Skip to main content
Log in

Cyclic voltammetric and computational study of a 4-bromophenyl monolayer on a glassy carbon electrode

  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

A glassy carbon (GC) surface modified with monolayer of 4-bromophenyl was examined as voltammetric electrode for some redox systems. The modified electrode exhibited very slow electron transfer in comparison to the unmodified surface by factors which varied with the redox systems. However, after scanning the modified electrode in 0.1 M tetrabutylammonium tetrafluoroborate (TBABF4) in acetonitrile from 0.4 to −1.1 V vs. Ag/AgCl for 20–25 cycles, the modified electrode showed much faster electron transfer kinetics, e.g., the results for Fe(CN)6 3−/4− were approaching those observed with unmodified surfaces. The effect is attributed to an apparently irreversible structural change in the 4-bromophenyl monolayer, which increases the rate of electron tunneling. The transition to the conducting state is associated with electron injection into the monolayer and causes a significant decrease in the calculated HOMO-LUMO gap for the monolayer molecule. Once the monolayer is switched to the conducting state, it supports rapid electron exchange with the redox system, but not with dopamine, which requires adsorption to the electrode surface. A conductive surface modified electrode may have useful properties for electroanalytical applications and possibly in electrocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • RW Murray (1984) Electroanal Chem 13 191 Occurrence Handle1:CAS:528:DyaL2cXhtFSrs78%3D

    CAS  Google Scholar 

  • JD Swalen et al. (1987) Langmuir 3 932 Occurrence Handle10.1021/la00078a011 Occurrence Handle1:CAS:528:DyaL2sXmtVGls7Y%3D

    Article  CAS  Google Scholar 

  • EJ Barendrecht (1990) J Appl Electrochem 20 175 Occurrence Handle10.1007/BF01033593 Occurrence Handle1:CAS:528:DyaK3cXhs1Oltbs%3D

    Article  CAS  Google Scholar 

  • RW Murray (Eds) (1999) Molecular Design of Electrode Surfaces, Techniques of Chemistry Series Wiley-Inter science New York 22

    Google Scholar 

  • RF Lane AT Hubbard (1973) Phys Chem 77 1401 Occurrence Handle10.1021/j100630a018 Occurrence Handle1:CAS:528:DyaE3sXkt1Knurc%3D

    Article  CAS  Google Scholar 

  • RF Lane AT Hubbard (1973) Phys Chem 77 1411 Occurrence Handle10.1021/j100630a019 Occurrence Handle1:CAS:528:DyaE3sXkt1Knu74%3D

    Article  CAS  Google Scholar 

  • JC Zhong MD Porter (1995) Anal Chem 67 709A Occurrence Handle10.1021/ac00119a001 Occurrence Handle1:CAS:528:DyaK2MXps1yksr0%3D

    Article  CAS  Google Scholar 

  • HO Finklea (1996) Electroanal Chem 19 109 Occurrence Handle1:CAS:528:DyaK28XmvFSksLc%3D

    CAS  Google Scholar 

  • M Lewis M Tarlov KJ Carron (1995) J Am Chem Soc 117 9574 Occurrence Handle10.1021/ja00142a030 Occurrence Handle1:CAS:528:DyaK2MXnslKgsr4%3D

    Article  CAS  Google Scholar 

  • WR Everett I Fritsch-Faules (1995) Anal Chim Acta 307 253 Occurrence Handle10.1016/0003-2670(95)00004-J Occurrence Handle1:CAS:528:DyaK2MXlvFKjtbw%3D

    Article  CAS  Google Scholar 

  • RL McCreery (1990) Electroanal Chem 17 221 Occurrence Handle1:CAS:528:DyaK3MXksVSrsro%3D

    CAS  Google Scholar 

  • M Delmar R Hitmi J Pinson JM Saveant (1992) J Am Chem Soc 114 5883 Occurrence Handle10.1021/ja00040a074

    Article  Google Scholar 

  • C Bourdillon M Delmar C Demailiie R Hitmi J Moiroux J Pinson (1992) J Electroanal 113 336

    Google Scholar 

  • AJ Downard AD Roddick (1997) Electroanalysis 7 376 Occurrence Handle10.1002/elan.1140070414

    Article  Google Scholar 

  • G Liu MS Freund (1996) Chem Mater 8 1164 Occurrence Handle10.1021/cm9601502 Occurrence Handle1:CAS:528:DyaK28XjtFersbw%3D

    Article  CAS  Google Scholar 

  • C Saby GY Champagne D Belanger (1996) Electrochem Soc 96 1120

    Google Scholar 

  • RM Elofson FF Gadallah (1969) J Org Chem 34 854 Occurrence Handle10.1021/jo01256a016 Occurrence Handle1:CAS:528:DyaF1MXktFansrc%3D

    Article  CAS  Google Scholar 

  • RM Elofson FF Gadallah K Schulaz JK Laidler (1984) Can J Chem 62 1772 Occurrence Handle10.1139/v84-303 Occurrence Handle1:CAS:528:DyaL2cXlvFSru7w%3D

    Article  CAS  Google Scholar 

  • RM Elofson FF Gadallah AA Cantu K Schulaz JK Laidler (1974) Can J Chem 52 2430 Occurrence Handle10.1139/v74-353 Occurrence Handle1:CAS:528:DyaE2cXkvFylsrk%3D

    Article  CAS  Google Scholar 

  • YC Liu RL McCreery (1995) J Am Chem Soc 117 11254 Occurrence Handle10.1021/ja00150a024 Occurrence Handle1:CAS:528:DyaK2MXovF2gsLw%3D

    Article  CAS  Google Scholar 

  • YC Liu RL McCreery (1997) Anal Chem B69 2091 Occurrence Handle10.1021/ac961305s

    Article  Google Scholar 

  • F Anaribia SH DuVall RL McCreery (2003) Anal Chem 75 3837 Occurrence Handle10.1021/ac034026v

    Article  Google Scholar 

  • S Ranganathan I Steidel F Anariba RL McCreery (2001) Nano Lett 1 491 Occurrence Handle10.1021/nl015566f Occurrence Handle1:CAS:528:DC%2BD3MXls1Kntrk%3D

    Article  CAS  Google Scholar 

  • AO Solak S Ranganathan RL McCreery (2002) Electrochem Solid St 5 E43 Occurrence Handle10.1149/1.1490716 Occurrence Handle1:CAS:528:DC%2BD38Xksleksbk%3D

    Article  CAS  Google Scholar 

  • AO Solak RE Laura JC William RL McCreey (2003) Anal Chem 75 296 Occurrence Handle10.1021/ac026107h Occurrence Handle1:CAS:528:DC%2BD38XpsVSgu7o%3D

    Article  CAS  Google Scholar 

  • F Anaribia RL McCreery (2002) J Phys Chem B 106 10355 Occurrence Handle10.1021/jp026285e

    Article  Google Scholar 

  • FF Gadallah RM Elofson (1969) J Org Chem 34 3335 Occurrence Handle10.1021/jo01263a025 Occurrence Handle1:CAS:528:DyaE3cXht1antA%3D%3D

    Article  CAS  Google Scholar 

  • S Duvall RL McCreery (2000) J Am Chem Soc 122 6759 Occurrence Handle10.1021/ja000227u Occurrence Handle1:CAS:528:DC%2BD3cXksVejsLs%3D

    Article  CAS  Google Scholar 

  • S Duvall RL McCreery (1999) Anal Chem 71 4594 Occurrence Handle10.1021/ac990399d Occurrence Handle1:CAS:528:DyaK1MXlslCit7o%3D

    Article  CAS  Google Scholar 

  • RS Nicholson (1965) Anal Chem 37 1351 Occurrence Handle10.1021/ac60230a016 Occurrence Handle1:CAS:528:DyaF28XisFSksQ%3D%3D

    Article  CAS  Google Scholar 

  • S Ranganathan TC Kuo RL McCreery (1999) Anal Chem 71 3574 Occurrence Handle10.1021/ac981386n Occurrence Handle1:CAS:528:DyaK1MXksVClu7w%3D

    Article  CAS  Google Scholar 

  • SB Sachs SP Dudek RP Hsung LR Sita JF Smalley MD Newton SW Feldberg CED Chidsey (1997) J Am Chem Soc 119 10563 Occurrence Handle10.1021/ja972244y Occurrence Handle1:CAS:528:DyaK2sXms1Onsr0%3D

    Article  CAS  Google Scholar 

  • S Creager et al. (1999) J Am Chem Soc 124 1059 Occurrence Handle10.1021/ja983204c

    Article  Google Scholar 

  • DR Lamb (1968) Electrical Conduction Mechanisms in Thin Insulating Films Methuen and Co. London

    Google Scholar 

  • JG Simmons (1971) DC Conduction in Thin Films Mills and Boon Ltd London

    Google Scholar 

  • C Miller P Cuendet M Graetzel (1991) J Phys Chem 95 877 Occurrence Handle10.1021/j100155a072 Occurrence Handle1:CAS:528:DyaK3MXntV2ktQ%3D%3D

    Article  CAS  Google Scholar 

  • Terrill RH, Murray RW, Jortner J, Ratner M (eds) (1997) Blackwell Science Ltd., Oxford, UK, p 215

  • D Segal A Nitzan W Davis MR Wasielewski MA Ratner (2000) J Phys Chem B 104 3817 Occurrence Handle10.1021/jp993260f Occurrence Handle1:CAS:528:DC%2BD3cXhvVyrsrc%3D

    Article  CAS  Google Scholar 

  • J Jortner M Ratner (Eds) (1997) Molecular Electronic Blackwell Science Ltd. Oxford, UK

    Google Scholar 

  • CJ Barrelet DB Robinson J Cheng TP Hunt CF Quat CED Chidsey (2001) Lengmuir 17 3460 Occurrence Handle10.1021/la010333p Occurrence Handle1:CAS:528:DC%2BD3MXjt1Sns7g%3D

    Article  CAS  Google Scholar 

  • LA Bumm JJ Arnold TD Dunbar DL Allara PS Weiss (1999) J Phys Chem 103 8122 Occurrence Handle1:CAS:528:DyaK1MXls1Citr0%3D

    CAS  Google Scholar 

  • ZJ Donhauser BA Mantooth KF Kelly LA Bamm JD Monnell JJ Stapleton DW Price AM Rawlett DL Allara JM Tour PS Weiss (2001) Science 292 2303 Occurrence Handle10.1126/science.1060294 Occurrence Handle1:CAS:528:DC%2BD3MXkslShsb4%3D

    Article  CAS  Google Scholar 

  • HD Sikes JF Smalley SP Dudek AR Cook MD Newton CED Chidsey SW Feldberg (2001) Science 291 1519 Occurrence Handle10.1126/science.1055745 Occurrence Handle1:CAS:528:DC%2BD3MXhsVerurY%3D

    Article  CAS  Google Scholar 

  • DR Lamb (1968) Electrical Conduction Mechanisms in Thin Insulating Films Methuen and Co. London

    Google Scholar 

  • JG Simmons (1997) Conduction in Thin Films Mills and Boon Ltd. London

    Google Scholar 

  • Gaussian 92, Revision A, Frisch J, Truck GW, Head-Gordon M, Gill PM, Wong MW, Foresman JB, Schlegel HB, Robb MA, Gomperts R, Andres L, Raghavachari K, Binkley JS, Gonzalez C, Martin RL, Fox DJ, Defrees DJ, Steward JJP, Pople JA (eds) (1992) Gaussian Inc., Pittsburgh, PA

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas A. Rostami.

Additional information

Correspondence: Abbas A. Rostami, Department of Chemistry, Faculty Basic of Science, University of Mazandaran, Babolsar, Iran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khoshroo, M., Rostami, A. & Yeganegi, S. Cyclic voltammetric and computational study of a 4-bromophenyl monolayer on a glassy carbon electrode. Monatsh Chem 139, 781–787 (2008). https://doi.org/10.1007/s00706-007-0851-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-007-0851-2

Keywords

Navigation