Skip to main content
Log in

Dynamic stability of fluid-conveying thin-walled rotating pipes reinforced with functionally graded carbon nanotubes

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this study, vibration and dynamic stability of fluid-conveying thin-walled rotating pipes reinforced with functionally graded carbon nanotubes are studied. The pipe is modeled based on thin-walled Timoshenko beam theory and reinforced by single-walled carbon nanotubes with uniform distribution as well as three types of functionally graded distribution patterns. The governing equations of motion and the associated boundary conditions are derived via Hamilton’s principle. The governing equations of motion are discretized via the Galerkin method, and the eigenfrequency and the stability region of the pipe are found using the eigenvalue analysis. Some numerical examples are presented to study the effects of length–radius ratio, carbon nanotubes distribution, volume fraction of carbon nanotubes, rotational speed and mass ratio on the non-dimensional eigenfrequency and critical flutter velocity of the thin-walled rotating pipe conveying fluid. The results show that the carbon nanotubes distribution has a significant effect on the non-dimensional eigenfrequency and critical flutter velocity. Also, it is found that the rotational speed has a stabilizing effect on the dynamic behavior of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bekyarova, E., Thostenson, E.T., Yu, A., Kim, H., Gao, J., Tang, J., Hahn, H.T., Chou, T.W., Itkis, M.E., Haddon, R.C.: Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites. Langmuir 23(5), 3970–3974 (2007)

    Article  Google Scholar 

  2. Ke, L.L., Yang, J., Kitipornchai, S.: Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams. Compos. Struct. 92(3), 676–683 (2010)

    Article  Google Scholar 

  3. Yas, M.H., Samadi, N.: Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation. Int. J. Press. Vessels Pip. 98, 119–128 (2012)

    Article  Google Scholar 

  4. Yas, M.H., Heshmati, M.: Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load. Appl. Math. Model. 36(4), 1371–1394 (2012)

    Article  MathSciNet  Google Scholar 

  5. Rafiee, M., Yang, J., Kitipornchai, S.: Large amplitude vibration of carbon nanotube reinforced functionally graded composite beams with piezoelectric layers. Compos. Struct. 96, 716–725 (2013)

    Article  Google Scholar 

  6. Lin, F., Xiang, Y.: Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories. Appl. Math. Model. 38(15–16), 3741–3754 (2014)

    Article  MathSciNet  Google Scholar 

  7. Wattanasakulpong, N., Ungbhakorn, V.: Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation. Comput. Mater. Sci. 71, 201–208 (2013)

    Article  Google Scholar 

  8. Fazelzadeh, S.A., Pouresmaeeli, S., Ghavanloo, E.: Aeroelastic characteristics of functionally graded carbon nanotube-reinforced composite plates under a supersonic flow. Comput. Methods Appl. Mech. Eng. 285, 714–729 (2015)

    Article  MathSciNet  Google Scholar 

  9. Asadi, H., Souri, M., Wang, Q.: A numerical study on flow-induced instabilities of supersonic FG-CNT reinforced composite flat panels in thermal environments. Compos. Struct. 171, 113–125 (2017)

    Article  Google Scholar 

  10. Alibeigloo, A., Liew, K.M.: Elasticity solution of free vibration and bending behavior of functionally graded carbon nanotube-reinforced composite beam with thin piezoelectric layers using differential quadrature method. Int. J. Appl. Mech. 07(01), 1550002 (2015)

    Article  Google Scholar 

  11. Mirzaei, M., Kiani, Y.: Nonlinear free vibration of temperature-dependent sandwich beams with carbon nanotube-reinforced face sheets. Acta Mech. 227(5), 1869–1884 (2016)

    Article  MathSciNet  Google Scholar 

  12. Thomas, B., Roy, T.: Vibration analysis of functionally graded carbon nanotube-reinforced composite shell structures. Acta Mech. 227(2), 581–599 (2016)

    Article  MathSciNet  Google Scholar 

  13. Païdoussis, M.P.: Fluid-Structure Interactions: Slender Structures and Axial Flow, vol. 1. Academic Press, New York (1998)

    Google Scholar 

  14. Kuiper, G.L., Metrikine, A.V., Battjes, J.A.: A new time-domain drag description and its influence on the dynamic behaviour of a cantilever pipe conveying fluid. J. Fluids Struct. 23(3), 429–445 (2007)

    Article  Google Scholar 

  15. Ghorbanpour Arani, A., Dashti, P., Amir, S., Yousefi, M.: Nonlinear vibration of coupled nano-and microstructures conveying fluid based on Timoshenko beam model under two-dimensional magnetic field. Acta Mech. 226(8), 2729–2760 (2015)

    Article  MathSciNet  Google Scholar 

  16. Hosseini, M., Bahaadini, R.: Size dependent stability analysis of cantilever micro-pipes conveying fluid based on modified strain gradient theory. Int. J. Eng. Sci. 101, 1–13 (2016)

    Article  Google Scholar 

  17. Ning, W.B., Zhang, J.G., Chen, W.D.: Dynamics and stability of a functionally graded cylindrical thin shell containing swirling annular fluid flow including initial axial loads. Acta Mech. 227(8), 2157–2170 (2016)

    Article  MathSciNet  Google Scholar 

  18. Kjolsing, E.J., Todd, M.D.: Damping of a fluid-conveying pipe surrounded by a viscous annulus fluid. J. Sound Vib. 394, 575–592 (2017)

    Article  Google Scholar 

  19. Wang, B., Deng, Z., Ouyang, H., Wang, Y.: Terahertz wave propagation in a fluid-conveying single-walled carbon nanotube with initial stress subjected to temperature and magnetic fields. Acta Mech. 226(9), 3031–3043 (2015)

    Article  MathSciNet  Google Scholar 

  20. Bahaadini, R., Hosseini, M., Jamalpoor, A.: Nonlocal and surface effects on the flutter instability of cantilevered nanotubes conveying fluid subjected to follower forces. Physica B Condens. Matter 509, 55–61 (2017)

    Article  Google Scholar 

  21. Bahaadini, R., Saidi, A.R., Hosseini, M.: On dynamics of nanotubes conveying nanoflow. Int. J. Eng. Sci. 123, 181–196 (2018)

    Article  MathSciNet  Google Scholar 

  22. Bahaadini, R., Hosseini, M., Jamali, B.: Flutter and divergence instability of supported piezoelectric nanotubes conveying fluid. Physica B Condens. Matter 529, 57–65 (2018)

    Article  Google Scholar 

  23. Hosseini, M., Bahaadini, R., Jamali, B.: Nonlocal instability of cantilever piezoelectric carbon nanotubes by considering surface effects subjected to axial flow. J. Vib. Control 24(9), 1809–1825 (2016)

    Article  MathSciNet  Google Scholar 

  24. Hosseini, M., Maryam, A.Z.B., Bahaadini, R.: Forced vibrations of fluid-conveyed double piezoelectric functionally graded micropipes subjected to moving load. Microfluid. Nanofluid. 21(8), 134 (2017)

    Article  Google Scholar 

  25. Askarian, A.R., Haddadpour, H., Firouz-Abadi, R.D., Abtahi, H.: Nonlinear dynamics of extensible viscoelastic cantilevered pipes conveying pulsatile flow with an end nozzle. Int. J. Non-Linear Mech. 91, 22–35 (2017)

    Article  Google Scholar 

  26. Panussis, D.A., Dimarogonas, A.D.: Linear in-plane and out-of-plane lateral vibrations of a horizontally rotating fluid-tube cantilever. J. Fluids Struct. 14(1), 1–24 (2000)

    Article  Google Scholar 

  27. Yoon, H.I., Son, I.S.: Dynamic response of rotating flexible cantilever pipe conveying fluid with tip mass. Int. J. Mech. Sci. 49(5), 878–887 (2007)

    Article  Google Scholar 

  28. Wang, L., Zhong, Z.: Radial basis collocation method for the dynamics of rotating flexible tube conveying fluid. Int. J. Appl. Mech. 7(03), 1550045 (2015)

    Article  Google Scholar 

  29. Khajehpour, S., Azadi, V.: Vibration suppression of a rotating flexible cantilever pipe conveying fluid using piezoelectric layers. Latin Am. J. Solids Struct. 12(4), 1042–1060 (2015)

    Article  Google Scholar 

  30. Karimi-Nobandegani, A., Fazelzadeh, S.A., Ghavanloo, E.: Effect of uniformly distributed tangential follower force on the stability of rotating cantilever tube conveying fluid. Latin Am. J. Solids Struct. 13(2), 365–377 (2016)

    Article  Google Scholar 

  31. Safarpour, H., Ghadiri, M.: Critical rotational speed, critical velocity of fluid flow and free vibration analysis of a spinning SWCNT conveying viscous fluid. Microfluid. Nanofluid. 21(2), 22 (2017)

    Article  Google Scholar 

  32. Librescu, L., Oh, S.Y., Song, O.: Thin-walled beams made of functionally graded materials and operating in a high temperature environment: vibration and stability. J. Therm. Stresses 28(6–7), 649–712 (2005)

    Article  Google Scholar 

  33. Oh, S.Y., Librescu, L., Song, O.: Vibration and instability of functionally graded circular cylindrical spinning thin-walled beams. J. Sound Vib. 285(4), 1071–1091 (2005)

    Article  Google Scholar 

  34. Fazelzadeh, S.A., Hosseini, M.: Aerothermoelastic behavior of supersonic rotating thin-walled beams made of functionally graded materials. J. Fluids Struct. 23(8), 1251–1264 (2007)

    Article  Google Scholar 

  35. Fazelzadeh, S.A., Malekzadeh, P., Zahedinejad, P., Hosseini, M.: Vibration analysis of functionally graded thin-walled rotating blades under high temperature supersonic flow using the differential quadrature method. J. Sound Vib. 306(1), 333–348 (2007)

    Article  Google Scholar 

  36. Oh, S.Y., Librescu, L., Song, O.: Vibration of turbomachinery rotating blades made-up of functionally graded materials and operating in a high temperature field. Acta Mech. 166(1), 69–87 (2003)

    Article  Google Scholar 

  37. Sina, S.A., Haddadpour, H., Navazi, H.M.: Nonlinear free vibrations of thin-walled beams in torsion. Acta Mech. 223(6), 2135–2151 (2012)

    Article  MathSciNet  Google Scholar 

  38. Li, X., Li, Y.H., Qin, Y.: Free vibration characteristics of a spinning composite thin-walled beam under hygrothermal environment. Int. J. Mech. Sci. 119, 253–265 (2016)

    Article  Google Scholar 

  39. Cihan, M., Eken, S., Kaya, M.O.: Dynamic instability of spinning launch vehicles modeled as thin-walled composite beams. Acta Mech. 228(12), 4353–4367 (2017)

    Article  MathSciNet  Google Scholar 

  40. Hosseini, M., Fazelzadeh, S.A.: Thermomechanical stability analysis of functionally graded thin-walled cantilever pipe with flowing fluid subjected to axial load. Int. J. Struct. Stab. Dyn. 11(03), 513–534 (2011)

    Article  MathSciNet  Google Scholar 

  41. Eftekhari, M., Hosseini, M.: On the stability of spinning functionally graded cantilevered pipes subjected to fluid-thermomechanical loading. Int. J. Struct. Stab. Dyn. 16(09), 1550062 (2015)

    Article  MathSciNet  Google Scholar 

  42. Choi, J., Song, O., Kim, S.K.: Nonlinear stability characteristics of carbon nanotubes conveying fluids. Acta Mech. 224(5), 1383–1396 (2013)

    Article  MathSciNet  Google Scholar 

  43. Yun, K., Choi, J., Kim, S.K., Song, O.: Flow-induced vibration and stability analysis of multi-wall carbon nanotubes. J. Mech. Sci. Technol. 26(12), 3911–3920 (2012)

    Article  Google Scholar 

  44. Shen, H.S.: Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Compos. Struct. 91(1), 9–19 (2009)

    Article  Google Scholar 

  45. Song, O., Librescu, L.: Structural modeling and free vibration analysis of rotating composite thin-walled beams. J. Am. Helicopter Soc. 42(4), 358–369 (1997)

    Article  Google Scholar 

  46. Bahaadini, R., Hosseini, M.: Effects of nonlocal elasticity and slip condition on vibration and stability analysis of viscoelastic cantilever carbon nanotubes conveying fluid. Comput. Mater. Sci. 114, 151–159 (2016)

    Article  Google Scholar 

  47. Bahaadini, R., Hosseini, M.: Flow-induced and mechanical stability of cantilever carbon nanotubes subjected to an axial compressive load. Appl. Math. Model. 59, 597–613 (2018)

    Article  MathSciNet  Google Scholar 

  48. Zhu, P., Lei, Z.X., Liew, K.M.: Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. Compos. Struct. 94(4), 1450–1460 (2012)

    Article  Google Scholar 

  49. Gregory, R.W., Païdoussis, M.P.: Unstable oscillation of tubular cantilevers conveying fluid. I. Theory. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 1435, 512–527 (1966)

    Article  Google Scholar 

  50. Bahaadini, R., Hosseini, M.: Nonlocal divergence and flutter instability analysis of embedded fluid-conveying carbon nanotube under magnetic field. Microfluid. Nanofluid. 20(5), 1–14 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Reza Saidi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahaadini, R., Saidi, A.R. & Hosseini, M. Dynamic stability of fluid-conveying thin-walled rotating pipes reinforced with functionally graded carbon nanotubes. Acta Mech 229, 5013–5029 (2018). https://doi.org/10.1007/s00707-018-2286-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2286-0

Keywords

Navigation