Skip to main content
Log in

Electrodeposition of cobalt oxide nanoparticles on carbon nanotubes, and their electrocatalytic properties for nitrite electrooxidation

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe a modified glassy carbon electrode (GCE) for the sensitive determination of nitrite in waste water samples. The GCE was modified by electrodeposition of cobalt oxide nanoparticles on multi-walled carbon nanotubes (MWCNTs) deposited on a conventional GCE. Scanning electron microscopy and electrochemical techniques were used for the characterization of the composite material which is very uniform and forms a kind of nanoporous structure. Electrochemical experiments showed that the modified electrode exhibited excellent electrocatalytic properties for nitrite. Amperometry revealed a good linear relationship between peak current and nitrate concentration in the 0.5 to 250 μM range with a detection limit of 0.3 μM (S/N = 3). The method has been applied to the amperometric detection of nitrite. The modified electrode displays good storage stability, reproducibility, and selectivity for a promising practical application.

The dense and entangled CoOx/MWCNTs nanocomposite showed a three-dimensional nanoporous structure. The three-dimensional nanoporous structure provided ample space to allow fast mass transport of ions through the electrolyte/electrode interface as well as a conductive network for enhancing electronic conductivity which was favorable to the catalytic application of CoOx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lijinsky W, Epstein SS (1970) Nitrosamines as environmental carcinogens. Nature 225:21–23

    Article  CAS  Google Scholar 

  2. Al-Okab RA, Syed AA (2007) Novel reactions for simple and sensitive spectrophotometric determination of nitrite. Talanta 72:1239–1247

    Article  CAS  Google Scholar 

  3. Kodamatani H, Yamazaki S, Saito K, Tomiyasu T, Komatsu Y (2009) Selective determination method for measurement of nitrite and nitrate in water samples using high-performance liquid chromatography with post-column photochemical reaction and chemiluminescence detection. J Chromatogr A 1216:3163–3167

    Article  CAS  Google Scholar 

  4. Jedličková V, Paluch Z, Š Alušík (2002) Determination of nitrate and nitrite by high-performance liquid chromatography in human plasma. J Chromatogr B 780:193–197

    Article  Google Scholar 

  5. Merusi C, Corradini C, Cavazza A, Borromei C, Salvadeo P (2010) Determination of nitrates, nitrites and oxalates in food products by capillary electrophoresis with pH-dependent electroosmotic flow reversal. Food Chem 120:615–620

    Article  CAS  Google Scholar 

  6. Chen XW, Wang F, Chen ZL (2008) An electropolymerized Nile blue sensing film-based nitrite sensor and application in food analysis. Anal Chim Acta 623:213–220

    Article  CAS  Google Scholar 

  7. Biagiotti V, Valentini F, Tamburri E, Terranova ML, Moscone D, Palleschi G (2007) Synthesis and characterization of polymeric films and nanotubule nets used to assemble selective sensors for nitrite detection in drinking water. Sens Actuators B 122:236–242

    Article  Google Scholar 

  8. Ammam M, Keita B, Nadjo L, Fransaer J (2010) Nitrite sensor based on multilayer film of Dawson-type tungstophosphate α-K7[H4PW18O62]·18H2O immobilized on glassy carbon. Talanta 80:2132–2140

    Article  CAS  Google Scholar 

  9. Liu TS, Kang TF, Lu LP, Zhang Y, Cheng SY (2009) Au-Fe(III) nanoparticle modified glassy carbon electrode for electrochemical nitrite sensor. J Electroanal Chem 632:197–200

    Article  CAS  Google Scholar 

  10. Wang F, Hu SS (2009) Electrochemical sensors based on metal and semiconductor nanoparticles. Microchim Acta 165:1–22

    Article  CAS  Google Scholar 

  11. Badea M, Amine A, Benzine M, Curulli A, Moscone D, Lupu A, Volpe G, Palleschi G (2004) Rapid and selective electrochemical determination of nitrite in cured meat in the presence of ascorbic acid. Microchim Acta 147:51–58

    Article  CAS  Google Scholar 

  12. Wei W, Jin HH, Zhao GC (2009) A reagentless nitrite biosensor based on direct electron transfer of hemoglobin on a room temperature ionic liquid/carbon nanotube-modified electrode. Microchim Acta 164:167–171

    Article  CAS  Google Scholar 

  13. Lu LP, Wang SQ, Kang TF, Xu WW (2008) Synergetic effect of Pd-Fe nanoclusters: electrocatalysis of nitrite oxidation. Microchim Acta 162:81–85

    Article  CAS  Google Scholar 

  14. Liu Y, Gu HY (2008) Amperometric detection of nitrite using a nanometer-sized gold colloid modified pretreated glassy carbon electrode. Microchim Acta 162:101–106

    Article  CAS  Google Scholar 

  15. Kandalkar SG, Dhawale DS, Kim CK, Lokhande CD (2010) Chemical synthesis of cobalt oxide thin film electrode for supercapacitor application. Synth Met 160:1299–1302

    Article  CAS  Google Scholar 

  16. Yoshino T, Baba N (1995) Characterization and properties of electrochromic cobalt oxide thin film prepared by electrodeposition. Sol Energ Mat Sol C 39:391–397

    Article  CAS  Google Scholar 

  17. Okabe H, Akimitsu J, Kubodera T, Matoba M, Kyomen T, Itoh M (2006) Low-temperature magnetoresistance of layered cobalt oxides NaxCoO2. Phys B Condens Matter 378–380:863–864

    Article  Google Scholar 

  18. Rashkova V, Kitora S, Konstantinov I, Vitahov T (2002) Vacuum evaporated thin films of mixed cobalt and nickel oxides as electrocatalyst for oxygen evolution and reduction. Electrochim Acta 47:1555–1560

    Article  CAS  Google Scholar 

  19. Ding Y, Wang Y, Su L, Bellagamba M, Zhang H, Lei Y (2010) Electrospun Co3O4 nanofibers for sensitive and selective glucose detection. Biosens Bioelectron 26:542–548

    Article  CAS  Google Scholar 

  20. Buratti S, Brunetti B, Mannino S (2008) Amperometric detection of carbohydrates and thiols by using a glassy carbon electrode coated with Co oxide/multi-wall carbon nanotubes catalytic system. Talanta 76:454–457

    Article  CAS  Google Scholar 

  21. Xia YS, Dai HX, Jiang HY, Zhang L (2010) Three-dimensional ordered mesoporous cobalt oxides: Highly active catalysts for the oxidation of toluene and methanol. Catal Commun 11:1171–1175

    Article  CAS  Google Scholar 

  22. Hou Y, Ndamanisha JC, Guo LP, Peng XJ, Bai J (2009) Synthesis of ordered mesoporous carbon/cobalt oxide nanocomposite for determination of glutathione. Electrochim Acta 54:6166–6171

    Article  CAS  Google Scholar 

  23. Salimi A, Hallaj R, Soltanian S, Mamkhezri H (2007) Nanomolar detection of hydrogen peroxide on glassy carbon electrode modified with electrodeposited cobalt oxide nanoparticles. Anal Chim Acta 594:24–31

    Article  CAS  Google Scholar 

  24. Salimi A, Mamkhezri H, Hallaj R, Soltanian S (2008) Electrochemical detection of trace amount of arsenic(III) at glassy carbon electrode modified with cobalt oxide nanoparticles. Sens Actuators B 129:246–254

    Article  Google Scholar 

  25. Qi YC, Zhao YB, Wu ZS (2008) Preparation of cobalt oxide nanoparticles and cobalt powders by solvothermal process and their characterization. Mater Chem Phys 110:457–462

    Article  CAS  Google Scholar 

  26. Shinde VR, Mahadik SB, Gujar TP, Lokhande CD (2006) Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis. Appl Surf Sci 252:7487–7492

    Article  CAS  Google Scholar 

  27. Xia XH, Tu JP, Xiang JY, Huang XH, Wang XL, Zhao XB (2010) Hierarchical porous cobalt oxide array films prepared by electrodeposition through polystyrene sphere template and their applications for lithium ion batteries. J Power Sources 195:2014–2022

    Article  CAS  Google Scholar 

  28. Casella IG, Guascito MR (1999) Anodic electrodeposition of conducting cobalt oxyhydroxide films on a gold surface. XPS study and electrochemical behaviour in neutral and alkaline solution. J Electroanal Chem 476:54–63

    Article  CAS  Google Scholar 

  29. Casella IG, Gatta M (2002) Study of the electrochemical deposition and properties of cobalt oxide species in citrate alkaline solutions. J Electroanal Chem 534:31–38

    Article  CAS  Google Scholar 

  30. Casella IG (2002) Electrodeposition of cobalt oxide films from carbonate solutions containing Co(II)–tartrate complexes. J Electroanal Chem 520:119–125

    Article  CAS  Google Scholar 

  31. Spataru N, Terashima C, Tokuhiro K, Sutanto I, Tryk DA, Park SM, Fujishima A (2003) Electrochemical behavior of cobalt oxide films deposited at conductive diamond electrodes. J Electrochem Soc 150:E337–334

    Article  CAS  Google Scholar 

  32. McNally EA, Zhitomirsky I, Wilkinson DS (2005) Cathodic electrodeposition of cobalt oxide films using polyelectrolytes. Mater Chem Phys 91:391–398

    Article  CAS  Google Scholar 

  33. Casella IG, Gatta M (2002) Study of the electrochemical deposition and properties of cobalt oxide species in citrate alkaline solutions. J Electroanal Chem 534(1):31–38

    Article  CAS  Google Scholar 

  34. Kim IH, Kim JH, Cho BY, Lee YH, Kim KB (2006) Pseudocapacitive properties of electrochemically prepared vanadium oxide on carbon nanotube film substrate. J Electrochem Soc 153:A1451–A1458

    Article  CAS  Google Scholar 

  35. Andrieux CP, Savéant JM (1978) Heterogeneous (chemically modified electrodes, polymer electrodes) vs. homogeneous catalysis of electrochemical reactions. J Electroanal Chem 93:163–168

    Article  CAS  Google Scholar 

  36. Bard AJ, Faulkner LR (1980) Electrochemical methods, fundamentals and applications. Wiley, New York

    Google Scholar 

  37. Pariente F, Lorenzo E, Tobalina F, Abruna HD (1953) Aldehyde biosensor based on the determination of NADH enzymically generated by aldehyde dehydrogenase. Anal Chem 67:3936–3944

    Article  Google Scholar 

  38. Pournaghi-Azar MH, Dastangoo H (2004) Electrocatalytic oxidation of nitrite at an aluminum electrode modified by a chemically deposited palladium pentacyanonitrosylferrate film. J Electroanal Chem 567:211–218

    Article  CAS  Google Scholar 

  39. Santos WJR, Sousa AL, Luz RCS, Damos FS, Kubota LT, Tanaka AA, Tanaka SMCN (2006) Amperometric sensor for nitrite using a glassy carbon electrode modified with alternating layers of iron(III) tetra-(N-methyl-4-pyridyl)-porphyrin and cobalt(II) tetrasulfonated phthalocyanine. Talanta 70:588–594

    Article  CAS  Google Scholar 

  40. Sousa AL, Santos WJR, Luz RCS, Damos FS, Kubota LT, Tanaka AA (2008) Amperometric sensor for nitrite based on copper tetrasulphonated phthalocyanine immobilized with poly-L-lysine film. Talanta 75:333–338

    Article  CAS  Google Scholar 

  41. Huang X, Li YX, Chen YL, Wang L (2008) Electrochemical determination of nitrite and iodate by use of gold nanoparticles/poly(3-methylthiophene) composite coated glassy carbon electrode. Sens Actuators B 134:780–786

    Article  Google Scholar 

  42. Song Y, Ma YT, Wang Y, Di JW (2010) Electrochemical deposition of gold–platinum alloy nanoparticles on an indium tin oxide electrode and their electrocatalytic applications. Electrochim Acta 55:4909–4914

    Article  CAS  Google Scholar 

  43. Karousos N, Chong LC, Ewen C, Livingstone C, Davis J (2005) Evaluation of a multifunctional indicator for the electroanalytical determination of nitrite. Electrochim Acta 50:1879–1884

    Article  CAS  Google Scholar 

  44. Pournaghi-Azar MH, Dastangoo H (2004) Electrocatalytic oxidation of nitrite at an aluminum electrode modified by a chemically deposited palladium pentacyanonitrosylferrate film. J Electroanal Chem 567:211–218

    Article  CAS  Google Scholar 

  45. Kamyabi MA, Aghajanloo F (2008) Electrocatalytic oxidation and determination of nitrite on carbon paste electrode modified with oxovanadium(IV)-4-methyl salophen. J Electroanal Chem 614:157–165

    Article  CAS  Google Scholar 

  46. Zen JM, Kumar AS, Chen HW (2001) Electrochemical behavior of stable cinder/prussian blue analogue and its mediated nitrite oxidation. Electroanalysis 13:1171–1178

    Article  CAS  Google Scholar 

  47. Cui YP, Yang CZ, Zeng W, Oyama M, Pu WH, Zhang JD (2007) Electrochemical determination of nitrite using a gold nanoparticles-modified glassy carbon electrode prepared by the seed-mediated growth technique. Anal Sci 23:1421–1425

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support from the National Natural Science Foundation of China (No.20875076), the Science Foundation of Northwest University (No. NF0902) and the NWU Doctorate Dissertation of Excellence Funds (No. 08YYB06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbin Zheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1

(DOC 286 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, Z., Liu, B., Zheng, J. et al. Electrodeposition of cobalt oxide nanoparticles on carbon nanotubes, and their electrocatalytic properties for nitrite electrooxidation. Microchim Acta 175, 251–257 (2011). https://doi.org/10.1007/s00604-011-0688-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0688-y

Keywords

Navigation