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Abstract Ageneral andwidely tunablemethod for the gen-
eration of representative volume elements for cellular mate-
rials based on distance and level set functions is presented.
The approach is based on random tessellations constructed
from random inclusion packings. A general methodology to
obtain arbitrary-shaped tessellations to produce disordered
foams is presented and illustrated. These tessellations can
degenerate either in classical Voronoï tessellations poten-
tially additively weighted depending on properties of the
initial inclusion packing used, or in Laguerre tessellations
through a simple modification of the formulation. A versatile
approach to control the particularmorphologyof the obtained
foam is introduced. Specific local features such as concave
triangular Plateau borders and non-constant thickness het-
erogeneous coatings can be built from the tessellation in a
straightforward way and are tuned by a small set of parame-
ters with a clear morphological interpretation.

Keywords Cellular materials ·Microstructure generation ·
Representative volume element · Level sets · Open-cell
foams · Closed-cell foams

1 Introduction

Cellular materials are characterized by a morphology based
on a space-filling assembly of near-polyhedral volumes
(cells) separated bywalls. An archetype for this kind ofmate-
rials is the equilibrated liquid foam, for which cells originate
from bubbles that are separated by tensioned liquid films,
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those meeting 3-by-3 at 120◦, and forming so-called Plateau
borders [1,2]. However, solid foams such as closed-cell
metallic foams obtained by directly foaming a liquid metal
(e.g. Al), polymer (e.g. PU) open-cell foams, or open-cell
metal foams obtained either by coating an existing polymer
foam or by casting liquid metal in a polymer foam-based
mould also present morphologies strongly similar to liquid
foams, more or less close to the Plateau equilibrium. Grain
assembly in polycrystalline metals or rocks can also be seen
as derived from a cellular medium structure, more or less
compliant with Plateau conditions.More complex biomateri-
als such as trabecular bones, wood or tissues characterized by
awell-grown extra cellularmatrix also share severalmorpho-
logical similarities with cellular materials, and were already
idealized as such in mechanical models by some authors
[3,4].

The physical behavior (e.g. mechanical, acoustical, ther-
mal, transport-related, . . .) of this type of materials strongly
depends on their microstructure and this particular link is
the subject of an increasing number of studies, for vari-
ous fields of application, mechanics and acoustics being the
most represented. Next to purely experimental studies [5–
11], computational models at the microstructural scale, or
homogenization-based and multi-scale models may bring a
more in-depth understanding of the relationship between the
local morphological features of the material and its global
behavior.Closely related to experimental characterization are
the numerical simulations that use the real geometry of mate-
rials, thanks to the use of computer-aided tomography data, to
build finite element models [12–15]. In spite of the valuable
results they provide (in particular when coupled with real
tests on scanned samples), such studies however present the
same kind of drawbacks as in purely experimental studies,
i.e. the cost and time for sample preparation, scanning and
data post-processing may constrain authors to study limited
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numbers of samples. Therefore, general conclusions which
ideally should require broader parametric studies are difficult
to reach. Another class of models that may bring valuable
insight on this aspect makes use of idealized microstructure
geometry descriptions to explore and understand elementary
mechanisms related with the particular morphology of the
material [16–32]. In spite of the fact that such models cannot
fully resemble scanned data, they provide the opportunity to
single out the influence of specificmorphological parameters
of the material for various physical phenomena.

The success of the latter approach is however strongly
constrained by the ability of the geometrical model to rep-
resent as realistically as possible the morphological features
of the material in a more or less parametrized way. The iden-
tification of such idealized representative volume elements
(RVEs) remains an important and debated question for cel-
lular materials in general.

To this end, deterministic models have been derived from
the observation of liquid foams. One of the first of such
models is the Kelvin model [33] which consists of a regular
packing of (slightly curved) tetra(kai)decahedra (truncated
octahedra). This model was (more than 100 years later)
improved by theWeaire–Phelan model [34] made of two dif-
ferent types of cells, dodecahedra and tetradecahedra. Such
regular models however fail to represent foams with non-
uniform bubble sizes or more disordered, out-of-equilibrium
solid foams. It was shown in [35] that morphological fea-
tures of those models such as the number of faces by cell
and edges by cell face significantly diverge from real foams,
which lead to another 11-faced polyhedral model to be pro-
posed. Next to those polyhedral cell models, some simple
geometries based on regular bars or plates assemblies were
also used [18,21,29]. Within such models, plate thickness or
lattice node positions can be randomized to account for the
natural variability of the material. Packings of overlapping
spheres were also used for this purpose, randomized [25] or
not [19].

More realistic and versatile representations were intro-
duced by the use of random tessellations, i.e. Voronoï tessel-
lations on random point distributions [16,24] and Laguerre
tessellations on random sphere packings to obtain multi-
sized cell arrangements [30,36]. It should be mentioned that
similar microstructural models are used for polycrystalline
materials [37–49], demonstrating a degree of similitude of
the morphology of these materials with foam-based media.
The morphological properties of Laguerre-based models
have been well characterized, compared and fitted to real
foams [50,51], supporting with quantitative arguments that
solid foam are not in Plateau equilibrium [52]. These gen-
eration methods represent very well the size distribution of
cells and some other morphological parameters (face-by-cell
count, edge-by-face count, dihedral and interior angles, …)
but produces very regular geometries, i.e. cell walls and/or

struts are straight. Other morphological features such as
wall/strut thickness and strut sections are not determined by
the tessellation itself and need to be constructed afterwards.
The available examples cited above keep those aspects sim-
ple, i.e. with constant thickness wall/strut and circular strut
sections.

The real shapeof struts arising fromPlateauborders geom-
etry in open-cell polymer foams or polymer-based metal
foams usually presents typical triangular concave sections
of variable size and concavity, as reported by micrograph
inspections [9,53]. Metal-coated polymer foams present
moreover hollow struts due to the elimination of the polymer
preform, also well visible on micrographs [10] or recon-
structed 3D data [13]. Some intermediate states between
closed and open foams may exist (i.e. partially reticulated),
with highly variable pore throat sizes, resulting in highly vari-
able strut sizes and shapes [6,54]. The throat size or the closed
face rate in partially reticulated PU foams have been reported
to have an important effect on the acoustic behavior of such
foams either experimentally [7] or with the help of numeri-
cal simulations [28,32]. These latter numerical studies used a
Kelvin unit cell as geometricalmodel,with variable thickness
cylindrical struts and planar membrane with circular holes.
To the best of our knowledge, only one publication describes
and tests a generalizable and automated way to generate the
exact shape of Plateau borders [22]. Their approach consists
in applying a surfaceminimization process on a base tessella-
tionwith the softwareSurfaceEvolver. Themethodologywas
illustrated with a single Weaire–Phelan unit cell, which does
not allow assessing how Surface Evolver performs on more
complex base tessellations. Thismethodology seems focused
on foams very close to the equilibrium, and is presumably
difficult to use for more disordered solid foammorphologies.

In this paper,we present and illustrate a general andwidely
tunable methodology for the generation of RVEs for cellu-
lar materials making use of distance and level set functions.
The approach is, like most others, based on random tessella-
tions constructed from random inclusion packings. However,
we present here a general procedure to obtain arbitrary-
shaped tessellations enabling to produce disordered foam
microstructures, more representative of metallic and out-
of-equilibrium foams. These arbitrary-shaped tessellations
can degenerate in classical Voronoï tessellations, potentially
additively weighted, depending on properties of the initial
inclusion packing used. Starting from the RVE generation
procedure defined in [55] in a 2D setting, the present contri-
bution develops additional tools to extend the approach for
cellular materials in a 3D context. We furthermore introduce
a versatile approach to control the particular morphology of
the obtained foam. This is achieved by defining a “Plateau”
level set function, by setting up a procedure allowing the
extraction of geometries from multiple level set functions
for the proper reproduction of sharp edges, and by incorpo-
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rating additional features such as concave triangular Plateau
borders and non-constant thickness heterogeneous coatings
are built from the tessellation in a straightforward way and
tuned by a small set of parameters with a clear morphologi-
cal interpretation. Finally, it is emphasized that the generation
process can be constrained to produce periodic RVEswithout
heavy modification of the implementation.

The paper is organized as follow. We first introduce and
define some concepts and notations thatwill be used in subse-
quent developments (Sect. 2). In particular, specific distance
functions are introduced and the concept of level set function
is defined. We then present the basis of our approach to gen-
erate RVEs for open and closed foams (Sect. 3). It includes a
short explanation of the method to produce arbitrary-shaped
tessellations as well as illustrations of its use to generate
closed foam RVEs (Sect. 3.1). It is followed by the intro-
duction of a specific level set function used to generate
open foam RVEs (Sect. 3.2) as well as the explanation on
how to extract properly the resulting geometry (Sect. 3.3).
We continue then with advanced strategies to obtain more
subtle aspects of the morphologies for the generated foams
(Sect. 4). We cover techniques to finely tune the shape of
generated Plateau borders (Sect. 4.1), to introduce spatial
variation on controlling parameters (Sect. 4.2) and to add
a coating phase on the generated foams, potentially non-
uniform and/or multi-layered (Sect. 4.3). We finally shortly
present some quantitative morphological parameters charac-
terizing the obtained foams (Sect. 5). The paper is closed by
a discussion section (Sect. 6) and conclusions (Sect. 7).

2 Notations and definitions

In the sequel, �RVE denotes the 3D domain of an RVE. In
this paper, we use cubic domains exclusively (square for 2D
illustrations) and all dimensions are given with respect to this
cube side length.

In 3D, level sets are surfaces defined implicitly by rela-
tionships of the type f(x) = k, in which x represents spatial
coordinates, the functions f(x) are generally called level set
functions. Such surfaces are closed (except on boundaries
of the definition domain of f(x)), non-self-intersecting, non-
branched (manifold only) and orientable. In particular, they
are everywhere perpendicular to the gradient of f(x) and their
curvatures are reflected by the local values of the second spa-
tial derivatives of f(x).

Level set functions and all other functions in this paperwill
be evaluated through a discrete set of data sampled on regular
3D grids of n3 points. The level set geometries are obtained
by contouring these discrete function representations, as done
for computed tomography data reconstruction, by a classical
contouring method (e.g. the marching cube [56,57], the dual
contouring [58,59]).

�i denotes a closed surface representing the boundary of
an inclusion i , member of a set I gathering all inclusions of
a packing (represented by white dashed line on Fig. 1a).

�−
i is the domain inside�i, �+

i is the domain outside�i

(see Fig. 1b, the negative domain is grey-shaded).
DSi(x) is the signed distance field of�i . This 3D function

is negative on�−
i and positive on�+

i and is a natural level set
function for the inclusion i which is represented implicitly
by the 0 level set of it. The order of continuity of a signed
distance field is inherited from �i everywhere except on the
medial axis of the interface where it is C0. The medial axis
of �i is defined as the locus of points where the center of a
sphere can be placed such that the sphere exactly touches �i

at least on two points, without intersecting it [60].
DNk(x) is the k-th neighbor distance field. It gives at every

position x the distance from the k-th nearest�i in the packing
I. These functions for k equal 1,2 and 3 are illustrated in
Fig. 1b, c and d. DN1(x) can be used as a level set function
representing all inclusions in the packing. It is emphasized
that those functions were already introduced and used in the
context of heterogeneous material microstructure generation
in our previous work [55], and were denoted “LSk” in that
paper.

NNk(x) is the k-th neighbor identity map. It is an integer
discontinuous function equal for each x to the index of the
k-th nearest inclusion from x in the set I (see Fig. 1a for
NN1, where distinct values of the function are represented
by distinct colors). These functions are by-products of the
DNk functions evaluation.

Jk(x) is the set I without all NNm(x) with m in [1:k − 1]
(and J1(x) = I for every x).

DN1(x) can be computed as:

DN1(x) = mini(DSi(x)), i ∈ I. (1)

Other DNk(x) can be computed as:

DNk(x) = minj(DSj(x)), j ∈ Jk(x). (2)

I�i is the domain where the inclusion i is the first nearest
inclusion, i.e. where NN1(x) = i, or the set of points x closer
to inclusion i than to any other (red area on Fig. 1a).

O�i is the domain where NN1(x) �= i (non-red area on
Fig. 1a). The preceding superscript O and I stand for “outer”
and “inner”.

��i is the boundary of I�i (white plain line on Fig. 1a).
�� is the union of all ��i (black and white plain lines on

Fig. 1a).
The general notation Ifi(x) and Ofi(x) refers to two func-

tions associated with domains I�i and O�i.
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Fig. 1 Definition and notations illustrated for a 2D simple inclusion
packing. a Domains and loci.Dashed lines denote the inclusion bound-
aries, while plain lines stand for ��. b Function DN1, c function DN2

and d function DN3 . Distance are given relative to the RVE size, black
lines are inclusion boundaries �i. (Color figure online)

3 General cellular morphologies generation

3.1 Building an arbitrary-shaped tessellation: the
“Voronoï” level set function

We previously explained how to build an arbitrary-shaped
tessellation with the help of neighboring distance fields of an
inclusion packing in a former work [55]. For the sake of clar-
ity and completeness we reintroduce here the basic ideas that
were presented and illustrated for the case of polycrystalline
material RVEs generation.

Froman arbitrary-shaped inclusion packing,we candefine
a tessellation made by the assembly of all domains I�i

that enclose, for each inclusion i , points closer to this
inclusion than to others. This tessellation degenerates in addi-
tively weighted Voronoï and classical Voronoï tessellations
for multi-sized sphere packings and points distributions (or
mono-sized sphere packings), respectively. The first and sec-
ond neighbor distance fields of the initial inclusion packing
can be combined to construct implicitly this tessellation. We

define the “Voronoï” level set function as

OV(x) = DN2(x) − DN1(x). (3)

This function is exactly zero at loci equidistant from the two
nearest inclusions, i.e. on faces of the tessellation, and pos-
itive elsewhere. It is illustrated for 2D packings in Fig. 2.
It is emphasized that as the inclusion signed distance fields
used are negative inside their inclusions, the initial packing
can present inter-penetrated inclusions without affecting the
quality of the result. Actually, a variant of this function was
specifically used in [61] to handle spurious overlapping of
yarns in the generation of woven composite RVEs.

Laguerre tessellations can also beproduced thisway, using
multi-sized spheres as initial packings and replacing the
signed Euclidean distance function DSi by a sphere power
distance when evaluating functions DNk. Laguerre tessella-
tions are appreciated because they produce easilymulti-sized
cell tessellations while keeping plane cell faces and straight
face edges. In our opinion, the latter aspect is only a conve-
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Fig. 2 “Voronoï” level set functions. a For a mono-sized disk packing. b For a multi-sized disk packing. c For an arbirtrary-shaped inclusion
packing. Dashed lines are the inclusion boundaries �i, plain lines are the boundaries of the tessellation cells ��i

Fig. 3 Initial packings used for illustrations. a Mono-sized sphere packing. bMulti-sized sphere packing. c Arbitrary-shaped inclusion packing

nient simplification, but is not motivated by the morphology
of real foams. Actually, liquid foams with multi-sized bub-
bles exhibit larger pressures in small bubbles (causing foam
coarsening with time by gas diffusion through liquid films).
This causes films between bubbles to be slightly curved,
rendering large bubbles concave. The additively weighted
Voronoï tessellation generated by (3) on a multi-sized sphere
packing seems better suited to generate this kind of feature
(see Figs. 2b, 4b).

The function OV alone can be used to extract a quasi-
constant thickness closed cell geometry through level sets
extracted from

OV(x) − t = 0. (4)

We illustrate the use of this function on the basis of three base
packings, obtained respectively from mono-sized spheres,
multi-sized spheres and arbitrary-shaped inclusions, which
are illustrated in Fig. 3. The RVEs obtained from such pack-
ings with t = 0.01 are shown in Fig. 4.

In fact the local thickness of the extracted walls depends
slightly on the relative angle of normals at nearest points of
the first and second nearest inclusions on that local spot. In
general this leads to thinnerwall centers, and presents exactly
a thickness t where the previously mentioned normals share
the same orientation (and opposite directions). This effect
increases with the wall mean thickness. A variant of OV(x)
introducing a weighting factor w associated with DN2(x)
may be be used to build all intermediary situations between
a completely space-filling tessellation (w = 1) and the initial
inclusion packing (w = 0):

O′
V(x) = w.DN2(x) − DN1(x). (5)

In order to obtain the original inclusion surface with w =
0, the parameter t in Eq. (4) should also be multiplied
by w. An example using this alternative O′

V is given in
Fig. 5, in which the packing from Fig. 3.c is used with
t = 0.01 and w = {0.25|0.5|0.75}. Such intermediate
morphologies can be used to represent some porous mate-
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Fig. 4 Closed cell RVE examples, generated from packings of Fig. 3 with t = 0.01. a Frommono-sized sphere packing. b Frommulti-sized sphere
packing. c From arbirtrary-shaped inclusion packing

Fig. 5 Intermediate RVEs between the closed cell foam (w = 1) and
the original inclusion packing (w = 0). TheRVEof Fig. 3.c is usedwith
t = 0.01. a w = 0.75, b w = 0.5, c w = 0.25. The value w = 1 gives

the RVE of Fig. 4c and w = 0 would give back the original packing,
with an offset of magnitude t on inclusions

rials that are not manufactured by foaming processes, for
which the microstructure share more morphological features
with inclusion-based morphologies. Metal foams obtained
by liquid casting together with solid place holders (removed
afterward, or hollow spheres) are examples of such type of
porous media [62–64].

Extracting the zero level set of OV is problematic because
it is a minimum of the function that won’t be properly
extracted by a contouring algorithm. A modified “local” ver-
sion of OV is introduced further (Sect. 3.3) and can be used
for the proper extraction of this particular level set.

3.2 Building open foam morphology: the “Plateau
border” level set function

To produce open foam microstructures, a way should be
defined to extract the edges of tessellation cells by the mean

of an ad-hoc level set function, giving them triangular sec-
tions. Combined with the knowledge that Plateau borders in
liquid foams form at the intersection of three films, this sug-
gests to combine the three first neighbor distance functions
DN1(x), DN2(x) and DN3(x) to build a relevant level set
function. The following function, denoted OP and called the
“Plateau” level set function in the sequel, is exactly zero at
locus where the distance from the three nearest inclusions is
the same, and is positive elsewhere:

OP(x) = (DN3(x) + DN2(x))/2 − DN1(x). (6)

This function is illustrated in 2D in Fig. 6. It is clear from this
representation that the level set of this function consists of
triangles with vertex lying on the tessellation cell boundaries
extracted from Ov(x) (i.e. ��). In 3D, these level sets will
generate triangular prisms centered on edges of the tessella-
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Fig. 6 “Plateau” level set function, the level set t is drawn in with, black dashed lines are the initial inclusion boundaries. a For a mono-sized disk
packing. b For a multi-sized disk packing, c For an arbitrary-shaped inclusion packing. (Color figure online)

Fig. 7 2D illustration of the relation between cell wall extracted
with (4) (blue) and Plateau border extracted with (7) (red) using the
same value for t. The figure is a detail of the RVE used in Figs. 2b
and 6b. (Color figure online)

tion, with lines generated by the triangle vertices of the prism
section lying on ��. This furnishes a natural way to build a
Plateau-border-like geometry through

OP(x) − t = 0. (7)

The parameter t can here be used to control the thickness of
extracted borders. It is related to the parameter used in (4)
such that the Plateau borders produced are the largest ones
that could be completely contained in closed cell walls, as
illustrated in Fig. 7.

Some typical resulting geometries obtained using this
level set function are illustrated in Fig. 8. It is worth to remark
that if the starting inclusion distribution is a made of mono-
sized sphere, the Plateau borders extracted from OP(x) are
straight while for multi-sized spheres, they become slightly
curved. For arbitrary-shaped inclusions, the extractedborders
still present the same triangular section but are not straight

and present complex director curves. One can also remark
that resulting Plateau borders are not concave, this aspect
will be further elaborated in Sect. 6.

3.3 Sharp edges preservation: extracting geometry
from multiple level set functions

The Plateau borders geometry presents sharp edges due to
their triangular prism shape. Such sharp edges originate from
a steep discontinuity of DNk derivatives on ��. Discrete
level set functions are not well suited to handle such kinds of
discontinuities for several reasons. It is indeed well-known
that contouring algorithms fail to extract such sharp edges
[65] (see Fig. 9a). Furthermore, several quantities computed
using numerical derivatives of OV or OP, such as normal and
curvature fields [66] will also be imprecise and/or locally
wrong near ��.

To overcome these difficulties, the global geometry can
be split into an assembly of smooth surfaces, extracted from
separate level set functions, their common curves being the
problematic sharp edges (see Fig. 9b). The three “faces” of
each Plateau border are determined from the three nearest
inclusions at this place. This aspect is emphasized on Figs. 8,
9b and similar figures, in which the surfaces “coming from”
each inclusions are rendered with distinct colors. Therefore,
by constructing an individual level set function for each inclu-
sion one can extract separately the three “faces” of each
Plateau border and avoid the problem of sharp edges. How-
ever, for open cells, such surfaces are not closed but present
holes in the cell faces. As the contouring of a level set func-
tion always produces closed surfaces, an additional slicing
operation is required to obtain these holes. A second individ-
ual level set function for each inclusion is then required and
is used to slice the surface formerly obtained by contouring
the first level set function. The slicing of a 3D triangulated
surface according to a level set function is very similar to
the contouring of a 2D level set function. The values of the
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Fig. 8 Open cell RVE examples, generated from packing of Fig. 3. a From mono-sized sphere, t = 0.04. b From multi-sized spheres, t = 0.02.
c From arbitrary-shaped inclusions, t = 0.01

Fig. 9 Sharp edge issue illustration. a Result of a single level set function extraction. b Result of a multi level set function extraction. Problematic
sharp edges are highlighted with black lines. (Color figure online)

second level set function are interpolated on vertices of the
surface extracted from the first, and a “marching triangle”
algorithm is then applied to this triangulated surface to per-
form the slicing. This approach is illustrated in Fig. 10 for an
isolated cell.

The two “local” level set functions for each inclusion are
builtwithoutmodificationof theOP definition, “global” func-
tions DNk aremodified to construct two “local” functions for
each inclusion denoted “inner” and “outer” neighboring dis-
tance function (and marked by a preceding superscript “I”
and “O”), IDNki and ODNki. Functions IOPi and OOPi are
then computed using the same relations (6) as for the “global”
function. The “inner” local level set is used to extract the
surface “coming from” the considered inclusion, while the
“outer” local level set is used to slice it.

It is emphasized that the functions IDNki and ODNki have
no geometrical meaning, they are rather ad-hoc functions
constructed from DNk under the following constraints :

(I) Inner functions should be equal to global functions
inside I�i and C1 continuous across��i. Indeed, inside I�i,
an inner function is intended to yield the same level set sur-
face as its global equivalent while its particular value on O�i

does not matter as the level set produced in this domain will
not remain after the slicing. The only requirement consists
of the surface to be smooth on ��i to properly extract it by
contouring.

(II) Outer functions should be equal to global functions
only on��i andC1 continuous across��i. An outer function
is only required to slice properly the level set extracted from
an inner function. As a consequence, its particular value is
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Fig. 10 Multi level set approach illustrated on an isolated cell. a Surface resulting of the contouring of the “inner” level set function IOPi(x). The
“outer” level set function OOPi(x) is ploted on the surface. b Surface after the slicing by the “outer” level set function

Fig. 11 Global and local “Plateau” level set function. a Global func-
tion OP(x), the t level set is drawn inwhite, dashed black lines are initial
inclusion boundaries. b Local function IOPi(x) of the central inclusion,
the t level set is drawn in black. c Local function OOPi(x) of the central

inclusion, the t level set is drawn in plain black. The dashed line is the
t level set of IOPi(x) while black dots are the slice loci. (Color figure
online)

not important, except on ��i where it should be equal to the
corresponding global function.

These constrains are formulated according to the features
needed for IOPi and OOPi without restriction on the way to
achieve them. As DNk are assemblies of patches coming
from all DSi, a simple reorganization of those patches is pos-
sible in order to fulfill the two preceding statements for IDNki

and ODNki. As OP is a simple linear combination of DNk,
these two statements will also be verified for IOPi and OOPi,
as illustrated for a 2D packing in Fig. 11. A careful analy-
sis of DN1, DN2 and DN3 permits to derive the following
transformations:

IDN1i(x) = DSi(x), (8a)
IDN2i(x) = DN2(x)whereNN2(x) �= i, (8b)
IDN2i(x) = DN1(x)whereNN2(x) = i, (8c)
ODN1i(x) = DN1(x)whereNN1(x) �= i, (8d)
ODN1i(x) = DN2(x)whereNN1(x) = i, (8e)
ODN2i(x) = DN2(x)whereNN1(x) �= i, (8f)

ODN2i(x) = DN1(x)whereNN1(x) = i, (8g)

with IDN3i and ODN3i being both equal to DN3 because
the latter is already C1 continuous across ��i. Those trans-
formations are further detailed and illustrated in Appendix.
One might remark that for an inclusion i , instead of building
the “outer” function, the “inner” functions of all other inclu-
sions can be used to slice the surface coming from inclusion
i . However, this requires storing all “inner” functions for
the complete domain in memory, which would quickly lead
to overflow for large RVEs (large numbers of inclusions).
Therefore, it is preferred to evaluate both “inner” and “outer”
functions, that do not have to be kept in memory once the
surface coming from inclusion i is extracted. It should be
mentioned that quantities such as the derivatives of OP can
again be accurately computed using the relevant “inner” or
“outer” level set functions. On ��i two values are available
reflecting the fact that those derivatives are discontinuous on
this particular locus and are only defined “left and right to
this discontinuity”.
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Fig. 12 Open/closed intermediate situation using. a a = 0.25. b a = 0.5. c a = 0.75

Useful values of these functions are limited to a narrow
band enclosing the surface to extract. For large numbers of
inclusions, a significant fraction of the computation timemay
be saved by limiting the computation domain to this band.
The global function OP and the neighbor identity maps NNk

can be used to localize a priori this domain of interest for
each inclusion according to

DOIi ≡ ((NN1(x) = i)|(NN2(x) = i)|(NN3(x) = i))&

((OV(x) − t > −e)& (OV(x) − t < e)) (9)

with e being the half thickness of the band, that should be at
least 2 times the discretization size (set by the grid of points
on which functions are evaluated).

We finally emphasize that building a finite element mesh
for the generated RVEs is not trivial (even though not impos-
sible). This problem will be discussed in Sect. 6.

4 Generation of advanced morphological features

4.1 Plateau border morphology

Generally, plateau border sections are not triangular prisms
but unions of three concave surfaces. Other materials may
present an intermediate morphology between open and
closed foams. Some techniques may be used to tune more
precisely the resulting Plateau borders morphology. We first
show how to combine OV and OP to obtain intermediate sit-
uations between fully open and closed foams. A simple way
to control the concavity curvature of the Plateau borders is
then outlined. We finally indicate how to combine cases with
differing parameters to produce a larger range of variations.

Open/closed intermediates

A natural way to achieve intermediate open/closed situations
is to use both OV andOP in a linear combination, considering
level sets defined by:

a.OV(x) + (1 − a).OP(x) − t = 0, (10)

with 0 < a < 1, acting as an open/closed ratio. This approach
indeed simply consists in a weighted averaging of the two
geometries obtained with (4) and (7). Problems arising from
sharp edges are simply treated as before, but the entire rela-
tion (10) has now to bewritten in “inner” and “outer” versions
using “inner” and “outer” versions of both OV and OP. Fig-
ure 12 illustrates the use of this relationwith 3 different values
of the parameter a.

Concavity

Toobtain concavePlateau borders starting from the presented
methodology, a way to tweak the relation (7) to make it pro-
duce concave surfaces is introduced. Basically, subtracting
a constant value to a level set function results in an outward
displacement of the surface it defines. Similarly, subtract-
ing a non-constant function induces local changes of the
surface curvature. If this non-constant function is only C0

continuous, this will introduce infinite curvatures and create
unwanted sharp edges. A C1 function prevents this behav-
ior but may introduce curvature jumps, while the use of a
C2 continuous function would ensure the curvature to vary
smoothly. The idea is then to build a function, preferably C2,
that vanishes on Plateau border sharp edges and takes neg-
ative values near Plateau border surfaces, to “push” inward
these surfaces without moving sharp edges. To this end, the
following function is used:

OK(x) = min(0, (((DN3(x) − DN2(x))/2)2 − t2)/2t). (11)

This function is illustrated in 2D on Fig. 13b. To properly
visualize this function, one should consider its value on a line
passing by two sharp edges of a Plateau border and contained
in aplaneperpendicular to it (black/white lines onFig. 13a/b).
On this line, the operator DS3(x)−DS2(x) varies from 0 to 2t
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Fig. 13 Plateau border concavity control, 2D illustration of used func-
tion. a Operator DS3(x)–DS2(x). Black lines are the t level set of OP . b
OK(x).White lines are the t level set of OP . c OP(x) - t - k.OK(x) White

lines are the resulting concave Plateau borders and dashed lines are the
original ones extracted from OP alone. (Color figure online)

starting from the middle of the surface to the sharp edge as
illustrated in Fig. 13a. The relation (11) turns this operator
into a C2 function that can be used to control the Plateau
border concavity replacing (7) by

OP(x) − t − k.OK(x) = 0, (12)

with 0 < k < 1 controlling the magnitude of the obtained
concavity. For the limit k = 1, the three surfaces of a Plateau
border are tangent to each other at sharp edges. The left-hand
side of relation (12) is illustrated in Fig. 13c, while extracted
3D geometries are illustrated in Fig. 14.

Combinations

Finally, as the relation (10) quite deteriorates the shape of the
Plateau borders and the relation (12) does not offer a control
on the pore throat closure, one may want to use both concur-
rently to obtain a larger range of possibilities including all
combinations of Plateau border concavities and pore throat
closures, i.e. extracting a geometry that will use the cell wall
obtained with (10) and the Plateau borders from (12). This is
possible with the level set formalism as the minimum of two
level set functions is a level set function that defines a surface
which is the boundary of the union of domains enclosed by
the two initial level sets. So, if LS1(x) and LS2(x) are the
left-hand terms of (10) and (12),

min(LS1(x), LS2(x)) = 0 (13)

achieves the intended combination, potentially using two dif-
ferent t parameters within LS1 and LS2. Figure 15 illustrates
the result of this approach for two different sets of parame-
ters. Those can be compared to real samples presenting this
kind of morphology, for example in figures of [53].

Fig. 14 Plateau border concavity control, 3Ddetail.a k = 0.5.bk = 1

Fig. 15 Plateau border type combination. a Fully closed cell with non-
concave Plateau borders. b Partially closed cell with concave Plateau
borders

4.2 Spatial variations

We now show how to introduce some variability in dif-
ferent morphological parameters controlling the generation
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Fig. 16 Illustration of orientation-sensitive spatial variation for an
arbitrary-shaped inclusion base distribution.Wall with vertical normals
are fully openwhile thosewithhorizontal normals are fully closed.Other

wall are in an intermediate state. The verticality of closed wall is well
visible on the side view. a Perspective view. b Side view. c Top view

process. Several scalar quantities are used to tune the pre-
sented level set functions, controlling the wall/strut thickness
(t), the pore closure rate (a), the Plateau borders concavity
(k) and other parameters that will be further defined. These
scalar quantities can also be turned in x-dependent 3D func-
tions to control more locally those features.

The simplest thing that canbedone to explain the approach
is to perform a random variation of the parameters. Here, t
is taken as an example. If a coarse grid m3 is defined, with
m << n, m3 random values can be generated, uniformly
(or other) distributed between tmin and tmax and placed on
this grid. Those values can be interpolated (using linear or
cubic basis) on the n3 grid to build a T(x) field that will be
used instead of the constant t in equations. The spacing hm
of the m3 grid determines the “wavelength” of the generated
variations. Although this is not specifically illustrated here,
the results of this manipulation are visible further in Fig. 21
that serves another purpose.

Since the manipulated distance fields and level set func-
tions inherently include some properties of the geometry,
more advanced variations can easily be performed. The
example of varying the wall open/closed ratio a presented
in Sect. 4.1 is given here by constructing a global A(x)
field according to the local wall orientation to mimic an
anisotropic growth of the foammicrostructure. The local ori-
entation of walls is included in the gradient of OV(x) and
a scalar product of this gradient with a particular direction
vector can be used to build the desired A(x) field. This gradi-
ent being hardly discontinuous between two adjacent faces,
the resulting A(x) would better be smoothed before being
used. For example, the following formulationwillmakewalls
orthogonal to the chosen orientation n being openwhile clos-
ing others, those “containing” the orientationn presenting the
largest thickness:

A(x) = amax − (amax − amin).|grad(OV(x)).n |/
‖grad(OV(x))‖. (14)

The absolute value is added to match only the orientation
of n and not its direction. The division by the norm of the
gradient of OV is incorporated to ensure the second term of
(14) is between 0 and amax − amin, n being a unit vector. An
example of the use of this relation is shown on Fig. 16 for an
arbitrary-shaped inclusion base distribution.

4.3 Coating phases

We present here a straightforward way to build the geom-
etry of a coating on the generated open foam geometries.
A simple distance field-based offset is used here, as already
done to extract precipitated or hydration phases on granular
geomaterials in [55]. Once the signed distance field of the
generated foam DSFOAM(x) is known, one can extract the
external boundaries of a uniform coating of thickness c with
the level set defined by

DSFOAM(x) − c = 0. (15)

The results of this relation are illustrated on Fig. 17, while
DSFOAM is illustrated in 2D on Fig. 18a and in 3D in Fig. 20b.
The distance field of the foam geometry can either be derived
from the level set function it originates from by a distance
transform method (e.g. fast marching method [66], vector-
transform [67], …) or by explicitly computing the exact
distance from the triangulated geometry. The former is quite
light but requires an advanced implementation to reach an
acceptable accuracy, while the latter is on the contrary exact
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Fig. 17 Uniform coating forming hollow struts. The underlying foam is generated with t = 0.02, a = 0 and k = 0.5. a c = 0.01. b c = 0.02

Fig. 18 Varying thickness coating, 2D illustration of used functions.
a DSFOAM(x). White lines are Plateau border extracted from OP . b
Ramping function OR

′(x), with r c = 0.2.White lines are Plateau border

extracted from OP. c DSFOAM(x) - c - dc .O′
R(x). White plain lines are

the extracted coating boundaries. (Color figure online)

but quite computationally intensive. Again, the computation
of DSFOAM may be restricted to a narrow band of inter-
est, more difficult to determine a priori (but it can be done
quite approximately using OM or OP and the norm of their
gradient). This can be advantageous with respect to a dis-
tance transform approach that generally can stop after a
given distance without selecting a priori a domain of inter-
est. However, for the sake of robustness of our experimental
implementation, an exact distance computation was used
here for this operation.

The excellent quality micrographs and measurements
published by Pang et al. in [10] bring the opportunity to
add some details to illustrate further the versatility of the
proposed approach. The paper by Pang et al. characterized a
Ni–Fe foam obtained by coating a sacrificial polymer foam
preform and further processed to add aCr layer on its surface.
The material composition of the hollow struts in these foams
is heterogeneous; the Ni–Fe precursor exhibits a varying Fe

concentration on the depth of the strut walls, being maximal
at mid-depth; the Ni–Fe–Cr foam obtained presents a sharp
variation between aNi–Fe phase (inward) and anFe-Cr phase
(outward). One can also observe in the paper by Pang et al.
(especially in Fig. 2b.) that the coating is obviously thicker
on sharp edges, probably because of a better adherence of
the coating at this particular location.

An increased coating thickness near sharp edges can be
obtained by the addition of a term in Eq. (15), subtracting
positive values where we want to “push” outward the result-
ing surface. As for the Plateau border concavity control, the
operator DN3(x)−DN2(x) is used as a variable representing
the position relative to Plateau border features. In particular,
this operator is positive on locus of points closer to a sharp
edge than to a border “face”. Then, one could thicken the
coating around sharp edges by subtracting a positive value
dc to the left-hand side of (15) where DN3(x) − DN2(x) is
positive. This will give poor results as the thickness of the
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Fig. 19 Varying thickness coating, 3D Plateau borders detail. The Hermite spline ramping function is used. a rc = 0. b rc = 0.3. c rc = 0.6

Fig. 20 Distance functions used for material heterogeneity generation. a DSCOAT(x). b DSFOAM(x)

coating will jump sharply from c to c + dc. To fix this, a
ramping function is used that will allow a smooth variation
of the coating thickness. The linear ramping function used
reads

OR(x) = max(0, min(1,

((DN3(x) − DN2(x))/2 − rc.t)/(t.(1 − rc)))),

(16)

where t is the same parameter as before and rc controls the
ramp length. This parameter rc should be between 0 and 1, 1
leading to the same result as if the ramping was not applied
and 0 producing a ramp that ranges to the middle of the
Plateau border faces. As this ramping function is linear, it
produces sharp variations of the coating curvature, which
may be unwanted. This can be avoided using a cubic Hermite
spline interpolation based on OR with

O′
R(x) = −2.OR(x)3 + 3.OR(x)2. (17)

The varying thickness coating can then be extracted with

DSFOAM(x) − c − dc.OR(x) = 0, (18)

using either OR or O′
R as a ramping function. Rela-

tion (17) and (18) are illustrated in 2D in Fig. 18b and c,
3D resulting geometry details are shown on Fig. 19.

The potential material heterogeneity of hollow struts can
be generated at this stage using the signed distance to the
foam DSFOAM and to the extracted coating DSCOAT. Local
relevant values of those functions are illustrated in Fig. 20.
Smooth variations, as in the Ni–Fe precursor, can be mapped
in a model to a continuous generated function. For sharp
variations, as in the Ni–Fe–Cr product, it would be better
to extract additional surfaces to represent material interfaces
in the model. Such mapping functions and additional sur-
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Fig. 21 Sharp material variation. Additional surfaces are extracted fromDSCOAT, random variations are introduced independently for each surface.
a Three-phase coating. b Two-phase coating

faces are built and extracted from DSFOAM and DSCOAT
or a combination of both. Additional variations such as
noise and surface roughness can also be added by manip-
ulation of these functions. Some examples of sharp material
variations are given in Fig. 21 and can be compared with
Figs. 2 and 3 in [10].

5 Quantifying morphology of resulting geometries

In order to compare the resulting RVEwith real samples, one
should be able to quantify some morphological parameters
of the obtained geometries. This topic would deserve to be
the subject of a specific dedicated work, but we provide here
an overview of the ways to evaluate some of the most used
parameters.

Some parameters may be evaluated by two main app-
roaches. One “classical” approach makes use of the tri-
angulated surfaces extracted from level set functions by
contouring. It requires additional computations and may be
harder to implement but will give a very good accuracy even
for (reasonably) coarse discretizations. An other “implicit”
approach directly makes use of functions already computed
during the generation, mainly NNk, DNk, OV and OP. It
requires almost no additional computation but the precision
and relevance of the results strongly depend on the discretiza-
tion size used for those functions.

The first approach makes use of classical algorithms and
only essential informations are given here. Some parame-
ters, such as volumes and surfaces can be computed on the
final geometry but several others are better computed on the
initial tessellation itself. Its geometry can be extracted from

the 0 level set of OV but this level set is in practice impossi-
ble to extract with a contouring algorithm. Instead, each cell
can be extracted separately by contouring the corresponding
“inner” version of OV. With some additional slicing using
operators such as local versions of DN3(x) − DN2(x) and
function NNk, isolated tessellation faces, edges and nodes
can be also extracted and characterized. Cell volumes, face
surfaces, edge lengths, face normal orientations, edge ori-
entations, face-by-cell count, edge-by-face count, dihedral
angles and interior angles (we use those two last terms as
defined in [52]) can all be computed using this approach.
Some of these parameters will not be uniquely defined in the
case of arbitrary shaped tessellations (e.g. dihedral angles,
face normal orientations, …), but will be accessible at the
level of each related primitive of the contoured geometry.
It still remains to properly define the measures of interest in
these cases before trying to obtain anduse those informations.

In the second approach, parameters such as the number of
faces by cell and edges by face can be evaluated directly from
function NNk as they depend only on the tessellation itself.
The number of faces of a cell originating from an inclusion
i is related the number of direct neighbors of this inclusion
i in the original packing. This number is simply the number
of distinct value NN2 takes inside I�i. This number can be
evaluated for each inclusion in the packing and mean value
together with standard deviation can be computed. Similarly,
the number of edges of the face separating the inclusions i and
j is the number of distinct values that NN3 takes in domains
where (NN1(x) = i)& (NN2(x) = j).

Dihedral and interior angles also depend on the tessel-
lation itself and can be evaluated from NNk with the help
of OV. Let first assume that cell faces are plane and face
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Fig. 22 Extraction of medial axes, 2D illustration. a Sum of the differ-
ences on components of the two first order finite difference gradient of
DSFOAM . bMedial axes extracted with a high threshold. cMedial axes
extracted with a low threshold. Spurious branches of medial axis that

would better be discarded are well visible in the “outer” medial axis.
On b and c, blue lines are the “inner” medial axis while red lines are
the “outer” one. Indeed, in 3D, medial axes are surfaces. (Color figure
online)

edges are straight. The normal to the face separating the
cells i and j is given by the normalized gradient of OV

where (NN1(x) = i)& (NN2(x) = j). This latter is almost
constant in this domain if the cell faces are planar. Other
faces that share an edge with this face are the common
faces of cells i and k, with k taking all values NN3 takes
in the domain where (NN1(x) = i)& (NN2(x) = j). Dihe-
dral angles at those shared edges can be obtained from the
arc-cosine of the scalar product of normals of the two con-
sidered faces, while the vector product of those gives a
direction vector of the edge. This latter can then be used
to compute interior angle with scalar products of director
vectors of edges sharing a node. To find these couples of
edges, one can use values of NN4 inside the domain where
(NN1(x) = i)& (NN2(x) = j)& (NN3(x) = k). As NN4 is
not used anywhere else, to avoid computing it for this pur-
pose only (even though it is not expensive), one may also
look at values of NN3 at points adjacent to the domain where
(NN1(x) = i)& (NN2(x) = j)& (NN3(x) = k), consid-
ering only points where (NN1(x) = i)& (NN2(x) = j).
It should be mentioned that this procedure can be applied
only if cell faces intersect exclusively 3-by-3 and face edges
4-by-4. In the limit of a vanishing discretization size, this
should always be the case. However, in practice with finite
discretization sizes, situations will arise in which two very
close edges (resp. nodes) will be seen as a single one, shared
by 4 (resp. 5) or more faces (resp. edges). If a relations graph
between cells, faces, edges and nodes is built during the eval-
uation of angles, such problematic situations can be detected
and discarded or taken into account specifically. For arbitrary
shaped cells, depending on the quantity of interest, a mean
normal for each face can be computed or functions such as
OP, DSFOAM orDSCOAT can be used to select more precisely
a domain of interest for computing the gradient of OV, for
example near edges or in the middle of faces.

In all cases, tessellation cell volumes, the foamvolumeand
the coating phase volume can be evaluated with a reasonable
accuracy by counting grid points with relevant values of level
set functions, and dividing the obtained number by the total
number of grid points. This indeed will give a volume rela-
tive to the RVE volume. For the volume of a tessellation cell
i , one should search for points where NN1(x) = i, for the
foam volume DSFOAM(x) < 0 should be used while using
(DSFOAM(x) > 0)& (DSCOAT(x) < 0) will allow comput-
ing the coating volume.

The medial axis of the resulting foam contains a lot of
informations regarding the topology of the microstructure.
This medial axis can be extracted by searching for strong
discontinuities in the gradient of DSFOAM. Two medial axes
will be extracted, the “inner” medial axis is representative
of the wall/strut topology while the “outer” one is related
to the void topology. Each component of the gradient of
DSFOAM can be evaluated twice at each grid point by first
order finite differences using values at two neighboring grid
points. Any difference between those two values for each
component reflects a discontinuity of the gradient, the sum
of the differences on each component is used as an indicating
function to find the medial axis. This function is illustrated in
2D on Fig. 22a. It takes negative values on the “inner” medial
axis and positive values on the “outer” one. As the two values
of the components of the first order finite difference gradi-
ents are always slightly different, a threshold has to be used to
extract only “relevant” medial axes. Moreover, the function
DSFOAM is computed as the exact distance to a triangulated
mesh for which smooth surfaces are discretized by a patch of
plane triangular facets. This introduces spurious medial axes
that would not exist for the real smooth geometry. Disconti-
nuity in the gradient due to those spurious medial axes are
rather small (or the discretization size is poor with respect to
the curvature of the represented geometry) and can also be
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discardedwith a threshold. This threshold depends on the dis-
cretization size and the geometry features and is not trivial to
set a priori. It is therefore difficult to give recommendations
for its value, but we illustrate its effect by comparing two
medial axes obtained with different thresholds on Fig. 22b,
c. The value of DSFOAM or DSCOAT on those medial axes can
be used to derive average wall/strut thickness and void sizes
together with standard deviation. Among these values, one
can select only those lying on the tessellation faces (with the
help of OV) to isolate the pore throat thickness, or only those
lying on the director curve of Plateau border (with the help
of OP) to get more precisely the inscribed radius of Plateau
borders.

Anisotropy-related parameters such as the fabric tensor
[68], the Mean Intercept Length [69] or the Volume Orienta-
tion [70] can obviously be computed in the sameway as from
tomography data, using the level set function from which the
final geometry originates, using a criterion LS(x) > 0 to
locate void voxels. In fact, level set functions can be manipu-
lated to create a dummy densitymap that could be seamlessly
imported in usual softwares (e.g. SkyScan) for 3D tomogra-
phy data analysis to characterize the generated geometries
with exactly the same tools as for real scanned samples.

6 Discussion

The first point to discuss is the volume discretization of the
obtained geometries for their subsequent use in a computa-
tional model. Building a good quality finite element mesh
may potentially become a major issue when dealing with
this kind of RVE in a model. In all cases, the slicing opera-
tion used to extract the foam geometry preserving the sharp
edges has to be carefully implemented to give a consistent
discretization along the sharp edge itself if a classical mesh
generator is considered. However, an interesting strategy for
building good quality meshes from level set functions was
proposed in 2D in [71] and extended to 3D in [72]. By using
a dynamic node repositioning using level set functions, this
approach is able to mesh very complex geometries with high
quality tetrahedral elements. Again, a specific implementa-
tion will be required to treat properly the sharp edges as
the procedure should be able to use multiple level set func-
tions and to constrain nodes on these sharp edges. If both
this approach and classical meshing methods fail to produce
usable meshes, one may consider the use of the eXtended
Finite Element Method (XFEM) [73,74]. The XFEM has
been developed to use regular non-conforming meshes on
complex geometries, by incorporating the geometrical infor-
mation in a shape function enrichment built from the level set
function that implicitly represents it. A particular XFEM set-
ting has also beenproposed [75] in order to represent properly

sharp edges with two level set functions and appears partic-
ularly well suited for the applications considered here.

Another point we want to discuss here is related to the
periodicity of the generated geometries. Periodicity of RVEs
may be desired for mainly two reasons. First, enforcing peri-
odic boundary conditions in the generation process is the
most satisfying way to discard unwanted boundary effects
and achieve statistically homogeneous RVEs. The second
reason is related to the homogenizationmethod that is used in
a subsequent physical model. Periodic boundary conditions
were shown to give the fastest convergence of the homoge-
nized properties while increasing the size of the RVE [76].
The periodicity is enforced in two steps in the generation
process, the first is tomake the generated foamperiodicwhile
the second is required for the coating phase. The only con-
dition for the foam to be periodic is that the functions DNk

should be periodic, which indeed requires the initial packing
to be already periodic. As previously explained in [55], a way
to obtain periodic packings together with associated periodic
DNk functions (which were objectionably denoted “LSk” in
that paper) can readily be implemented. It consists in tak-
ing into account periodic neighbor copies of each inclusion
during the signed distance computation process. In the same
paper, a sequential adaptive way to build functions DNk in a
computationally efficient way was presented. For the gener-
ated coating to be periodic, the condition is that the function
DSFOAM has to be periodic. Just computing the distance to
the extracted foamwill yield an almost periodic function, but
not exactly. When using a distance transform method for the
computation of this distance function, a specific implemen-
tation should be used in order to propagate the computation
front from one side to its periodic counterpart. If an exact
Euclidean distance computation is used, parts of the foam
geometry located near RVE boundaries (up to a distance rel-
ative to the wanted coating thickness) should be duplicated
and translated to the opposite side of the RVE. If functions
DNk are precisely periodic, those duplicated parts will match
their periodic relatives exactly and the distance computation
will work properly.

Finally, somewords should be added concerning the com-
putational efficiency of the method. Indeed, the parameter
having the largest influence on the computation time and
memory requirements is the size of the evaluation grid n3.
The RVEs shown in figures of this paper are generally gen-
erated with n = 60, except for some that required a higher
resolution and use n = 100 (Figs. 16, 17). The number of
inclusions of the initial packing also has an influence on some
parts of the process. For instance, a higher number of inclu-
sions in the packing will induce more “local” versions of
level set functions to be computed (without requiring stor-
age, see Sect. 3.3). The memory requirement is quite easy
to evaluate and is generally not an issue. The major part of
the needed storage is used for discretized functions (level
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set functions and operators). As a reference, one such func-
tion requires 8 Mb in memory for a 1003 grid. Depending
on which RVE type is generated and how the generation
process is implemented, between 10 and 20 functions of this
type would be required, which lead to a rather affordable
memory requirement (80 Mb … 160 Mb for n = 100). The
number of functions that have to be stored in memory does
not depend on the number of inclusions in the initial packing,
as each computed DSi can be incorporated directly in func-
tion DNk and can be forgotten before computing the next
one. All the useful values of this function are accessible in
DNk and can be retrieved when required, thanks to func-
tion NNk. One should then not hesitate to isolate terms of
functions in separate variables to clarify the implementation
and to ease modifications. Some memory is also required for
the extracted geometries, however it is generally small com-
pared to the storage of discretized functions, and strongly
depends on the generated geometry. Considering computa-
tion times, three main types of operations are performed :
vector operations on 3D functions to evaluate level set func-
tions, contouring of 3D functions to extract the geometries
and distance field computations. The two first are generally
quite light, while, depending on its implementation, the third
can have a major influence on the computation time. If a
distance transform method is used, this process can remain
cheap. It however requires having a level set representation
of the inclusions in the initial packing, which may not be the
case depending on the inclusion shape generation method.
One should also keep in mind that such methods may be
inaccurate, even slightly, and could lead to some issues. As
a counterpart, exact Euclidean distance evaluation methods
can be used but are expensive in 3D. Such a method was used
in the present implementation and appeared to be the deter-
minant operation limiting the size of grids used. However,
these computations are part of the initialization steps and do
not have to be redone for every geometries. For example, for
a given initial inclusion packing, once all DSi have been com-
puted and stored inDNk, all variations of foammorphologies
can be performed without doing anything else than vector
operations on 3D functions and contouring. Both are quite
fast for the grid size used and permit a quasi real-time work.
It is worth to recall that if the inclusion packing generation
method presented in [55] is used, the function DNk are eval-
uated during the generation process. Functions DSFOAM and
DSCOAT are also computed as an initialization process and
several generation trials can be done without recomputing
them.

7 Conclusion

In this paper, a general approach was introduced to gen-
erate RVEs for cellular materials using distance and level

set functions. In this methodology, signed distance fields of
inclusions of an initial inclusion packing are used to build
neighboring distance functions DNk which allow building
every level set functions used for the generation process.
Several ad-hoc level set functions are formulated to obtain
different microstructure morphologies.

First, similarly to our early developments in [55], the
“Voronoï” level set function OV is introduced to build
arbitrary-shaped tessellations from the initial inclusion pack-
ing. This function alone is used to produce closed-cell foam
RVEs and intermediate situations between a cellular material
and a corresponding inclusion-based porousmaterial through
the inclusion distribution that generates the tessellation. Then
the “Plateau” level set function OP is introduced and used to
extract open-cell foam RVEs with triangular Plateau border
sections. A multi level set slicing operation is then described
to avoid problem with sharp edges of Plateau borders at the
contouring stage.

Then some operators are proposed to modify the level set
functions to generate more subtle Plateau borders shapes.
First OV and OP are combined in a weighted averaging pro-
cedure to build intermediate situations between fully open
and fully closed cell foams. Then a curvature modifier OK is
formulated to control the curvature of the generated Plateau
borders. Finally, a way to combine two (or more) geometries
before the contouring stage is shown to extend the range of
possible morphologies.

A procedure to introduce a controlled variability on para-
meters governing the resulting geometries morphology was
explained, either randomly or based on local properties such
as wall/strut orientations.

Coated foams were also considered. The signed distance
to the generated foam DSFOAM is used to generate a coat-
ing phase on a foam. We described a specific operator OR

used to generate coating phases presenting an over-thickness
near sharp edges of Plateau borders. Hollow struts of metal-
coated polymer foam can also be generated together with
an associated function that can be used to map the mater-
ial parameters of a model with the distance to the surface to
reproduce potential variation in the composition of the coat-
ing, as for example, those described in the particular case of
Ni–Fe–Cr foams [10].

Future work is still required to further assess the relevance
of the generated geometries. In particular, the morphology
of numerical samples should be compared with those of real
samples with well established quantitative descriptors. We
provided for this purpose the basic ideas that can be used to
access these parameters with two different approaches. We
emphasized that level set functions produced by the gener-
ation process can be used as dummy density maps and the
geometry they describe can be analyzed by classical soft-
wares for 3D tomography data post-processing. A part of
this future work should be dedicated to figure out efficient
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ways to impose a priori somemorphological properties of the
foam directly as an input of the generation process, instead
of having to reach them by a trial-and-error approach.
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Appendix

The Plateau level set function OP used to extract Plateau
border geometry is strongly gradient-discontinuous across
��. This gradient-discontinuity is the origin of the sharp
edges of Plateau borders, which is a desired feature to be
reproduced inRVEs.Discrete level set functions cannot prop-
erly define those sharp edges, nor can contouring algorithms
extract themwithout additional information.However, in 3D,
a closed surface containing sharp edges can be defined by two
(ormore) level set functions, the sharp edges being defined as
the intersection curves of the two (or more) smooth surfaces
they define. The strategy adopted in this work is to define
the global geometry as an assembly of smooth surfaces, one
for each bubble of the foam, defined by two level set func-
tions each. The first level set function, denoted the “inner”
function, defines a closed and smooth surface containing the
final surface of interest, the second, denoted the “outer” func-
tion is used to slice this surface so that only the subpart of
interest remains. Figure 10 summarized this procedure for an
isolated bubble. So, for each inclusion in the packing, local
“inner” and “outer” versions of the Plateau level set function
are built to extract each bubble separately. There is no dedi-
cated formulation for those functions, instead they are built

from their original definition (6), but using local “inner” and
“outer” versions of the DNk functions, denoted IDNki and
ODNki. This appendix gives some more details on the con-
struction of those functions.

The simple 2D quasi-regular packing of quasi-circular
inclusions depicted on Fig. 23a will be used for this expla-
nation. In this figure, inclusions are rendered with distinct
colors for easy identification. Local versions of DNk are
built for the central inclusion (i = 1), filled with red. The
gradient-discontinuity locus is represented with gray lines
while the Plateau borders extracted from OP are drawn in
bold black. The Fig. 23b is a zoom on Plateau borders
shared by inclusion 1 and 2. This particular inclusion cou-
ple will be used for explanations, everything being identical
for any couple grouping inclusion 1 with any inclusion j
in {2, 3, 4, 5, 6, 7}. On this zoom, level sets defined by both
“inner” and “outer” version of the Plateau level set func-
tion are drawn in plain and dashed black lines, respectively.
The sub-part of the “inner” level set which is conserved after
the slicing by the “outer” level set is bold, as well as sharp
edges (points in this 2D illustration). The Fig. 24a–d repre-
sent the functionsDN1, NN1, DN2 andNN2 for this example
packing, NNk representations use the same colors for inclu-
sions as Fig. 23a. As mentioned before, the explanation will
focus on a particular inclusion couple ij, and two domains
of interest are defined for that : Aij is the domain where
(NN1 = i)& (NN2 = j), whileBij is, conversely, the domain
where (NN1 = j)& (NN2 = i). Those two domains are
adjacent, separated by a subset of ��i and are illustrated on
Fig. 24d for i = 1 and j = 2.

The construction of “inner” and “outer” functions is
detailed here forDN2 only, leading to the logical derivation of
relations (8b), (8c), (8f) and (8g), the procedure being similar

Fig. 23 2D example packing. aGeneral view.Grey lines are�� while
bold black lines are the Plateau borders extracted with OP. b Zoom on
Plateau borders shared by inclusion 1 and 2. The plain black line is the

level set of IOP1 while the dashed line is the level set of OOP1 used
to slice the former. The bold lines are the curves remaining after the
slicing, black dots are the sharp edges. (Color figure online)
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Fig. 24 2D illustration of the patch reorganization described by
Eqs. (8a)–(8g). a DN1(x). b NN1(x). The white bold line is ��1. c
DN2(x). The symbol d denote the distance between the two closer inclu-
sion. d NN2(x). DomainsAij and Bij are illustrated for i = 1 and j = 2.
e IDN21(x). f Origin of distance values in IDN21. g ODN21. h Origin
of distance values in ODN21(x). (Color figure online)

and simpler for DN1. The origin of the gradient-discontinuity
of DN2 across��1 is the change of the second-nearest inclu-
sion across this locus (e.g. successively inclusion 2 then
inclusion 1 when going from an arbitrary point in A12 to
another in B12). Graphically, it can be seen simply by noting
that colors on Fig. 24d depicting NN2 are not the same in

domain A1j and B1j, thus values of DN2 on those domains
are not determined from the same inclusion distance field,
hence the gradient-discontinuity.

The function IDN21 should be equal to DN2 inside I�1

and C1 continuous across ��1, which means that starting
from DN2, values of B1j domains should be replaced by the
distance field of the inclusion which is NN2 in the corre-
spondingA1j domain (inclusion 2 in the illustrated example).
The definition of domains Aij and Bij implies that the inclu-
sion which is NN2 in Aij is NN1 in Bij, so values of DN2 in
domainsBij can be replaced by values ofDN1 to yield IDN21.
As, the union of all B1j is the domain where NN2 = 1, this
transformation can be written as

IDN21(x) = DN1(x)whereNN2(x) = 1. (19)

This can be generalized for any inclusion i to yield Eq. (8c)
and completed with Eq. (8b) to represent the conservation
of DN2 values anywhere outside Bij domains. The resulting
IDN21 function is depicted on Fig. 24e, while the origin of
distance values is represented on Fig. 24f with the same con-
vention than for NNk functions on Figs. 24b and d. It can be
seen on this figure that associated A1j and B1j domains are
now filled with the same color, which means that their values
are determined from the distance field of the same inclusions,
which ensures the gradient-continuity.

The function ODN21 should be equal to DN2 on ��1 and
C1 continuous across it. However, a minimal transformation
starting from DN2 and fulfilling those conditions will also
leave the entire O�1 domains unchanged, altering only val-
ues in I�1 in order to restore the gradient-continuity across
��1. The strategy is the opposite to that used for IDN21 and
consists in altering theA1j domains in order to fill it with the
distance fields of the same inclusions than distance values in
correspondingB1j domains. By definition ofBij domains, the
inclusion i is NN2 in those domains and NN1 inAij domains,
values of the latter can then be replaced by values of DN1 to
achieve the intended transformation. As the union of all A1j

domains is the domain where NN1 = 1, starting from DN2,
this transformation can be written as

ODN21(x) = DN1(x)whereNN1(x) = 1, (20)

which can again be generalized for any inclusion i to yield
Eq. (8g) and completed by Eq. (8f) to conserve DN2 any-
where NN1 �= i. The resulting ODN21 function is depicted
on Fig. 24g, while the origin of distance values is repre-
sented on Fig. 24h with the same convention than for NNk

functions. It can be seen on this figure that associatedA1j and
B1j domains are now filled with the same color, which means
that their values are determined from the distance field of the
same inclusions, which ensures the gradient-continuity.
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