Skip to main content
Log in

Sensor for traces of hydrogen peroxide using an electrode modified by multiwalled carbon nanotubes, a gold-chitosan colloid, and Prussian blue

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electrochemical sensor for trace levels of hydrogen peroxide (HP) was fabricated by the self-assembly of multi-walled carbon nanotubes, a gold-chitosan colloid, followed by electrodeposition of Prussian blue. The electrode was characterized by cyclic voltammetry, electrochemical impedance spectroscopy and other methods. The electrode shows well-defined peaks at 101 mV and 193 mV, the reduction current is linearly related to the concentration of HP in the range from 4.0 to and 19.6 μM. The detection limit of 3.36 μM (at an S/N of 3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig.3
Fig.4
Fig. 5
Fig.6

Similar content being viewed by others

References

  1. Zhao F, Wu X, Wang M et al (2004) Electrochemical and bioelectrochemistry properties of room-temperature ionic liquids and carbon composite materials. Anal Chem 76:4960

    Article  CAS  Google Scholar 

  2. Xu Z, Gao N, Chen H, Dong S (2005) Biopolymer and carbon nanotubes interface prepared by self-assembly for studying the electrochemistry of microperoxidase-11. Langmuir 21:10808

    Article  CAS  Google Scholar 

  3. Zhao HT, Ju HX (2006) Multilayer membranes for glucose biosensing via layer-by-layer assembly of multiwall carbon nanotubes and glucose oxidase. Anal Biochem 350:138

    Article  CAS  Google Scholar 

  4. Wang L, Guo SJ, Huang LJ, Dong SJ (2007) Alternate assemblies of poly-electrolyte functionalized carbon nanotubes and platinum nanoparticles as tunable electrocatalysts for dioxygen reduction. Electrochem Commun 9:827

    Article  CAS  Google Scholar 

  5. Hong J, Ghourchian H, Movahedi AAM (2006) Direct electron transfer of redox proteins on a Nafion-cysteine modified gold electrode. Electrochem Commun 8:1572

    Article  CAS  Google Scholar 

  6. Li J, Qiu JD, Xu JJ, Chen HY, Xia XH (2007) The synergistic effect of prussian-blue-grafted carbon nanotube/poly(4-vinylpyridine) composites for amperometric sensing. Adv Funct Mater 17:1574

    Article  CAS  Google Scholar 

  7. Zhang D, Zhang K, Yao YL, Xia XH, Chen HY (2004) Multilayer assembly of prussian blue nanoclusters and enzyme-immobilized poly(toluidine blue) films and its application in glucose biosensor construction. Langmuir 20:7303

    Article  CAS  Google Scholar 

  8. Wang L, Guo SJ, Hu XG, Dong SJ (2008) Layer-by-layer assembly of carbon nanotubes and prussian blue nanoparticles: a potential tool for biosensing devices. Colloid Surf A 317:394

    Article  CAS  Google Scholar 

  9. Curulli A, Valentini F, Orlanduci S, Terranova ML, Palleschi G (2004) Pt based enzyme electrode probes assembled with Prussian blue and conducting polymer nanostructures. Biosens Bioelectron 20:1223

    Article  CAS  Google Scholar 

  10. Ricci F, Palleschi G (2005) Sensor and biosensor preparation, optimization and applications of prussian blue modified electrodes. Biosens Bioelectron 21:389

    Article  CAS  Google Scholar 

  11. Collinson MM, Moore N, Deep PN, Kanungo M (2003) Electrodeposition of porous silicate films from ludox colloidal silica. Langmuir 19:7669

    Article  CAS  Google Scholar 

  12. Xue MH, Xu Q, Zhou M, Zhu JJ (2006) In situ immobilization of glucose oxidase in chitosan-gold nanoparticle hybrid film on Prussian Blue modified electrode for high-sensitivity glucose detection. Electrochem Commun 8:1468

    Article  CAS  Google Scholar 

  13. Duan GP, Li YF, Wen Y et al (2008) Direct electrochemistry and electrocatalysis of hemoglobin/ZnO-chitosan/nano-Au modified glassy carbon electrode. Electroanalysis 22:2383

    Google Scholar 

  14. Qu S, Huang F, Chen G, Yu S, Kong J (2007) Magnetic assembled electrochemical platform using Fe2O3 filled carbon nanotubes and enzyme. Electrochem Commun 9:2812

    Article  CAS  Google Scholar 

  15. Jia J (2008) Hydrogen peroxide biosensor based on horseradish peroxidase-Au nanoparticles at a viologen grafted glassy carbon electrode. Microchim Acta 163:237

    Article  CAS  Google Scholar 

  16. Doron A, Katz E, Willner I (1995) Organization of Au colloids as monolayer films onto ITO glass surfaces: application of the metal colloid films as base interfaces to construct redox-active monolayers. Langmuir 11:1313

    Article  CAS  Google Scholar 

  17. Jana NR, Murphy CJ (2001) Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir 17:6782

    Article  CAS  Google Scholar 

  18. Zhang Q, Zhang L, Li JH (2008) Fabrication and electrochemical study of monodisperse and size controlled prussian blue nanoparticles protected by biocompatible polymer. Electrochim Acta 53:3050

    Article  CAS  Google Scholar 

  19. Niu LM, Li NB, Kong WJ (2007) Electrochemical behavior of uric acid at a penicillamine self-assembled gold electrode. Microchim Acta 159:57

    Article  CAS  Google Scholar 

  20. Yang G, Yuan R, Chai YQ (2008) A high-sensitive amperometric hydrogen peroxide biosensor based on the immobilization of hemoglobin on gold colloid/L-cysteine/gold colloid/nanoparticles Pt-chitosan composite film-modified platinum disk electrode. Colloid Surf B 61:93

    Article  CAS  Google Scholar 

  21. Luo HX, Shi ZJ, Li NQ, Gu ZN, Zhuang QK (2001) Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. Anal Chem 73:915

    Article  CAS  Google Scholar 

  22. Chen D, Wang G, Li JH (2007) Interfacial bioelectrochemistry: fabrication, properties and applications of functional nanostructured biointerfaces. J Phys Chem C 111:2351

    Article  CAS  Google Scholar 

  23. Zou YJ, Sun LX, Xu F (2007) Prussian blue electrodeposited on MWNTs–PANI hybrid composites for H2O2 detection. Talanta 72:437

    Article  CAS  Google Scholar 

  24. Qiu JD, Peng HZ, Liang RP, Li J, Xia XH (2007) Synthesis, characterization, and immobilization of prussian blue modified Au nanoparticles: application to electrocatalytic reduction of H2O2. Langmuir 23:2133

    Article  CAS  Google Scholar 

  25. Fernandes R, Wu L, Chen T (2003) Electrochemically induced deposition of a polysaccharide hydrogel onto a patterned surface. Langmuir 19:4058

    Article  CAS  Google Scholar 

  26. Zhao W, Xu JJ, Shi CG, Chen HY (2005) Multilayer membranes via layer-by-layer deposition of organic polymer protected prussian blue nanoparticles and glucose oxidase for glucose biosensing. Langmuir 21:9630

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National High-tech R&D program (863 program, 2007AA06Z402), Project of the Foundation of Shanghai Municipal Government (08520510400), Shanghai Leading Academic Discipline Project (S30406), Leading Academic Discipline Project of Shanghai Normal University(DZL706) and Key Laboratory of Resource Chemistry of Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shasheng Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Zhao, G., Yue, Z. et al. Sensor for traces of hydrogen peroxide using an electrode modified by multiwalled carbon nanotubes, a gold-chitosan colloid, and Prussian blue. Microchim Acta 167, 167–172 (2009). https://doi.org/10.1007/s00604-009-0238-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-009-0238-z

Keywords

Navigation