Skip to main content
Log in

Polyaniline/gallium doped ZnO heterostructure device via plasma enhanced polymerization technique: Preparation, characterization and electrical properties

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The ZnO and gallium-doped ZnO nanoparticles (NPs) were synthesized by simple chemical method and used for the fabrication of p-polyaniline/n-ZnO heterostructures devices in which polyaniline was deposited by plasma-enhanced polymerization. The increment in the crystallite sizes of gallium doped ZnO nanoparticles from ~21.85 nm to ~32.39 nm indicated the incorporation of gallium ion into the ZnO nanoparticles. The surface and structural studies investigated the participation of protonated N atom for the bond formation between polyaniline and gallium-ZnO through partial hydrogen bonding. Compared to a Pt/polyaniline/ZnO diode, the fabricated Pt/polyaniline/gallium-ZnO heterostructure diode exhibited good rectifying behavior with Current–Voltage characteristics of improved saturation current, low ideality factor, and a high barrier height might due to the efficient charge conduction via gallium ion at the junction of the polyaniline/gallium doped-ZnO interface.

(a) Schematic illustration and (b) I-V characteristics of Pt/PANI/Ga-ZnO heterostructure device. The heterostructure device is obtained by a top Pt layer on PECVD deposited PANI/Ga-ZnO electrodes. The fabricated Pt/PANI/Ga-ZnO heterostructure device displays non-linear and rectifying behavior of I–V curve due to the existence of Schottky barrier via a Schottky contact at the interfaces of Pt layer and PANI/Ga-ZnO thin film layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jun JH, Cho K, Yun J, Suh KS, Kim TY, Kim S (2008) Enhancement of electrical characteristics of electrospun polyaniline nanofibers by embedding the nanofibers with Ga-doped ZnO nanoparticles. Org Electron 9:445–451

    Article  CAS  Google Scholar 

  2. Mbhele ZH, Sakmane MG, Van Sittert CGCE, Nedeljkovic JM, Djokovic V, Luyt AS (2003) Fabrication and Characterization of Silver—Polyvinyl Alcohol Nanocomposites. Chem Mater 15:5019–5024

    Article  CAS  Google Scholar 

  3. Zhang H, Du N, Chen B, Li D, Yang D (2009) Carbon Nanotube-ZnO Nanosphere Heterostructures: Low-Temperature Chemical Reaction Synthesis, Photoluminescence, and Their Application for Room Temperature NH3 Gas Sensor. Sci Adv Mater 1:13–17

    CAS  Google Scholar 

  4. Li X, Gao Y, Zhang X, Gong J, Sun Y, Zheng X, Qu L (2008) Polyaniline/CuCl nanocomposites prepared by UV rays irradiation. Mater Lett 62:2237–2240

    Article  CAS  Google Scholar 

  5. Bhatt SV, Vivekchand SRC (2006) Optical spectroscopic studies of composites of conducting PANI with CdSe and ZnO nanocrystals. Chem Phys Lett 433:154–158

    Article  Google Scholar 

  6. Kalita G, Adhikari S, Aryal HR, Wakita K, Umeno M (2010) Poly(3-octylthiophene)/Fullerene Heterojunction Solar Cell Incorporating Carbon Nanotubes. J Nanosci Nanotechnol 10:3844–3848

    Article  CAS  Google Scholar 

  7. Vispute RD, Talyansky V, Choopun S, Sharma RP, Venkatesan T, He M, Tang X, Halpern JB, Spencer MG, Li YX, Riba LGS, Iliadis AA, Jones KA (1998) Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices. Appl Phys Lett 73:348–350

    Article  CAS  Google Scholar 

  8. Wu W, Bai S, Cui N, Ma F, Wei Z, Qin Y, Xie E (2010) Increasing UV Photon Response of ZnO Sensor with Nanowires Array. Sci Adv Mater 2:402–406

    CAS  Google Scholar 

  9. Soitah TN, Chunhui Y, Liang S (2010) Effect of Fe Doping on Structural and Electrical Properties of Nanocrystalline ZnO Thin Films Prepared by Sol-Gel Dip Coating Technique. Sci Adv Mater 2:534–538

    Google Scholar 

  10. Irimpan L, Nampoori VPN, Radhakrishnan P (2010) Optical Limiting in ZnO Nanocomposites. Sci Adv Mater 2:578–582

    Google Scholar 

  11. Khan A, Khan SN, Jadwisienczak WM (2010) One Step Growth of ZnO Nano-Tetrapods by Simple Thermal Evaporation Process: Structural and Optical Properties. Sci Adv Mater 2:572–577

    Google Scholar 

  12. Zeng H, Cui J, Cao B, Gibson U, Bando Y, Golberg D (2010) Electrochemical Deposition of ZnO Nanowire Arrays: Organization, Doping, and Properties. Sci Adv Mater 2:336–358

    CAS  Google Scholar 

  13. Ding R, Liu J, Jiang J, Ji X, Li X, Wu F, Huang X (2010) A General Solution Synthesis Route to ZnO-Based Nanorod Arrays on Ceramic/Silicon/Quartz Glass/Metal Substrates. Sci Adv Mater 2:396–401

    CAS  Google Scholar 

  14. Shen G, Chen D (2009) 1-D Hetero-Nanostructures: From Growth to Devices. Sci Adv Mater 1:213–226

    CAS  Google Scholar 

  15. Kaneto K, Takashima W (2001) Fabrication and characteristics of Schottky diodes based on regioregular poly (3-hexylthiophene)/Al junction. Curr Appl Phys 1:355–361

    Article  Google Scholar 

  16. Al-Heniti SH (2010) Growth and Properties of Aligned ZnO Nanowires and Their Applications to n-ZnO/p-Si Heterojunction Diodes. J Nanosci Nanotechnol 10:6606–6611

    Article  CAS  Google Scholar 

  17. Kim M-H, Suh M, Gowrishankar V, McGehee MD, Kwon Y-U (2010) Confinement Effects of P3HT in Nanochannels and Their Implications for Bulk Heterojunction Solar Cells. J Nanosci Nanotechnol 10:279–284

    Article  CAS  Google Scholar 

  18. Mridha S, Basak D (2008) ZnO/polyaniline based inorganic/organic hybrid structure: Electrical and photoconductivity properties. Appl Phys Lett 92:142111–142113

    Article  Google Scholar 

  19. Ameen S, Ansari SG, Song M, Kim YS, Shin HS (2009) Fabrication of polyaniline/ heterojunction structure using plasma enhanced polymerization technique. Superlatt Microstruct 46:745–751

    Article  CAS  Google Scholar 

  20. Umar A, Al-Hajry A, Hahn YB, Kim DH (2009) Rapid synthesis and dye-sensitized solar cell applications of hexagonal-shaped ZnO nanorods. Electrochim Acta 54:5358–5362

    Article  CAS  Google Scholar 

  21. Monkman AP, Stevens GC, Bloor D (1991) X-ray photoelectron spectroscopic investigations of the chain structure and doping mechanisms in polyaniline. J Phys D Appl Phys 24:738

    Article  CAS  Google Scholar 

  22. Barr TL (1991) Recent advances in x-ray photoelectron spectroscopy studies of oxides. J Vac Sci Technol A93:1793

    Google Scholar 

  23. Sans JA, Segura A, Royo JFS, Barber V, Fenollosa MAH, Marí B (2006) Correlation between optical and transport properties of Ga-doped ZnO thin films prepared by pulsed laser deposition. Superlatt Microstruct 39:282–290

    Article  CAS  Google Scholar 

  24. Chen Y, Kang ET, Neon KG, Lim SL, Ma ZH, Tan KL (2001) Intrinsic redox states of polyaniline studied by high-resolution X-ray photoelectron spectroscopy. Colloid Polym Sci 279:73–76

    Article  CAS  Google Scholar 

  25. Kang ET, Neoh KG, Tan KL (1998) Polyaniline: A polymer with many interesting intrinsic redox states.Prog. Polym Sci 23:277–324

    CAS  Google Scholar 

  26. Kumar SN, Gaillard F, Bouyssoux G, Sartre A (1990) High-resolution XPS studies of electrochemically synthesized conducting polyaniline films. Synth Met 36:111–127

    Article  CAS  Google Scholar 

  27. Ameen S, Akhtar MS, Ansari SG, Yang OB, Shin HS (2009) Electrophoretically deposited polyaniline/ZnO nanoparticles for p–n heterostructure diodes. Superlatt Microstruct 46:872–880

    Article  CAS  Google Scholar 

  28. Rhoderick EH (1988) Metal Semiconductor Contacts. Oxford University Press, pp. 121

  29. Sze SM (1981) Physics of Semiconductor Devices, Vol 849. Wiley, New York

    Google Scholar 

  30. Elmansouri A, Hadik N, Outzourhit A, Lachkar A, Abouelaoualim A, Achour ME, Oueriagli A, Ameziane EL (2009) Schottky Diodes and Thin Films Based on Copolymer: Poly(aniline-co-toluidine). Active Passive Electron Comp 2009:1–5

    Article  Google Scholar 

  31. Saxena IV, Santhanam KSV (2003) Junction properties of Schottky diode with chemically prepared copolymer having hexylthiophene and cyclohexylthiophene units. Curr Appl Phys 3:227–233

    Article  Google Scholar 

  32. Fabre B, Lopinski GP, Wayner DDM (2003) Photoelectrochemical Generation of Electronically Conducting Polymer-Based Hybrid Junctions on Modified Si (111) Surfaces. J Phys Chem B 107:14326–14335

    Article  CAS  Google Scholar 

  33. Ohdomari J, Tu KN (1980) Parallel silicide contacts. J Appl Phys 51:3735

    Article  CAS  Google Scholar 

  34. Im HJ, Ding Y, Pelz JP, Choyke WJ (2001) Nanometer-scale test of the Tung model of Schottky-barrier height inhomogeneity. Phys Rev B 64:075310

    Article  Google Scholar 

Download references

Acknowledgments

The Human Resource Development Center for Economic-Region-leading Industry” Project supported by the Ministry of Education, Science, & Technology (MEST) is fully acknowledged. We would like to thank Mr. Kang Jong-Gyun, Center for University-Wide Research Facilities, Chonbuk National University for his co-operation in TEM images. We also acknowledge the Korea Basic Science Institute, Jeonju branch, for utilizing their FESEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung-Shik Shin.

Additional information

Sadia Ameen, Young Soon Kim and Hyung-Shik Shin contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ameen, S., Akhtar, M.S., Kim, Y.S. et al. Polyaniline/gallium doped ZnO heterostructure device via plasma enhanced polymerization technique: Preparation, characterization and electrical properties. Microchim Acta 172, 471–478 (2011). https://doi.org/10.1007/s00604-010-0507-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0507-x

Keywords

Navigation