Skip to main content
Log in

Simple and sensitive detection method for chromium(VI) in water using glutathione—capped CdTe quantum dots as fluorescent probes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Water-soluble and stable CdTe quantum dots (QDs) were synthesized in aqueous solution with glutathione (GSH) as the stabilizer. GSH is employed by nature to detoxify heavy metal ions. As a result of specific interaction, the fluorescence intensity of GSH-capped QDs is selectively reduced in the presence of Cr(VI). Under the optimum conditions, the relative fluorescence intensity decreases linearly with the Cr(VI) concentration in the range from 0.01 to 1.00 µg mL−1, and the detection limit is 0.008 µg mL−1. The luminescence response of the QDs to ions markedly depended on the particle size, and a new strategy for tuning the selectivity of luminescent QDs to certain ions without changing the capping layer of the QDs can be achieved by changing the crystallite size of the QDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kotas J, Stasicka Z (2000) Chromium occurrence in the environment and methods of its speciation. Environ Pollut 107:263

    Article  CAS  Google Scholar 

  2. Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Intern 31:739

    Article  CAS  Google Scholar 

  3. For the list of drinking water contaminants in China, see: http://www.envir.gov.cn/law/standard/6.htm; for that in USA, see: http://www.epa.gov/safewater/mcl.html#mcls

  4. Yuan D, Fu D, Wang R, Yuan J (2008) Rapid determination of chromium(VI) in electroplating waste water by use of a spectrophotometric flow injection system. Spectrochim Acta Part A 71:276

    Article  Google Scholar 

  5. Pressman MAS, Aldstadt JH (2003) A comparative study of diffusion samplers for the determination of hexavalent chromium by sequential injection spectrophotometry. Microchem. J. 74:47

    Article  Google Scholar 

  6. de Ruiter G, Gupta T, Van der Boom ME (2008) Selective optical recognition and quantification of parts per million levels of Cr6+ in aqueous and organic media by immobilized polypyridyl complexes on glass. J Am Chem Soc 130:2744

    Article  Google Scholar 

  7. Xiang Y, Mei L, Li N, Tong A (2007) Sensitive and selective spectrofluorimetric determination of chromium(VI) in water by fluorescence enhancement. Anal Chim Acta 581:132

    Article  CAS  Google Scholar 

  8. Hong S, Chen H, Wang L, Wang L (2008) Luminescent and magnetic Fe3O4/Py/PAM nanocomposites for the chromium(VI) determination. Spectrochim Acta Part A 70:449

    Article  Google Scholar 

  9. She S, Zhou Y, Zhang L, Wang L, Wang L (2005) Preparation of fluorescent polyvinyl alcohol keto-derivatives nanoparticles and selective determination of chromium(VI). Spectrochim Acta Part A 62:711

    Article  Google Scholar 

  10. Zhang Z, Qin W, Lu S (1995) Chemiluminescence flow system for the monitoring of chromium(VI) in water. Anal Chim Acta 318:71

    Article  CAS  Google Scholar 

  11. Menéndez-Alonso E, Hill SJ, Foulkes ME, Crighton JS (1999) Speciation and preconcentration of CrIII and CrVI in waters by retention on ion exchange media and determination by EDXRF. J Anal At Spectrom 14:187

    Article  Google Scholar 

  12. Séby F, Charles S, Gagean M, Garraud H, Donard OFX (2003) Chromium speciation by hyphenation of high-performance liquid chromatography to inductively coupled plasma-mass spectrometry-study of the influence of interfering ions. J Anal At Spectrom 18:1386

    Article  Google Scholar 

  13. Anthemidis AN, Zachariadis GA, Kougoulis JS, Stratis JA (2002) Flame atomic absorption spectrometric determination of chromium(VI) by on-line preconcentration system using a PTFE packed column. Talanta 57:15

    Article  CAS  Google Scholar 

  14. Sun Z, Liang P (2008) Determination of Cr(III) and total chromium in water samples by cloud point extraction and flame atomic absorption spectrometry. Microchim. Acta 162:121

    Article  CAS  Google Scholar 

  15. Motomizu S, Jitmanee K, Oshima M (2003) On-line collection/concentration of trace metals for spectroscopic detection via use of small-sized thin solid phase (STSP) column resin reactors: Application to speciation of Cr(III) and Cr(VI). Anal Chim Acta 499:149

    Article  CAS  Google Scholar 

  16. Jena BK, Raj CR (2008) Highly sensitive and selective electrochemical detection of sub-ppb level chromium(VI) using nano-sized gold particle. Talanta 76:161

    Article  CAS  Google Scholar 

  17. Tsai MC, Chen PY (2008) Voltammetric study and electrochemical detection of hexavalent chromium at gold nanoparticle-electrodeposited indium tinoxide (ITO) electrodes in acidic media. Talanta 76:533

    Article  CAS  Google Scholar 

  18. Arancibia V, Valderrama M, Silva K, Tapia T (2003) Determination of chromium in urine samples by complexation–supercritical fluid extraction and liquid or gas chromatography. J Chromatogr B 785:303

    Article  CAS  Google Scholar 

  19. Han Z, Qi L, Shen G, Liu W, Chen Y (2007) Determination of chromium(VI) by surface plasmon field-enhanced resonance light scattering. Anal Chem 79:5862

    Article  CAS  Google Scholar 

  20. Tsay JM, Pflughoefft M, Bentolila LA, Weiss S (2004) Hybrid approach to the synthesis of highly luminescent CdTe/ZnS and CdHgTe/ZnS nanocrystals. J Am Chem Soc 126:1926

    Article  CAS  Google Scholar 

  21. Sun J, Wang LW, Buhro WE (2008) Synthesis of cadmium telluride quantum wires and the similarity of their effective band gaps to those of equidiameter cadmium telluride quantum dots. J Am Chem Soc 130:7997

    Article  CAS  Google Scholar 

  22. Algar WR, Krull UJ (2008) Quantum dots as donors in fluorescence resonance energy transfer for the bioanalysis of nucleic acids, proteins, and other biological molecules. Anal Bioanal Chem 391:1609

    Article  CAS  Google Scholar 

  23. Xia YS, Zhu CQ (2009) Interaction of CdTe nanocrystals with thiol-containing amino acids at different pH: a fluorimetric study. Microchim Acta 164:29

    Article  CAS  Google Scholar 

  24. Sun JF, Liu LH, Ren CL, Chen XG, Hu ZD (2008) A feasible method for the sensitive and selective determination of vitamin B1 with CdSe quantum dots. Microchim Acta 163:271

    Article  CAS  Google Scholar 

  25. Dong F, Hu KW, Han HY, Liang JG (2009) A novel method for methimazole determination using CdSe quantum dots as fluorescence probes. Microchim Acta 165:195

    Article  CAS  Google Scholar 

  26. Chen Y, Rosenzweig Z (2002) Luminescent CdS quantum dots as selective ion probes. Anal Chem 74:5132

    Article  CAS  Google Scholar 

  27. Chen HQ, Liang AN, Wang L, Liu Y, Qian BB (2009) Ultrasensitive determination of Cu2+ by synchronous fluorescence spectroscopy with functional nanoparticles. Microchim Acta 164:453

    Article  CAS  Google Scholar 

  28. Lai SJ, Chang XJ, Fu C (2009) Cadmium sulfide quantum dots modified by chitosan as fluorescence probe for copper (II) ion determination. Microchim Acta 165:39

    Article  CAS  Google Scholar 

  29. Fernández-Argüelles MT, Jin WJ, Costa-Fernández J, Pereir R, Sanz-Medel A (2005) Surface-modified CdSe quantum dots for the sensitive and selective determination of Cu(II) in aqueous solutions by luminescent measurements. Anal Chim Acta 549:20

    Article  Google Scholar 

  30. Wang JH, Wang HQ, Zhang HL, Li XQ, Hua XF, Cao YC, Huang ZL, Zhao YD (2007) Purification of denatured bovine serum albumin coated CdTe quantum dots for sensitive detection of silver(I) ions. Anal Bioanal Chem 388:969

    Article  CAS  Google Scholar 

  31. Liang JG, Ai XP, He ZK, Pang DW (2004) Functionalized CdSe quantum dots as selective silver ion chemodosimeter. Analyst 129:619

    Article  CAS  Google Scholar 

  32. Ali EM, Zheng Y, Yu H, Ying JY (2007) Ultrasensitive Pb2+ detection by glutathione-capped quantum dots. Anal Chem 79:9452

    Article  CAS  Google Scholar 

  33. Wu H, Liang J, Han H (2008) A novel method for the determination of Pb2+ based on the quenching of the fluorescence of CdTe quantum dots. Microchim. Acta 161:81

    Article  CAS  Google Scholar 

  34. Cai ZX, Yang H, Zhang Y, Yan XP (2006) Preparation, characterization and evaluation of water-soluble l-cysteine-capped-CdS nanoparticles as fluorescence probe for detection of Hg(II) in aqueous solution. Anal Chim Acta 559:234

    Article  CAS  Google Scholar 

  35. Li H, Zhang Y, Wang X, Xiong D, Bai Y (2007) Calixarene capped quantum dots as luminescent probes for Hg2+ ions. Mater Lett 61:1474

    Article  CAS  Google Scholar 

  36. Banerjee S, Kar S, Santra S (2008) A simple strategy for quantum dot assisted selective detection of cadmium ions. Chem Commun 3037

  37. Li H, Zhang Y, Wang X Q (2007) l-Carnitine capped quantum dots as luminescent probes for cadmium ions. Sensor Actuat. B-Chem.127: 593

    Google Scholar 

  38. Jin W J, Fernandez-Arguelles M T, Costa-Fernandez J M, Pereiro R, Sanz-Medel A (2005) Photoactivated luminescent CdSe quantum dots as sensitive cyanide probes in aqueous solutions. Chem Commun 883

  39. Jin WJ, Costa-Fernández JM, Pereiro R, Sanz-Medel A (2004) Surface-modified CdSe quantum dots as luminescent probes for cyanide determination. Anal Chim Acta 522:1

    Article  CAS  Google Scholar 

  40. Touceda-Varela A, Stevenson E I, Galve-Gasión J A, Dryden D T F, Mareque-Rivas J C (2008) Selective turn-on fluorescence detection of cyanide in water using hydrophobic CdSe quantum dots. Chem Commun 1998

  41. Dolphin D, Avramovic O, Poulson R, Eds (1989) Glutathione. Chemical, Biochemical, and Medical Aspects, Part A. John Wiley & Sons, New York, pp 147-186

  42. E. M. Kosower, Glutathione: Metabolism and Function. I. M. Arias, W. B. Jacoby, Eds.; Raven Press: New York, 1976; pp 1–15.

  43. Grill E, Winnacker EL, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230:674

    Article  CAS  Google Scholar 

  44. Zhang H, Zhou Z, Yang B, Gao M (2003) The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles. J Phys Chem B 107:8

    Article  CAS  Google Scholar 

  45. Yu WW, Quad L, Goo W, Peng X (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15:2854

    Article  CAS  Google Scholar 

  46. Connett PH, Wetterhahn KE (1986) Reaction of chromium(VI) with thiols: pH dependence of chromium(VI) thio ester formation. J Am Chem Soc 108:1842

    Article  CAS  Google Scholar 

  47. The national standards in People’s Republic of China. The determination of Cr(VI) in water-diphenycarbazine photometry, GB 1467–1487.

  48. Henglein A (1989) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 89:1861

    Article  CAS  Google Scholar 

  49. Levina A, Lay PA (2004) Solution structures of chromium(VI) complexes with glutathione and model thiols. Inorg Chem 43:324

    Article  CAS  Google Scholar 

  50. Connett PH, Wetterhahn KE (1985) In vitro reaction of the carcinogen chromate with cellular thiols and carboxylic acids. J Am Chem Soc 107:4282

    Article  CAS  Google Scholar 

  51. Li B, Wang D, Lv J, Zhang Z (2006) Chemometrics-assisted simultaneous determination of cobalt(II) and chromium(III) with flow-injection chemiluminescence method. Spectrochim Acta Part A 65:67

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant No. 20405009) and by the Key Project of Chinese Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoxin Li.

Elecrtonic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 76 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Xu, C. & Li, B. Simple and sensitive detection method for chromium(VI) in water using glutathione—capped CdTe quantum dots as fluorescent probes. Microchim Acta 166, 61–68 (2009). https://doi.org/10.1007/s00604-009-0164-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-009-0164-0

Keywords

Navigation