Skip to main content
Log in

Molecular imprinting polymer electrosensor based on gold nanoparticles for theophylline recognition and determination

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electrochemical sensor for theophylline (ThPh) was prepared by electropolymerizing o-phenylenediamine on a glassy carbon electrode in the presence of ThPh via cyclic voltammetry, followed by deposition of gold nanoparticles using a potentiostatic method. The effects of pH, ratio between template molecule and monomer, number of cycles for electropolymerization, and of the solution for extraction were optimized. The current of the electro-active model system hexacyanoferrate(III) and hexacyanoferrate(IV) decreased linearly with successive addition of ThPh in the concentration range between 4.0 × 10−7 ~ 1.5 × 10−5 mol·L−1 and 2.4 × 10−4 ~ 3.4 × 10−3 mol·L−1, with a detection limit of 1.0 × 10−7 mol·L−1. The sensor has an excellent recognition capability for ThPh compared to structurally related molecules, can be regenerated and is stable.

In this paper, an electrochemical sensor for theophylline (ThPh) was prepared by electropolymerizing o-phenylenediamine (o-PD) on a glassy carbon electrode in the presence of ThPh via cyclic voltammetry, followed by deposition of gold nanoparticles to enhance the sensitivity of the sensor. Therefore, the sensor showed a high sensitivity for ThPh determining. Peak current of [Fe(CN)6]3−/[Fe(CN)6]4− varied linearly with the concentration of ThPh in the range of 4.0×10-7~1.5×10-5 mol·L-1 and 2.4×10-4~3.4×10-3 mol·L-1, and the detection limit reached 1.0×10-7 mol·L-1. Compared to structurally related molecules, the sensor also has a high recognition capability for ThPh. With excellent regeneration property and stability, the present sensor maybe provides a new class of polymer modified electrodes for sensor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Riahi S, Mousavi MF, Bathaie SZ, Shamsipur M (2005) A novel potentiometric sensor for selective determination of theophylline: theoretical and practical investigations. Anal Chim Acta 548:192

    Article  CAS  Google Scholar 

  2. Ferapontova EE, Eva MO (2008) An RNA aptamer-based electrochemical biosensor for detection of theophylline in serum. J Am Chem Soc 130:4256

    Article  CAS  Google Scholar 

  3. Lai EP, Fafara A, VanderNoot VA (1998) Surface plasmon resonance sensors using molecularly imprinted polymers for sorbent assay of theophylline, caffeine, and xanthine. Can J Chem 76:265

    Article  CAS  Google Scholar 

  4. Saka K, Uemura K, Shintani-Ishida K, Yoshida K (2007) Acetic acid improves the sensitivity of theophylline analysis by gas chromatography–mass spectrometry. J Chromatogr B 846:240

    Article  CAS  Google Scholar 

  5. Pérez-Martínez I, Sagrado S, Medina-Hernández MJ (1995) A rapid procedure for the determination of caffeine, theophylline and theobromine in urine by micellar liquid chromatography and direct sample injection. Anal Chim Acta 304:195

    Article  Google Scholar 

  6. Tajerzadeh H, Dadashzadeh S (1995) An isocratic high-performance liquid chromatographic system for simultaneous determination of theophylline and its major metabolites in human urine. J Pharm Biomed Anal 13:1507

    Article  CAS  Google Scholar 

  7. Zydron M, Baranowska J, Baranowska I (2004) Sepatation, pre-concentration, and HPLC analysis of methylxanthines in urine samples. J Sep Sci 27:1166

    Article  CAS  Google Scholar 

  8. Brunetto MR, Gutiérrez L, Delgado Y (2007) Determination of theobromine, theophylline and caffeine in cocoa samples by a high-performance liquid chromatographic method with on-line sample cleanup in a switching-column system. Food Chem 100:459

    Article  CAS  Google Scholar 

  9. Şentürk Z, Erk N, Özkan SA, Akay C, Cevheroğlu Ş (2002) Determination of theophylline and ephedrine HCL in tablets by ratio-spectra derivative spectrophotometry and LC. J Pharm Biomed Anal 29:291

    Article  Google Scholar 

  10. Kanazawa H, Atsumi R, Matsushima Y (2000) Determination of theophylline and its metabolites in biological samples by liquid chromatography–mass spectrometry. J Chromatogr A 870:87

    Article  CAS  Google Scholar 

  11. Khorrami AR, Rashidpur A (2009) Design of a new cartridge for selective solid phase extraction using molecularly imprinted polymers: Selective extraction of theophylline from human serum samples. Biosens Bioelecron 25:647

    Article  CAS  Google Scholar 

  12. Yoshimi Y, Ohdaira R (2005) “Gate effect” of thin layer of molecularly-imprinted poly(methacrylic acid-co-ethyleneglycol dimethacrylate). Sens Actu B 73:49

    Article  Google Scholar 

  13. Kindschy LM, Alocilja EC (2005) A molecularly imprinted polymer on indium tin oxide and silicon. Biosens Bioelectron 20:2163

    Article  CAS  Google Scholar 

  14. Lee HY, Kim BS (2009) Grafting of molecularly imprinted polymers on iniferter-modified carbon nanotube. Biosens Bioelectron 25:587

    Article  Google Scholar 

  15. Lee E, Park DW (2008) Molecularly imprinted polymers immobilized on carbon nanotube. Colloids Surf A: Physicochem Eng Aspects 313:202

    Article  Google Scholar 

  16. Tominaga Y, Kubo T, Kaya K, Hosoya K (2009) Effective recognition on the surface of a polymer prepared by molecular imprinting using ionic complex. Macromolecules 42:2911

    Article  CAS  Google Scholar 

  17. Zhanga J, Wanga Y, Lva R, Xua L (2010) Electrochemical tolazoline sensor based on gold nanoparticles and imprinted poly-o-aminothiophenol film. Electro Acta 55:4039

    Article  Google Scholar 

  18. Smiechowski MF, Lvovich VF, Roy S (2006) Electrochemical detection and charanterization of proteins. Biosens Bioelectron 22:670

    Article  CAS  Google Scholar 

  19. Zhang YZ, Ma HY, Zhang KY (2009) An improved DNA biosensor built by layer-by-layer covalent attachment of multi-walled carbon nanotubes and gold nanoparticles. Electro Acta 54:2385–2391

    Article  CAS  Google Scholar 

  20. Zen JM, Yu TY (1999) Determination of theophylline in tea and drug formulation using a Nafion®:lead–ruthenium oxide pyrochlore chemically modified electrode. Talanta 50:635

    Article  CAS  Google Scholar 

  21. Sun HW, Qiao FX (2006) Characteristic of theophylline imprinted monolithic column and its application for determination of xanthine derivatives caffeine and theophylline in green tea. J Chromatogr A 1134:194

    Article  CAS  Google Scholar 

  22. Vlatakis G, Andersson LI, Muller R (1993) Drug assay using antibody mimics made by molecular imprinting. Nature 361:645

    Article  CAS  Google Scholar 

  23. Fang GZ, Tan J, Yan XP (2005) An ion-imprinted functionalized silica gel sorbent prepared by a surface imprinting technique combined with a sol−gel process for selective solid-phase extraction of cadmium(II). Anal Chem 77:1734

    Article  CAS  Google Scholar 

  24. Xie C, Liu B, Wang Z, Gao D, Guan G (2008) Molecular imprinting at walls of silica nanotubes for TNT recognition. Anal Chem 80:437

    Article  CAS  Google Scholar 

  25. Li Y, Yin XF, Chen FR, Yang HH (2006) Synthesis of magnetic molecularly imprinted polymer nanowires using a nanoporous alumina template. Macromolecules 39:4497

    Article  CAS  Google Scholar 

  26. Priego-Capote F, Ye L, Shakil S, Shamsi SA (2008) Monoclonal behavior of molecularly imprinted polymer nanoparticles in capillary electrochromatography. Anal Chem 80:2881

    Article  CAS  Google Scholar 

  27. Hoshina K, Horiyama S, Matsunaga H, Haginaka J (2009) Molecularly imprinted polymers for simultaneous determination of antiepileptics in river water samples by liquid chromatography–tandem mass spectrometry. J Chromatogr A 1216:4957

    Article  CAS  Google Scholar 

  28. Brüggemann O, Freitag R, Whitcombe MJ (1997) Comparison of polymer coatings of capillaries for capillary electrophoresis with respect to their applicability to molecular imprinting and electrochromatography. J Chromatogr A 781:43

    Article  Google Scholar 

  29. Ariffin MM, Miller EI, Cormack PAG, Anderson RA (2007) Molecularly imprinted solid-phase extraction of diazepam and its metabolites from hair samples. Anal Chem 79:256

    Article  CAS  Google Scholar 

  30. Yan H, Qiao F, Row KH (2007) Molecularly imprinted-matrix solid-phase dispersion for selective extraction of five fluoroquinolones in eggs and tissue. Anal Chem 79:8242

    Article  CAS  Google Scholar 

  31. Gong C, Wong KL, Lam MHW (2008) Photoresponsive molecularly imprinted hydrogels for the photoregulated release and uptake of pharmaceuticals in the aqueous media. Chem Mater 20:1353

    Article  Google Scholar 

  32. Riskin M, Tel-Vered R, Bourenko T, Granot E, Willner I (2008) Imprinting of molecular recognition sites through electropolymerization of functionalized Au nanoparticles: development of an electrochemical TNT sensor based on π-Donor−acceptor interactions. J Am Chem Soc 130:9726

    Article  CAS  Google Scholar 

  33. Xu X, Zhou G, Li H, Liu Q, Zhang S, Kong J (2009) A novel molecularly imprinted sensor for selectively probing imipramine created on ITO electrodes modified by Au nanoparticles. Talanta 78:26

    Article  CAS  Google Scholar 

  34. Chuang SW, Rick J, Chou TC (2009) Electrochemical characterisation of a conductive polymer molecularly imprinted with an Amadori compound. Biosens Bioelectron 24:3170

    Article  CAS  Google Scholar 

  35. Mazzotta E, Picc RA, Malitesta C, Piletsky SA, Piletska EV (2008) Development of a sensor prepared by entrapment of MIP particles in electrosynthesised polymer films for electrochemical detection of ephedrine. Biosens Bioelectron 23:1152

    Article  CAS  Google Scholar 

  36. Du D, Chen SZ, Cai J, Tao Y, Tu H, Zhang A (2008) Recognition of dimethoate carried by bi-layer electrodoposition of silver nanoparticles and imprinted poly-o-ohenylenediamne. Microchem J 53:6589

    CAS  Google Scholar 

  37. Zhang Z, Nie L, Yao S (2006) Electrodeposited sol–gel-imprinted sensing film for cytidine recognition on Au-electrode surface. Talanta 69:435

    Article  CAS  Google Scholar 

  38. Kan X, Zhao Y, Geng Z, Wang Z, Zhu JJ (2008) Composites of multiwalled carbon nanotubes and molecularly imprinted polymers for dopamine recognition. J Phys Chem C 112:4849

    Article  CAS  Google Scholar 

  39. Ulyanova YV, Blackwell AE, Minteer SD (2006) Poly(methylene green) employed as molecularly imprinted polymer matrix for electrochemical sensing. Analyst 131:257

    Article  CAS  Google Scholar 

  40. Kindschy LM, Alocilja EC (2007) Development of a molecularly imprinted biomimetic electrode. Sensors 7:1630

    Article  CAS  Google Scholar 

  41. Wang ZH, Kang JW, Liu XY, Ma YJ (2007) Capacitive detection of theophylline based on electropolymerized molecularly imprinted polymer. Int J Polym Anal Charact 12:131

    Article  CAS  Google Scholar 

  42. Liu Y, Song QJ, Wang L (2009) Development and characterization of an amperometric sensor for triclosan detection based on electropolymerized molecularly imprinted polymer. Microchem J 91:222

    Article  CAS  Google Scholar 

  43. Liu S, Li Y, Li J, Jiang L (2005) Enhancement of DNA immobilization and hybridization on gold electrode modified by nanogold aggregates. Biosens Bioelectron 21:789

    Article  Google Scholar 

  44. Sanz VC, Mena ML, González-Cortés A, Yáñez-Sedeño P, Pingarrón JM (2005) Development of a tyrosinase biosensor based on gold nanoparticles-modified glassy carbon electrodes: Application to the measurement of a bioelectrochemical polyphenols index in wines. Anal Chim Acta 528:1

    Article  Google Scholar 

  45. Zhang ZH, Li H (2005) Effect of the extraction method on the MIP-Sensor. Anal Lett 38:203

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the support of the National Natural Science Foundation of China for General program (20675001) and young program (21005002), Anhui University Provincial Natural Science Foundation Key program (KJ2010A138), Dr Start-up Fundation of Anhui Normal University (160-750834).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianwen Kan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kan, X., Liu, T., Zhou, H. et al. Molecular imprinting polymer electrosensor based on gold nanoparticles for theophylline recognition and determination. Microchim Acta 171, 423–429 (2010). https://doi.org/10.1007/s00604-010-0455-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0455-5

Keywords

Navigation