)			-5.76***
AR(2)			0.28
Sargan test			53.28
Observations	2875	2875	2875

Notes:

In brackets: White robust standard errors;*=10% significant, **=5% significant, ***= 1% significant. In column (3) lagged employment and sales are considered as endogenous, innovative investments as predetermined, and wages as exogenous.

AR(1) and AR(2) are tests - with distribution N(0,1) - on the serial correlation of residuals. The Sargan-test has a $\chi^2(43)$ distribution under the null of validity of the instruments. Overall long-run employment-innovation elasticity turns out to be 0.0143.

Table 3: robustness checks; dependent variable: employment

	(1) GMM-SYS	(2) GMM-SYS	(3) GMM-SYS	(4) GMM-SYS
Employment (-1)	0.87*** (0.037)	0.86*** (0.037)	0.86*** (0.039)	0.85*** (0.043)
Sales	0.11** (0.027)	0.12** (0.029)	0.12*** (0.030)	0.13*** (0.032)
Wages	-0.20*** (0.034)	-0.20*** (0.034)	-0.20*** (0.033)	-0.21*** (0.042)
Innovative investments	0.005* (0.002)	0.005* (0.002)	0.005** (0.002)	0.005** (0.002)
Innovative investments (-1)	-0.003 (0.002)	-0.003 (0.002)	-0.003 (0.002)	-0.003 (0.002)
Constant	0.16 (0.159)	0.14 (0.168)	0.19 (0.15)	0.16 (0.166)
Sectoral dummies (13 ATECO sectors)	Yes			
Sectoral dummies (21 ATECO sectors)		Yes		
Area dummies (4 macro-regions)			Yes	
Size dummies (5 classes)				Yes
Time dummies	Yes	Yes	Yes	Yes
AR(1)	-5.67***	-5.70***	-5.75***	-5.91***
AR(2)	0.32	0.32	0.29	0.25
Sargan test	54.59	55.23	55.89*	54.55
Observations	2875	2875	2875	2875

Conclusions

- Using a panal dataset of 575 Italian manufacturing firms, the microeconometric analysis shows a **significant**, **although small in size**, **positive** relationship between innovation measured through **innovative investments and employment**.
- Innovative investments are not just a proxy of process innovation, but rather a **mark of innovativeness** (complementarity between process and product innovations).
- The job-creating impact of innovation proves **robust** after checking for time, industry, size of firm and geographical fixed effects.
- Results are **consistent with previous studies**, but **cannot** be easily **generalised**.