Skip to main content
Log in

The self-assembly, characterization and application of hemoglobin immobilized on Fe3O4@Pt core-shell nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Direct electron transfer is demonstrated to occur between an electrode and hemoglobin that was immobilized on a film of Fe3O4@Pt-chitosan (Fe3O4@Pt-CS). Magnetic nanoparticles composed of Fe3O4 were prepared by a chemical coprecipitation method, and platinum nanoparticles were deposited on the Fe3O4 surface to form novel core-shell nanocomposites. In phosphate buffer solution of pH 7.0, the hemoglobin-Fe3O4@Pt-CS assembly on a modified glassy carbon electrode exhibited a couple of well-defined and quasi-reversible redox peaks. The formal potential E0′ was about −0.35 V. The electrode displayed excellent electrocatalytic activity towards oxygen and hydrogen peroxide reduction without the need for an electron mediator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhao X, Mai Z, Kang X, Zou X (2008) Direct electrochemistry and electrocatalysis of horseradish peroxidase based on clay-chitosan-gold nanoparticle nanocomposite. Biosens Bioelectron 23:1032

    Article  CAS  Google Scholar 

  2. Wang Z, Li M, Su P, Zhang Y, Shen Y, Han D, Ivaska A, Niu L (2008) Direct electron transfer of horseradish peroxidase and its electrocatalysis based on carbon nanotube/thionine/gold composites. Electrochem Commun 10:306

    Article  CAS  Google Scholar 

  3. Zhou H, Lu TH, Shi HX, Dai ZH, Huang XH (2008) Direct electrochemistry and electrocatalysis of catalase immobilized onmulti-wall carbon nanotubes modified glassy carbon electrode and its application. J Electroanal Chem 612:173

    Article  CAS  Google Scholar 

  4. Zhu JT, Shi CG, Xu JJ, Chen HY (2007) Direct electrochemistry and electrocatalysis of hemoglobin on undoped nanocrystalline diamond modified glassy carbon electrode. Bioelectrochemistry 71:243

    Article  CAS  Google Scholar 

  5. Wang YH, Gu HY (2009) Hemoglobin co-immobilized with silver-silver oxide nanoparticles on a bare silver electrode for hydrogen peroxide electroanalysis. Microchim Acta 164:41

    Article  CAS  Google Scholar 

  6. Rusling JF (1998) Enzyme Bioelectrochemistry in cast biomembrane-like films. Acc Chem Res 31:363

    Article  CAS  Google Scholar 

  7. Hou SF, Yang KS, Fang HQ, Chen HY (1998) Amperometric glucose enzyme electrode by immobilizing glucose oxidase in multilayers on self-assembled monolayers surface. Talanta 47:561

    Article  CAS  Google Scholar 

  8. Du D, Huang X, Cai J, Zhang AD, Ding JW, Chen SZ (2007) An amperometric acetylthiocholine sensor based on immobilization of acetylcholinesterase on a multiwall carbon nanotube-crosslinked chitosan composite. Anal Bioanal Chem 387:1059

    Article  CAS  Google Scholar 

  9. Liu Y, Jiang QY, Lu SY, Zhang Y, Gu HY (2009) Immobilization of hemoglobin on the gold colloid modified glassy carbon electrode for preparing a novel hydrogen peroxide biosensor. Appl Biochem Biotechnol 29:908

    Google Scholar 

  10. Gu HY, Yu AM, Chen HY (2001) Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid-cysteamine-modified gold electrode. J Electroanal Chem 516:119

    Article  CAS  Google Scholar 

  11. Luque GL, Rodríguez MC, Rivas GA (2005) Glucose biosensors based on the immobilization of copper oxide and glucose oxidase within a carbon paste matrix. Talanta 66:467

    Article  CAS  Google Scholar 

  12. Liu YL, Yang YH, Yang HF, Liu ZM, Shen GL, Yu RQ (2005) Nanosized flower-like ZnO synthesized by a simple hydrothermal method and applied as matrix for horseradish peroxidase immobilization for electro-biosensing. J Inorg Biochem 99:2046

    Article  CAS  Google Scholar 

  13. Topoglidis E, Campbell CJ, Cass AEG, Durrani JR (2006) Nitric oxide biosensors based on the immobilization of hemoglobin on mesoporous titania electrodes. Electroanal 18:882

    Article  CAS  Google Scholar 

  14. Mosbach K, Anderson L (1977) Magnetic ferrofluids for preparation of magnetic polymers and their application in affinity chromatography. Nature 270:259

    Article  CAS  Google Scholar 

  15. Cheng GF, Zhao J, Tu YH, He PG, Fang YZ (2005) A sensitive DNA electrochemical biosensor based on magnetite with a glassy carbon electrode modified by muti-walled carbon nanotubes in polypyrrole. Anal Chim Acta 533:11

    Article  CAS  Google Scholar 

  16. Itamar W, Eugenii K (2003) Magnetic Control of Electrocatalytic and Bioelectrocatalytic Processes. Angew Chem Int Ed 42:4576

    Article  Google Scholar 

  17. Sieben S, Bergemann C, Lubbe A, Brockmann B, Rescheleit D (2001) Comparison of different particles and methods for magnetic isolation of circulating tumor cells. J Magn Magn Mater 225:175

    Article  CAS  Google Scholar 

  18. Josephson L, Tung CH, Moore A, Weissleder R (1999) High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjugate Chem 10:186

    Article  CAS  Google Scholar 

  19. Chakraborty A (1999) Kinetics of the reduction of hematite to magnetic near its Curie transition. J Magn Magn Mater 204:57

    Article  CAS  Google Scholar 

  20. Pang LL, Li JS, Jiang JH, Le Y, Shen GL, Yu RQ (2007) A novel detection method for DNA point mutation using QCM based on Fe3O4/Au core/shell nanoparticle and DNA ligase reaction. Sens Actuators B 127:311

    Article  Google Scholar 

  21. Zhang H, Zhong X, Xu JJ, Chen HY (2008) Fe3O4/polypyrrole/Au nanocomposites with core/shell/shell structure: synthsis, characterization, and their electrochemical properties. Langmuir 24:13748

    Article  CAS  Google Scholar 

  22. Yu CM, Guo JW, Gu HY (2009) Direct electrochemical behavior of hemoglobin at surface of Au@Fe3O4 magnetic nanoparticles. Microchim Acta 166:215

    Article  CAS  Google Scholar 

  23. Lily B, Marco F, Ran TV, Omer Y, Itamar W (2008) Following the Biocatalytic Activities of Glucose Oxidase by Electrochemically Cross-Linked Enzyme-Pt Nanoparticles Composite Electrodes. Anal Chem 80:8253

    Article  Google Scholar 

  24. Jennifer LL, David AF, Matthew BS, Peter S, Mary EW (2004) Synthesis of Fe Oxide Core/Au Shell Nanoparticles by Iterative Hydroxylamine Seeding. Nano Lett 4:719

    Article  Google Scholar 

  25. Young SK, Subhash R, John FR, Pieter S (1996) Synthesis and Characterization of Nanometer-Size Fe3O4 and γ-Fe2O3 Particles. Chem Mater 8:2209

    Article  Google Scholar 

  26. Zheng N, Zhou X, Yang WY, Li XJ, Yuan ZB (2009) Direct electrochemistry and electrocatalysis of hemoglobin immobilized in a magnetic nanoparticles-chitosan film. Talanta 79:780

    Article  CAS  Google Scholar 

  27. Laviron E (1979) The use of linear potential sweep voltammetry and of a.c. voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes. J Electroanal Chem 100:263

    Article  CAS  Google Scholar 

  28. Sun W, Li XQ, Wang Y, Zhao RJ, Jiao K (2009) Electrochemistry and electrocatalysis of hemoglobin on multi-walled carbon nanotubes modified carbon ionic liquid electrode with hydrophilic EMIMBF4 as modifier. Electrochim Acta 54:4141

    Article  CAS  Google Scholar 

  29. Xu YX, Hu CG, Hu SS (2009) Single-chain surfactant monolayer on carbon paste electrode and its application for the studies on the direct electron transfer of hemoglobin. Bioelectrochemistry 74:254

    Article  CAS  Google Scholar 

  30. Shan D, Cheng GX, Zhu DB, Xue HG, Cosnier S, Ding SN (2009) Direct electrochemistry of hemoglobin in poly(acrylonitrile-co-acrylic acid) and its catalysis to H2O2. Sens Actuators B 137:259

    Article  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (Grant numbers: 20675042; 20875051), the Natural Science Foundation of Jiangsu Province (Grant number: BK2009152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Ying Gu.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM

(DOC 352 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, H., Pan, ZQ. & Gu, HY. The self-assembly, characterization and application of hemoglobin immobilized on Fe3O4@Pt core-shell nanoparticles. Microchim Acta 168, 239–244 (2010). https://doi.org/10.1007/s00604-009-0279-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-009-0279-3

Keywords

Navigation