Skip to main content
Log in

Cyclic viscoelastoplasticity of polypropylene: effects of crystalline structure

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Observations are reported on two grades of polypropylene in tensile tests with various strain rates, relaxation tests with various strains, and cyclic tests with a stress-controlled program (ratcheting). Experiments are performed on isotactic polypropylene (iPP) manufactured by the Ziegler–Natta catalysis and metallocene-catalyzed polypropylene (mPP). The time- and rate-dependent behaviors of iPP and mPP in tensile tests and relaxation tests are quite similar, whereas their responses in cyclic tests differ pronouncedly: The number of cycles necessary for mPP to reach a required ratcheting strain exceeds that for iPP by an order of magnitude. To rationalize these observations, a constitutive model is developed in cyclic viscoelastoplasticity of semicrystalline polymers, and its adjustable parameters are found by fitting the experimental data. Slowing down of growth of ratcheting strain in mPP is attributed to the presence of small crystalline domains in amorphous regions that act as physical cross-links. The effect of the strain rate on the number of cycles to failure is studied numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scheirs, J., Kaminsky, W. (eds): Metallocene-Based Polyolefins: Preparation, Properties and Technology. Wiley, Chichester (1999)

    Google Scholar 

  2. Bubeck R.A.: Structure-property relationships in metallocene polyethylenes. Mater. Sci. Eng. R 39, 1–28 (2002)

    Article  Google Scholar 

  3. Yanjarappa M.J., Sivaram S.: Recent developments in the synthesis of functional poly(olefin)s. Progr. Polym. Sci. 27, 1347–1398 (2002)

    Article  Google Scholar 

  4. Razavi A., Thewalt U.: Site selective ligand modification and tactic variation in polypropylene chains produced with metallocene catalysts. Coord. Chem. Rev. 250, 155–169 (2006)

    Article  Google Scholar 

  5. Ostoja Starzewski A., Steinhauser N., Xin B.S.: Decisive progress in metallocene-catalyzed elastomer synthesis. Macromolecules 41, 4095–4101 (2008)

    Article  Google Scholar 

  6. Madkour T.M., Soldera A.: Tacticity induced molecular microstructure dependence of the configurational properties of metallocene-synthesized polypropylenes. Eur. Polym. J. 37, 1105–1113 (2001)

    Article  Google Scholar 

  7. De Rosa C., Auriemma F., Spera C., Talarico G., Tarallo O.: Comparison between polymorphic behaviors of Ziegler-Natta and metallocene-made isotactic polypropylene: The role of the distribution of defects in the polymer chains. Macromolecules 37, 1441–1454 (2004)

    Article  Google Scholar 

  8. Kawahara N., Kojoh S.-I., Matsuo S., Kaneko H., Matsugi T., Toda Y., Mizuno A., Kashiwa N.: Study on chain end structures of polypropylenes prepared with different symmetrical metallocene catalysts. Polymer 45, 2883–2888 (2004)

    Article  Google Scholar 

  9. Boger A., Imhof C., Heise B., Marti O., Troll C., Rieger B., Hild S.: Stress-induced changes in microstructure of a low-crystalline polypropylene investigated at uniaxial stretching. J. Appl. Polym. Sci. 112, 188–199 (2009)

    Article  Google Scholar 

  10. Weng W., Hu W., Dekmezian A.H., Ruff C.J.: Long chain branched isotactic polypropylene. Macromolecules 35, 3838–3843 (2002)

    Article  Google Scholar 

  11. Langsten J.A., Colby R.H., Chung T.C.M., Shimizu F., Suzuki T., Aoki M.: Synthesis and characterization of long chain branched isotactic polypropylene via metallocene catalyst and T-reagent. Macromolecules 40, 2712–2720 (2007)

    Article  Google Scholar 

  12. Kaminsky W., Funck A., Hahnsen H.: New application for metallocene catalysts in olefin polymerization. Dalton Trans. 41, 8803–8810 (2009)

    Article  Google Scholar 

  13. Boger A., Heise B., Troll C., Marti O., Rieger B.: Mechanical and temperature dependent properties, structure and phase transitions of elastic polypropylenes. Eur. Polym. J. 43, 634–643 (2007)

    Article  Google Scholar 

  14. Arranz-Andres J., Suarez I., Pena B., Benavente R., Perez E., Cerrada M.L.: Metallocenic isotactic poly(propylene) and its copolymers with 1-hexene and ethylene. Macromol. Chem. Phys. 208, 1510–1521 (2007)

    Article  Google Scholar 

  15. Arranz-Andres J., Pena B., Benavente R., Perez E., Cerrada M.L.: Influence of isotacticity and molecular weight on the properties of metallocenic isotactic polypropylene. Eur. Polym. J. 43, 2357–2370 (2007)

    Article  Google Scholar 

  16. Su Z., Wang H., Dong J., Zhang X., Dong X., Zhao Y., Yu J., Han C.C., Xu D., Wang D.: Conformation transition and crystalline phase variation of long chain branched isotactic polypropylenes (LCB-iPP). Polymer 48, 870–876 (2007)

    Article  Google Scholar 

  17. Zuo F., Keum J.K., Chen X., Hsiao B.S., Chen H., Lai S.-Y., Wevers R., Li J.: The role of interlamellar chain entanglement in deformation-induced structure changes during uniaxial stretching of isotactic polypropylene. Polymer 48, 6867–6880 (2007)

    Article  Google Scholar 

  18. Lovisi H., Tavares M.I.B., da Silva N.M., de Menezes S.M.C., de Santa Maria L.C., Coutinho F.M.B.: Influence of comonomer content and short branch length on the physical properties of metallocene propylene copolymers. Polymer 42, 9791–9799 (2001)

    Article  Google Scholar 

  19. De Rosa C., Auriemma F., De Lucia G., Resconi L.: From stiff plastic to elastic polypropylene: Polymorphic transformations during plastic deformation of metallocene-made isotactic polypropylene. Polymer 46, 9461–9475 (2005)

    Article  Google Scholar 

  20. Boger A., Heise B., Troll C., Marti O., Rieger B.: Orientation of the α- and γ-modification of elastic polypropylene at uniaxial stretching. Eur. Polym. J. 43, 3573–3586 (2007)

    Article  Google Scholar 

  21. Hoyos M., Tiemblo P., Gomez-Elvira J.M.: Influence of microstructure and semi-crystalline morphology on the β and γ mechanical relaxations of the metallocene isotactic polypropylene. Eur. Polym. J. 45, 1322–1327 (2009)

    Article  Google Scholar 

  22. Fasce L.A., Frontini P.M., Wong S.-C., Mai Y.-W.: Polypropylene modified with elastomeric metallocene-catalyzed polyolefin blends: Fracture behavior and development of damage mechanisms. J. Polym. Sci. B: Polym. Phys. 42, 1075–1089 (2004)

    Article  Google Scholar 

  23. Etcheverry M., Ferreira M.L., Capiati N.J., Pegoretti A., Barbosa S.E.: Strengthening of polypropylene-glass fiber interface by direct metallocenic polymerization of propylene onto the fibers. Compos. A 39, 1915–1923 (2008)

    Article  Google Scholar 

  24. Drozdov A.D., Christiansen J. de C., Klitkou R., Potarniche C.-G.: Viscoelasticity and viscoplasticity of polypropylene/polyethylene blends. Int. J. Solids Struct. 47, 2498–2507 (2010)

    Article  MATH  Google Scholar 

  25. Drozdov A.D., Christiansen J. de C., Klitkou R., Potarniche C.-G.: Effect of annealing on viscoplasticity of polymer blends: Experiments and modeling. Comput. Mater. Sci. 50, 59–64 (2010)

    Article  Google Scholar 

  26. Chaboche J.L., Nouailhas D.: Constitutive modeling of ratcheting effects. Part 1: experimental facts and properties of the classical models. Trans. ASME. J. Eng. Mater. Technol. 111, 384–392 (1989)

    Article  Google Scholar 

  27. Chaboche J.L., Nouailhas D.: Constitutive modeling of ratcheting effects. Part II: Possibilities of some additional kinematical rules. ASME J. Eng. Mater. Technol. 111, 409–416 (1989)

    Article  Google Scholar 

  28. Ruggles M.D., Krempl E.: The interaction of cyclic hardening and ratcheting for AISI type SS304 stainless steel at room temperature. Part I: Experiments. J. Mech. Phys. Solids 38, 575–585 (1990)

    Article  Google Scholar 

  29. Krempl E., Ruggles M.B.: The interaction of cyclic hardening and ratchetting for AISI type SS304 stainless steel at room temperature. Part II: Modeling with the viscoplasticity theory based on overstress. J. Mech. Phys. Solids 38, 587–597 (1990)

    Article  Google Scholar 

  30. Hassan T., Kyriakides S.: Ratcheting in cyclic plasticity. Part I: Uniaxial behavior. Int. J. Plast. 8, 91–116 (1992)

    Article  Google Scholar 

  31. Hassan T., Corona E., Kiriakides S.: Ratcheting in cyclic plasticity. Part II: Multiaxial behavior. Int. J. Plast. 8, 117–146 (1992)

    Article  Google Scholar 

  32. Ohno N., Wang J.D.: Kinematic hardening rules with critical state of dynamic recovery. Part 1: formulation and basic features for ratcheting behavior. Int. J. Plast. 9, 375–390 (1993)

    Article  MATH  Google Scholar 

  33. Ohno N., Wang J.D.: Kinematic hardening rules with critical state of dynamic recovery. Part II: application to experiments of ratcheting behavior. Int. J. Plast. 9, 391–403 (1993)

    Article  Google Scholar 

  34. McDowell D.L.: Description of nonproportional cyclic ratcheting behavior. Eur. J. Mech. A/Solids 13, 593–604 (1994)

    MATH  Google Scholar 

  35. Delobelle P., Robinet P., Bocher L.: Experimental study and phenomenological modelization of ratcheting under uniaxial and biaxial loading on an austenitic stainless steel. Int. J. Plast. 11, 295–330 (1995)

    Article  Google Scholar 

  36. Yoshida F.: Ratcheting behavior of 304 stainless steel at 650°C under multiaxial strain-controlled and uniaxially/multiaxially stress-controlled conditions. Eur. J. Mech. A/Solids 14, 97–117 (1995)

    Google Scholar 

  37. Chaboche J.L.: Modeling of ratcheting: evaluation of various approaches. Eur. J. Mech. A/Solids 13, 501–518 (1994)

    Google Scholar 

  38. Ohno N.: Constitutive modeling of cyclic plasticity with emphasis on ratcheting. Int. J. Mech. Sci. 40, 251–261 (1998)

    Article  MATH  Google Scholar 

  39. Bari S., Hassan T.: Anatomy of coupled constitutive models for ratchetting simulations. Int. J. Plast. 16, 381–409 (2000)

    Article  MATH  Google Scholar 

  40. Bari S., Hassan T.: An advancement in cyclic plasticity modeling for multiaxial ratcheting simulation. Int. J. Plast. 18, 873–894 (2002)

    Article  MATH  Google Scholar 

  41. Chen X., Kim K.S.: Modeling of ratcheting behavior under multiaxial cyclic loading. Acta Mech. 163, 9–23 (2003)

    MATH  Google Scholar 

  42. Colak O.U.: Kinematic hardening rules for modeling uniaxial and multiaxial ratcheting. Mater. Des. 29, 1575–1581 (2008)

    Article  Google Scholar 

  43. Chaboche J.L.: A review of some plasticity and viscoplasticity constitutive theories. Int. J. Plast. 24, 1642–1693 (2008)

    Article  MATH  Google Scholar 

  44. Kang G.: Ratchetting: recent progresses in phenomenon observation, constitutive modeling and application. Int. J. Fatigue 30, 1448–1472 (2008)

    Article  Google Scholar 

  45. Jiang Y., Zhang J.: Benchmark experiments and characteristic cyclic plasticity deformation. Int. J. Plast. 24, 1481–1515 (2008)

    Article  MATH  Google Scholar 

  46. Ayoub G., Zairi F., Nait-Abdelaziz M., Gloaguen J.M.: Modeling the low-cycle fatigue behavior of visco-hyperelastic elastomeric materials using a new network alteration theory: Application to styrene-butadiene rubber. J. Mech. Phys. Solids 59, 473–495 (2011)

    Article  Google Scholar 

  47. Drozdov, A.D.: Cyclic viscoelastoplasticity and low-cycle fatigue of polymer composites. Int. J. Solids Struct. (2011, in print)

  48. Drozdov A.D., Christiansen J. de C.: Cyclic viscoplasticity of high-density polyethylene: experiments and modeling. Comput. Mater. Sci. 39, 465–480 (2007)

    Article  Google Scholar 

  49. Brusselle-Dupend N., Cangemi L.: A two-phase model for the mechanical behaviour of semicrystalline polymers. Part I: Large strains multiaxial validation on HDPE. Mech. Mater. 40, 743–760 (2008)

    Article  Google Scholar 

  50. Regrain C., Laiarinandrasana L., Toillon S., Sai K.: Multi-mechanism models for semicrystalline polymer: Constitutive relations and finite element implementation. Int. J. Plast. 25, 1253–1279 (2009)

    Article  Google Scholar 

  51. Ayoub G., Zairi F., Nait-Abdelaziz M., Gloaguen J.M.: Modelling large deformation behaviour under loading-unloading of semicrystalline polymers: Application to a high density polyethylene. Int. J. Plast. 26, 329–347 (2010)

    Article  Google Scholar 

  52. Drozdov A.D.: Cyclic thermo-viscoplasticity of high density polyethylene. Int. J. Solids Struct. 47, 1592–1602 (2010)

    Article  MATH  Google Scholar 

  53. Kulkarni S.C., Desai Y.M., Kant T., Reddy G.R., Prasad P., Vaze K.K., Gupta C.: Uniaxial and biaxial ratchetting in piping materials-experiments and analysis. Int. J. Pressure Vessels Piping 81, 609–617 (2004)

    Article  Google Scholar 

  54. Xia Z., Shen X., Ellyin F.: An assessment of nonlinearly viscoelastic constitutive models for cyclic loading: The effect of a general loading/unloading rule. Mech. Time-Dependent Mater. 9, 281–300 (2005)

    Article  Google Scholar 

  55. Rahman S.M., Hassan T., Corona E.: Evaluation of cyclic plasticity models in ratcheting simulation of straight pipes under cyclic bending and steady internal pressure. Int. J. Plast. 24, 1756–1791 (2008)

    Article  MATH  Google Scholar 

  56. Hassan T., Taleb L., Krishna S.: Influence of non-proportional loading on ratcheting responses and simulations by two recent cyclic plasticity models. Int. J. Plast. 24, 1863–1889 (2008)

    Article  MATH  Google Scholar 

  57. Lapovok R., Hodgson D.: A damage accumulation model for complex strain paths: Prediction of ductile failure in metals. J. Mech. Phys. Solids 57, 1851–1864 (2009)

    Article  Google Scholar 

  58. Verma R.K., Kuwabara T., Chung K., Haldar A.: Experimental evaluation and constitutive modeling of non-proportional deformation for asymmetric steels. Int. J. Plast. 27, 82–101 (2011)

    Article  Google Scholar 

  59. Tanaka F., Edwards S.F.: Viscoelastic properties of physically cross-linked networks. Transient network theory. Macromolecules 25, 1516–1523 (1992)

    Article  Google Scholar 

  60. Derrida B.: Random-energy model: limit of a family of disordered models. Phys. Rev. Lett. 45, 79–92 (1980)

    Article  MathSciNet  Google Scholar 

  61. Blassiau S., Bunsell A.R., Thionnet A.: Damage accumulation processes and life prediction in unidirectional composites. Proc. R. Soc. A 463, 1135–1152 (2007)

    Article  MATH  Google Scholar 

  62. Sullivan R.W.: Development of a viscoelastic continuum damage model for cyclic loading. Mech. Time-Dependent Mater. 12, 329–342 (2008)

    Article  Google Scholar 

  63. Szusta J., Seweryn A.: Low-cycle fatigue model of damage accumulation—The strain approach. Eng. Fracture Mech. 77, 1604–1616 (2010)

    Article  Google Scholar 

  64. Sai K.: Multi-mechanism models: present state and future trends. Int. J. Plast. 27, 250–281 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Drozdov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drozdov, A.D., Christiansen, J.d.C. & Potarniche, CG. Cyclic viscoelastoplasticity of polypropylene: effects of crystalline structure. Acta Mech 221, 201–222 (2011). https://doi.org/10.1007/s00707-011-0497-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-011-0497-8

Keywords

Navigation