Skip to main content
Log in

A general inelastic internal state variable model for amorphous glassy polymers

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper presents the formulation of a constitutive model for amorphous thermoplastics using a thermodynamic approach with physically motivated internal state variables. The formulation follows current internal state variable methodologies used for metals and departs from the spring-dashpot representation generally used to characterize the mechanical behavior of polymers like those used by Ames et al. in Int J Plast, 25, 1495–1539 (2009) and Anand and Gurtin in Int J Solids Struct, 40, 1465–1487 (2003), Anand and Ames in Int J Plast, 22, 1123–1170 (2006), Anand et al. in Int J Plast, 25, 1474–1494 (2009). The selection of internal state variables was guided by a hierarchical multiscale modeling approach that bridged deformation mechanisms from the molecular dynamics scale (coarse grain model) to the continuum level. The model equations were developed within a large deformation kinematics and thermodynamics framework where the hardening behavior at large strains was captured using a kinematic-type hardening variable with two possible evolution laws: a current method based on hyperelasticity theory and an alternate method whereby kinematic hardening depends on chain stretching and material plastic flow. The three-dimensional equations were then reduced to the one-dimensional case to quantify the material parameters from monotonic compression test data at different applied strain rates. To illustrate the generalized nature of the constitutive model, material parameters were determined for four different amorphous polymers: polycarbonate, poly(methylmethacrylate), polystyrene, and poly(2,6-dimethyl-1,4-phenylene oxide). This model captures the complex character of the stress–strain behavior of these amorphous polymers for a range of strain rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahzi S., Makradi A., Gregory R.V., Edie D.D.: Modeling of deformation behavior and strain-induced crystallization in poly(ethylene terephthalate) above the glass transition temperature. Mech. Mater. 35, 1139–1148 (2003)

    Article  Google Scholar 

  2. Anand L.: On H. Hencky’s approximate strain-energy function for moderate deformations. ASME J. Appl. Mech. 46, 78–82 (1979)

    MATH  Google Scholar 

  3. Anand L.: Moderate deformations in extension–torsion of incompressible isotropic elastic materials. J. Mech. Phys. Solids 34, 293–304 (1986)

    Article  Google Scholar 

  4. Anand L., Gu C.: Granular materials: constitutive equations and strain localization. J. Mech. Phys. Solids 48, 1710–1733 (2000)

    MathSciNet  Google Scholar 

  5. Anand L., Gurtin M.E.: A theory of amorphous solids undergoing large deformations, with application to polymeric glasses. Int. J. Solids Struct. 40, 1465–1487 (2003)

    Article  MATH  Google Scholar 

  6. Anand L., Ames N.M.: On modeling the micro-indentation response of an amorphous polymer. Int. J. Plast. 22, 1123–1170 (2006)

    Article  MATH  Google Scholar 

  7. Anand L., Ames N.M., Srivastava V., Chester S.A.: A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part I: formulation. Int. J. Plast. 25, 1474–1494 (2009)

    Article  MATH  Google Scholar 

  8. Ames N.M., Srivastava V., Chester S.A., Anand L.: A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part II: applications. Int. J. Plast. 25, 1495–1539 (2009)

    Article  MATH  Google Scholar 

  9. Argon A.S.: A theory for the low temperature plastic deformation of glassy polymers. Philos. Mag. 28, 839–865 (1973)

    Article  Google Scholar 

  10. Arruda E.M., Boyce M.C.: Evolution of plastic anisotropy in amorphous polymers during finite straining. Int. J. Plast. 9, 697–720 (1993)

    Article  Google Scholar 

  11. Arruda E.M., Boyce M.C., Jayachandran R.: Effects of strain rate, temperature and thermomechanical coupling on the finite strain deformation of glassy polymers. Mech. Mater. 19, 193–212 (1995)

    Article  Google Scholar 

  12. Bammann D.J.: Internal variable model of viscoplasticity. Int. J. Eng. Sci. 22, 1041–1053 (1984)

    Article  MATH  Google Scholar 

  13. Bammann D.J.: Modeling temperature and strain rate dependent large deformations of metals. Appl. Mech. Rev. 1, 312–318 (1990)

    Article  Google Scholar 

  14. Bamman D.J., Chiesa M.L., Johnson G.C.: Modeling large deformation and failure in manufacturing processes. In: Tatsumi, T., Wanatabe, E., Kambe, T. (eds) Theoretical and Applied Mechanics, pp. 359–376. Elsevier Science, USA (1996)

    Google Scholar 

  15. Bardenhagen S.G., Stout M.G., Gray G.T.: Three-dimensional finite deformation viscoplastic constitutive models for polymeric materials. Mech. Mater. 25, 235–253 (1997)

    Article  Google Scholar 

  16. Bouvard, J.L., Ward, D.K., Hossain, D., Nouranian, S., Marin, E.B., Horstemeyer, M.F.: Review of hierarchical multiscale modeling to describe the mechanical behavior of amorphous polymers. JEMT. doi:10.1115/1.3183779 (2009)

  17. Bouvard, J.L., Bouvard, C., Tyson, M., Fletcher, S., Tucker, M., Wang, P.: Model for predicting the strain rate dependence-Impact performance of plastic components: phase I, CAVS Report MSU.CAVS.CMD.2009-R0020 (2009)

  18. Boyce M.C., Parks D.M., Argon A.S.: Large inelastic deformation of glassy deformation of glassy polymers part I : rate dependent constitutive model. Mech. Mater. 7, 15–33 (1988)

    Article  Google Scholar 

  19. Boyce M.C., Weber G.G., Parks D.M.: On the kinematics of finite strain plasticity. J. Mech. Phys. Solids 37, 647–665 (1989)

    Article  MATH  Google Scholar 

  20. Christensen R.M.: Theory of Viscoelasticty: an Introduction. Academic Press, New York (1982)

    Google Scholar 

  21. Coleman B., Gurtin M.: Thermodynamics with internal state variables. J. Chem. Phys. 47, 597–613 (1967)

    Article  Google Scholar 

  22. Elias-Zuniga A., Beatty M.F.: Constitutive equations for amended non-Gaussian network models of rubber elasticity. Int. J. Eng. Sci. 40, 2265–2294 (2002)

    Article  MathSciNet  Google Scholar 

  23. Eyring H.: Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283–291 (1936)

    Article  Google Scholar 

  24. Fotheringham D.G., Cherry B.W.: Comment on the compression yield behaviour of polymethyl methacrylate over a wide range of temperatures and strain-rates. J. Mater. Sci. 11, 1368–1370 (1976)

    Article  Google Scholar 

  25. Fotheringham D.G., Cherry B.W.: The role of recovery forces in the deformation of linear polyethylene. J. Mater. Sci. 13, 951–964 (1978)

    Article  Google Scholar 

  26. Gent A.N.: A new constitutive relation for rubber. Rubber Chem. Technol. 69, 59–61 (1996)

    MathSciNet  Google Scholar 

  27. Ghorbel E.: A viscoplastic constitutive model for polymeric material. Int. J. Plast. 24, 2032–2058 (2008)

    Article  MATH  Google Scholar 

  28. Govaert L.E., Timmermans P.H.M., Brekelmans W.A.M.: The influence of intrinsic strain softening on strain localization in polycarbonate: modeling and experimental validation. J. Eng. Mater. Technol. 122, 177–185 (2000)

    Article  Google Scholar 

  29. Gurtin M.: An Introduction to Continuum Mechanics. Academic Press, New York (1981)

    MATH  Google Scholar 

  30. Gurtin M.E., Anand L.: The decomposition F = FeFp, material symmetry, and plastic irrotationality for solids that are isotropic-viscoplastic or amorphous. Int. J. Plast. 21, 1686–1719 (2005)

    Article  MATH  Google Scholar 

  31. Hasan O.A., Boyce M.C.: A constitutive model for the nonlinear viscoelastic viscoplastic behavior of glassy polymers. Polym. Eng. Sci. 35, 331–344 (1995)

    Article  Google Scholar 

  32. Haupt P., Lion A., Bachaus E.: On the dynamic behaviour of polymers under finite strains: constitutive modelling and identification of parameters. Int. J. Solids Struct. 37, 3633–3646 (2000)

    Article  MATH  Google Scholar 

  33. Haward, R.N., Thackray, G.: The use of a mathematical model to describe isothermal stress–strain curves in glassy thermoplastics. In: Proceedings of the Royal Society of London, vol. 302, pp. 453–472 (1968)

  34. Hencky H.: The elastic behavior of vulcanized rubber. J. Appl. Mech. 1, 45–53 (1933)

    Google Scholar 

  35. Holzapfel G.A., Simo J.C.: A new viscoelastic constitutive model for continuous media at finite thermomechanical changes. Int. J. Solids Struct. 33, 3019–3034 (1996)

    Article  MATH  Google Scholar 

  36. Hossein, D., Ward, D.K., Bouvard, J.L., Horstemeyer, M.F.: Atomistic Exploration of Amorphous Glassy Polymers. CAVS Internal Report (2009)

  37. Hoy, R.S., Robbins, M.O.: Strain hardening of polymer glasses: limitations of network models. Phys. Rev. Lett. doi:10.1103/PhysRevLett.99.117801 (2007)

  38. Hoy R.S., Robbins M.O.: Strain hardening of polymer glasses: entanglements, energetics, and plasticity. Phys. Rev. E 77, 031801 (2008)

    Article  Google Scholar 

  39. Hoover W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev., A31, 1695–1697 (1985)

    Google Scholar 

  40. James H.M., Guth E.: Theory of elastic properties of rubber. J. Chem. Phys. 11, 455–481 (1943)

    Article  Google Scholar 

  41. Khan A.S., Zhang H.: Finite deformation of a polymer and constitutive modeling. Int. J. Plast. 17, 1167–1188 (2001)

    Article  MATH  Google Scholar 

  42. Khan A.S., Lopez-Pamies O., Kazmi R.: Thermo-mechanical large deformation response and constitutive modeling of viscoelastic polymers over a wide range of strain rates and temperatures. Int. J. Plast. 22, 581–601 (2006)

    Article  MATH  Google Scholar 

  43. Krempl E.: The overstress dependence of the inelastic rate of deformation inferred from transient tests. Mater. Sci. Res. Int. 1, 3–10 (1995)

    Google Scholar 

  44. Krempl E.: A small strain viscoplasticity theory based on overstress. In: Krausz, A., Krausz, K. (eds) Unified Constitutive Laws of Plastic Deformation, pp. 281–318. Academic Press, San Diego (1996)

    Chapter  Google Scholar 

  45. Krempl E., Ho K.: An overstress model for solid polymer deformation behavior applied to Nylon 66. ASTM STP 1357, 118–137 (2000)

    Google Scholar 

  46. Krempl E., Khan F.: Rate (time)-dependent deformation behavior: an overview of some properties of metals and solid polymers. Int. J. Plast. 19, 1069–1095 (2003)

    Article  MATH  Google Scholar 

  47. Kröner E.: Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Ration. Mech. Anal. 4, 273–334 (1960)

    Article  MATH  Google Scholar 

  48. Lee E.H.: Elastic plastic deformation at finite strain. ASME J. Appl. Mech. 36, 1–6 (1969)

    MATH  Google Scholar 

  49. Leonov A.I.: Nonequilibrium thermodynamics and rheology of viscoelastic polymer media. Rheol. Acta 15, 85–98 (1976)

    Article  MATH  Google Scholar 

  50. Lion A.: On the large deformation behaviour of reinforced rubber at different temperatures. J. Mech. Phys. Solids 45, 1805–1834 (1997)

    Article  Google Scholar 

  51. Lubarda V.A., Benson D.J., Meyers M.A.: Strain-rate effects in rheological models of inelastic response. Int. J. Plast. 19, 1097–1118 (2003)

    Article  MATH  Google Scholar 

  52. Makradi A., Ahzi S., Gregory R.V., Edie D.D.: A two-phase self-consistent model for the deformation and phase transformation behavior of polymers above the glass transition temperature: application to PET. Int. J. Plast. 21, 741–750 (2005)

    Article  MATH  Google Scholar 

  53. Mayo S.L., Olafson B.D., Goddard W.A. III: Dreiding: a generic force field for molecular simulations. J. Phys. Chem. 94, 8897–8909 (1990)

    Article  Google Scholar 

  54. Miehe C., Goktepe S., Mendez Diez J.: Finite viscoplasticity of amorphous glassy polymers in the logarithmic strain space. Int. J. Solids Struct. 46, 181–202 (2008)

    Article  Google Scholar 

  55. Nose S.: A molecular dynamics method for simulations in the canonical ensemble 1. Mol. Phys. 50, 255–268 (1984)

    Article  Google Scholar 

  56. Ogden, R.W.: Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubberlike solids. In: Proceedings of the Royal Society of London, vol. A326, pp. 565–584 (1972)

  57. Perzyna P.: Fundamental problems in viscoplasticity. Adv. Appl. Mech. 9, 243–377 (1966)

    Article  Google Scholar 

  58. Plimpton S.J.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  MATH  Google Scholar 

  59. Prantil V.C., Jenkins J.T., Dawson P.R.: An analysis of texture and plastic spin for planar polycrystals. J. Mech. Phys. Solids 41, 1357–1382 (1993)

    Article  MATH  Google Scholar 

  60. Reese S., Govindjee S.: A theory of finite viscoelasticity and numerical aspects. Int. J. Solids Struct. 35, 3455–3482 (1998)

    Article  MATH  Google Scholar 

  61. Richeton J., Ahzi S., Daridon L., Remond Y.: A formulation of the cooperative model for the yield stress of amorphous polymers for a wide range of strain rates and temperatures. Polymer 46, 6035–6043 (2006)

    Article  Google Scholar 

  62. Richeton J., Ahzi S., Vecchio K.S., Jiang F.C., Makradi A.: Modeling and validation of the large deformation inelastic response of amorphous polymers over a wide range of temperatures and strain rates. Int. J. Solids Struct. 44, 7938–7954 (2007)

    Article  MATH  Google Scholar 

  63. Rivlin R.S., Saunders D.W.: Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber. Philos. Trans. R. Soc. Lond. A 243, 251–2881 (1951)

    Article  Google Scholar 

  64. Robbins M.O., Hoy R.S.: Scaling of the strain hardening modulus of glassy polymers with the flow stress. J. Polym. Sci. B 47, 1406 (2009)

    Article  Google Scholar 

  65. Shepherd J.E., McDowell D.L., Jacob K.I.: Modeling morphology evolution and mechanical behavior during thermo-mechanical processing of semi-crystalline polymers. J. Mech. Phys. Solids 54, 467–489 (2006)

    Article  MATH  Google Scholar 

  66. Shepherd, J.E.: Multiscale modeling of the deformation of semi-crystalline polymers. Ph. D. thesis, Georgia Institute of Technology, Atlanta, GA (2006)

  67. Tomita Y.: Constitutive modeling of deformation behavior of glassy polymers and applications. Int. J. Mech. Sci. 42, 1455–1469 (2000)

    Article  MATH  Google Scholar 

  68. Tervoort T.A., Smit R.J.M., Brekelmans W.A.M., Govaert L.E.: A constitutive equation for the elasto-viscoplastic deformation of glassy polymers. Mech. Time Depend. Mater. 1, 269–291 (1998)

    Article  Google Scholar 

  69. Tervoort T.A., Govaert L.E.: Strain-hardening behavior of polycarbonate in the glassy state. J. Rheol. 44, 1263–1277 (2000)

    Article  Google Scholar 

  70. Van der Sluis O., Schreurs P.J.G., Meijer H.E.H.: Homogenisation of structured elastoviscoplastic solids at finite strains. Mech. Mater. 33, 499–522 (2001)

    Article  Google Scholar 

  71. Yeoh O.H.: Characterization of elastic properties of carbon-black-filled rubber vulcanizates. Rubber Chem. Technol. 63, 792–805 (1990)

    Google Scholar 

  72. Wendlandt M., Tervoort T.A., Suter U.W.: Nonlinear, rate dependent strain-hardening behavior of polymer glasses. Polymer 46, 11786–11797 (2005)

    Article  Google Scholar 

  73. Wu P.D., Van der Giessen E.: On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers. J. Mech. Phys. Solids 41, 427–456 (1993)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Bouvard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouvard, J.L., Ward, D.K., Hossain, D. et al. A general inelastic internal state variable model for amorphous glassy polymers. Acta Mech 213, 71–96 (2010). https://doi.org/10.1007/s00707-010-0349-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-010-0349-y

Keywords

Navigation