Skip to main content

Advertisement

Log in

Component design and testing for a miniaturised autonomous sensor based on a nanowire materials platform

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

We present the design considerations of an autonomous wireless sensor and discuss the fabrication and testing of the various components including the energy harvester, the active sensing devices and the power management and sensor interface circuits. A common materials platform, namely, nanowires, enables us to fabricate state-of-the-art components at reduced volume and show chemical sensing within the available energy budget. We demonstrate a photovoltaic mini-module made of silicon nanowire solar cells, each of 0.5 mm2 area, which delivers a power of 260 μW and an open circuit voltage of 2 V at one sun illumination. Using nanowire platforms two sensing applications are presented. Combining functionalised suspended Si nanowires with a novel microfluidic fluid delivery system, fully integrated microfluidic–sensor devices are examined as sensors for streptavidin and pH, whereas, using a microchip modified with Pd nanowires provides a power efficient and fast early hydrogen gas detection method. Finally, an ultra-low power, efficient solar energy harvesting and sensing microsystem augmented with a 6 mAh rechargeable battery allows for less than 20 μW power consumption and 425 h sensor operation even without energy harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  • Barton J, Harte S, Jung E (2008) Distributed, embedded sensor and actuator platforms. In: Delaney K (ed) Augmented materials and smart objects: building ambient intelligence through microsystems technology. Springer Science + Business Media, New York, pp 105–129

  • Von Lewis FA (1967) The palladium hydrogen system. Academic Press, London-New York. 1. Aufl., XII, 178 S., zahlr. Abb., geb. 45 s

  • Buitrago E, Fernández-Bolaños M, Ionescu AM (2012) Vertically stacked Si nanostructures for biosensing applications. Microelectron Eng 97:345–348

    Article  Google Scholar 

  • Buitrago E, Fagas G, Badia MF-B, Georgiev YM, Berthomé M, Ionescu AM (2013a) Junctionless silicon nanowire transistors for the tunable operation of a highly sensitive, low power sensor. Sens Actuators B 183:1–10

    Article  Google Scholar 

  • Buitrago E, Badia MF-B, Georgiev YM, Yu R, Lotty O, Holmes JD, Nightingale AM, Ionescu AM (2013b) Functionalised 3D 7×20 array of vertically stacked SiNW FETs for streptavidin sensing. In: 71st annual device research conference (DRC), Notre Dame, IN

  • Chen Y, Wang X, Erramilli S, Mohanty P, Kalinowski A (2006) Silicon based nanoelectronic field-effect pH sensor with local gate control. Appl Phys Lett 89(22):223512/1–223512/3

    Google Scholar 

  • Chen G, Ghaed H, Haque R, Wieckowski M, Yejoong K, Gyouho K, Fick D, Daeyeon K, Mingoo S, Wise K, Blaauw D, Sylvester D (2011) A cubic-millimeter energy-autonomous wireless intraocular pressure monitor. In: Proceedings of the IEEE international solid-state circuits conference, San Francisco, CA, USA, pp 310–312

  • Conibeer G (2007) Third-generation photovoltaics. Mater Today 10(11):42–50

    Article  Google Scholar 

  • Cui Y, Lieber CM (2001) Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291(5505):851–853

    Article  Google Scholar 

  • Cui Y, Wei Q, Park H, Lieber C (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533):1289–1292

    Article  Google Scholar 

  • Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70(23):4974–4984

    Article  Google Scholar 

  • Fasoli A, Milne WI (2012) Overview and status of bottom-up silicon nanowire electronics. Mat Sci Sem Proc 15(6):601–614

    Article  Google Scholar 

  • Flanagan TB, Oates WA (1991) The palladium-hydrogen system. Annu Rev Mater Sci 21(1):269–304

    Article  Google Scholar 

  • Georgiev YM, Yu R, Petkov N, Lotty O, Nightingale AM, deMello JC, Duffy R, Holmes JD (2013) Silicon and germanium junctionless nanowire transistors for sensing and digital electronics applications. In: Nazarov A, Balestra F, Flandre D, Kilchytska V (eds) Functional nanomaterials and devices for electronics, sensors and energy harvesting. Springer, Berlin

    Google Scholar 

  • Gislason D (2008) ZigBee wireless networking. Newnes Publications, London

    Google Scholar 

  • Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2012) Solar cell efficiency tables. Prog Photovolt Res Appl 20(5):606–614

    Article  Google Scholar 

  • Hübert T, Boon-Brett L, Black G, Banach U (2011) Hydrogen sensors—a review. Sens Actuators B Chem 157(2):329–352

    Article  Google Scholar 

  • Hughes RC, Schubert WK (1992) Thin films of Pd/Ni alloys for detection of high hydrogen concentrations. J Appl Phys 71(1):542–544

    Article  Google Scholar 

  • Imote2 Datasheet (2009) High-performance wireless sensor network node. http://www.xbow.com. Accessed 25 Dec 2012

  • Jia G, Eisenhawer B, Dellith J, Falk F, Thøgersen A, Ulyashin A (2013) Multiple core-shell silicon nanowire-based heterojunction solar cells. J Phys Chem C 117(2):1091–1096

    Article  Google Scholar 

  • Khosro Pour N, Krummenacher F, Kayal M (2012) Fully integrated ultra-low power management system for micro-power solar energy harvesting applications. Electron Lett 48(6):338–339

    Article  Google Scholar 

  • Khosro Pour N, Kayal M, Jia G, Eisenhawer B, Falk F, Nightingale A, DeMello JC, Georgiev YM, Petkov N, Holmes JD, Nolan M, Fagas G (2013a) A miniaturised autonomous sensor based on nanowire materials platform: the SiNAPS mote. SPIE Proc 8763. doi:10.1117/12.2017520

  • Khosro Pour N, Krummenacher F, Kayal M (2013b) Fully integrated solar energy harvester and sensor interface circuits for energy-efficient wireless sensing applications. J Low Power Electron Appl 3(1):9–26

    Article  Google Scholar 

  • Lu C, Raghunathan V, Roy K (2010) Maximum power point considerations in micro-scale solar energy harvesting systems. In: Proceedings of IEEE international symposium on circuits and systems (ISCAS), Paris, France, pp 273–276

  • Lundstrom KI, Shivaraman MS, Svensson CM (1975) A hydrogen-sensitive Pd-gate MOS transistor. J Appl Phys 46(9):3876–3881

    Article  Google Scholar 

  • Markus J, Silva J, Temes GC (2004) Theory and applications of incremental ΔΣ converters. IEEE Trans Circuits Syst I Regul Pap 51(4):678–690

    Article  Google Scholar 

  • Mishima T, Taguchi M, Sakata H, Maruyama E (2011) Development status of high-efficiency HIT solar cells. Sol Energy Mater Sol Cells 95:18–21

    Article  Google Scholar 

  • Nair PR, Alam MA (2007) Design considerations of silicon nanowire biosensors. IEEE Trans Electron Device 54(12):3400–3408

    Article  Google Scholar 

  • Ng RMY, Tao W, Mansun C (2007) A new approach to fabricate vertically stacked single-crystalline silicon nanowires. In: Electron devices and solid-state circuits EDSSC, Tainan, pp 133–136

  • Ng RMY, Wang T, Liu F, Zuo X, He J, Chan MS (2009) Vertically stacked silicon nanowire transistors fabricated by inductive plasma etching and stress-limited oxidation. IEEE Electron Device Lett 30(5):520–522

    Article  Google Scholar 

  • Ó Mathúna C, O’Donnell T, Martinez-Catala RV, Rohan J, O’Flynn B (2008) Energy scavenging for long-term deployable wireless sensor networks. Talanta 75(3):613–623

    Article  Google Scholar 

  • Offermans P, Tong HD, Van Rijn CJM, Merken P, Brongersma SH, Crego-Calama M (2009) Ultralow-power hydrogen sensing with single palladium nanowires. Appl Phys Lett 94(22):223110/1–223110/3

    Article  Google Scholar 

  • Park I, Li Z, Li X, Pisano AP, Williams RS (2007) Towards the silicon nanowire-based sensor for intracellular biochemical detection. Biosens Bioelectron 22(9–10):2065–2070

    Article  Google Scholar 

  • Park I, Li Z, Pisano AP, Williams RS (2010) Top-down fabricated silicon nanowire sensors for real-time chemical detection. Nanotechnology 21(1):015501/1–015501/9

    Google Scholar 

  • Patolsky F, Zheng G, Lieber CM (2006) Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat Protoc 1(4):1711–1724

    Article  Google Scholar 

  • Penders J, Gyselinckx B, Vullers R, De Nil M, Nimmala S, Van de Molengraft J, Yazicioglu R, Torfs T, Leonov V, Merken P, Van Hoof C (2008) Human++: from technology to emerging health monitoring concepts. In: Proceedings of the 5th international workshop wearable and implantable body sensor networks, pp 94–98

  • Peng K-Q, Lee S-T (2011) Silicon nanowires for photovoltaic solar energy conversion. Adv Mater 23(2):198–215

    Article  Google Scholar 

  • Peng KQ, Yan YJ, Gao S-P, Zhu J (2001) Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry. Adv Mater 14(16):1164–1167

    Article  Google Scholar 

  • Qiu Y, Liempd CV, Veld BOH, Blanken PG, Hoof CV (2011) 5 μW-to-10 mW input power range inductive boost converter for indoor photovoltaic energy harvesting with integrated maximum power point tracking algorithm. In: Proceedings of the IEEE international solid-state circuits conference, San Francisco, USA, pp 118–120

  • Satyanarayana S, Karnik RN, Majumdar A (2005) Stamp-and-stick room-temperature bonding technique for microdevices. J Microelectromech Syst 14(2):392–399

    Article  Google Scholar 

  • SiNAPS, Semiconducting Nanowire Platform for Autonomous Sensor. https://www.sinaps-fet.eu. Accessed 29 Mar 2013

  • Song T, Lee S-T, Sun B (2012) Silicon nanowires for photovoltaic applications: the progress and challenge. Nano Energy 1(5):654–673

    Article  Google Scholar 

  • Steglich M, Bingel A, Jia G, Falk F (2012) Atomic layer deposited ZnO:Al for nanostructured silicon heterojunction solar cells. Sol Energy Mater Sol Cells 103:62–68

    Article  Google Scholar 

  • Tong HD, Chen S, van der Wiel WG, Carlen ET, van den Berg A (2009) Novel top-down wafer-scale fabrication of single crystal silicon nanowires. Nano Lett 9(3):1015–1022

    Article  Google Scholar 

  • Tong HD, Tran PD, Pham XTT, Pham VB, Le TTT, Dang MC, Van Rijn CJM (2010) The nanofabrication of Pt nanowire arrays at the wafer scale and its application in glucose detection. Adv Nat Sci Nanosci Nanotechnol 1(1):015011/1–015011/4

    Article  Google Scholar 

  • Toumaz TZ1053 Datasheet. http://www.toumaz.com/page.php?page=telran. 25 December 2012

  • Van der Bent JF, Van Rijn CJM (2010) Ultra low power temperature compensation method for palladium nanowire grid. Procedia Eng 5:184–187

    Article  Google Scholar 

  • Vullers RJM, Schaijk RV, Visser HJ, Penders J, Hoof CV (2010) Energy harvesting for autonomous wireless sensor networks. IEEE Solid State Circuit Mag 2(2):29–38

    Article  Google Scholar 

  • Varta V6HR Datasheet. Available online: http://www.varta-microbattery.com. Accessed 10 Mar 2013

  • Zarlink ZL70250 Datasheet. http://www.zarlink.com/zarlink. 25 December 2012

Download references

Acknowledgments

We acknowledge support from the European Commission Framework 7 ICT-FET-Proactive funded project SiNAPS (contract number 257856) for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgos Fagas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fagas, G., Nolan, M., Georgiev, Y.M. et al. Component design and testing for a miniaturised autonomous sensor based on a nanowire materials platform. Microsyst Technol 20, 971–988 (2014). https://doi.org/10.1007/s00542-014-2100-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-014-2100-4

Keywords

Navigation