Skip to main content
Log in

Finite cell method

h- and p-extension for embedded domain problems in solid mechanics

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A simple yet effective modification to the standard finite element method is presented in this paper. The basic idea is an extension of a partial differential equation beyond the physical domain of computation up to the boundaries of an embedding domain, which can easier be meshed. If this extension is smooth, the extended solution can be well approximated by high order polynomials. This way, the finite element mesh can be replaced by structured or unstructured cells embedding the domain where classical h- or p-Ansatz functions are defined. An adequate scheme for numerical integration has to be used to differentiate between inside and outside the physical domain, very similar to strategies used in the level set method. In contrast to earlier works, e.g., the extended or the generalized finite element method, no special interpolation function is introduced for enrichment purposes. Nevertheless, when using p-extension, the method shows exponential rate of convergence for smooth problems and good accuracy even in the presence of singularities. The formulation in this paper is applied to linear elasticity problems and examined for 2D cases, although the concepts are generally valid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Allaire G, Jouve F, Toader A (2004) Structural optimization using sensitivity analysis and a level-set method. J Comp Phys 194/1:363–393

    Article  MATH  MathSciNet  Google Scholar 

  2. Badea L, Daripa P (2001) On a boundary control approach to domain embedding methods. SIAM J Control Optim 40(2):421–449

    Article  MATH  MathSciNet  Google Scholar 

  3. Chen Y, Lee J, Eskandarian A (2006) Meshless methods in solid mechanics. Springer, Heidelberg

    MATH  Google Scholar 

  4. Del Pino S, Pironneau O (2003) A fictitious domain based general PDE solver. In: Kuznetsov Y, Neittanmaki P, Pironneau O (eds) Numerical methods for scientific computing variational problems and applications. CIMNE, Barcelona

    Google Scholar 

  5. Duarte CAM, Babuška I, Oden JT (2000) Generalized finite element method for three-dimensional structural mechanics problems. Comput Struct 77(2):215–232

    Article  Google Scholar 

  6. Düster A, Bröker H, Heidkamp H, Heißerer U, Kollmannsberger S, Krause R, Muthler A, Niggl A, Nübel V, Rücker M, Scholz D, AdhoC4-user’s guide, Lehrstuhl für Bauinformatik, Technische Universität München

  7. Düster A, Parvizian J, Yang Z, Rank A (2007) The finite cell method for 3D problems of solid mechanics, under preparation

  8. http://www.gid.cimne.upc.es

  9. Glowinski R, Pan T-W, Hesla TI, Joseph DD (1999) A distributed lagrange multiplier/fictitious domain method for particulate fows. Int J Multiph Flow 25:755–794

    Article  Google Scholar 

  10. Ismail M (2004) The fat boundary method for the numerical resolution of elliptic problems in perforated domains. Application to 3D Fluid Flows. PhD thesis, University Pierre and Marie Curie-Paris VI, France

  11. Neittaanmäki, Tiba D (1995) An embedding domains approach in free boundary problems and optimal design. SIAM Control Optim 33(5):1587–1602

    Article  MATH  Google Scholar 

  12. Osher S, Fedkiw R, Level-Set Methods and Dynamic Implicit Surfaces. Springer, Heidelberg

  13. Paffrath M, Jacobs W, Klein W, Rank E, Steger K, Weinert U, Wever U (1993) Concepts and algorithms in process simulation. Surv Math Ind 3, S.149–183

    Google Scholar 

  14. Ramiére I (2006) Méthodes de domaine fictif pour des problèmes elliptiques avec conditions aux limites générales en vue de la simulation numrique d’écoulements diphasiques. PhD Thesis, UNIVERSITÉ DE PROVENCE - AIX-MARSEILLE I, France

  15. Ramiére I, Angot P, Belliard M (2007) A fictitious domain approach with spread interface for elliptic problems with general boundary conditions. Comput Methods Appl Mech Eng 196(4–6):766–781

    Article  Google Scholar 

  16. Rank E, Werner H (1986) An adaptive finite element approach for the free surface seepage problem. Int J Numer Methods Eng 23:1217–1228

    Article  MATH  MathSciNet  Google Scholar 

  17. Rank E (1989) Local oxidation of silicon—a finite element approach. In: Bank RE, Bulirsch R, Merten K (eds). Mathematical modelling and simulation of electrical circuits. Birkhuser Verlag, Berlin

    Google Scholar 

  18. Rank E (1991) Finite-element-simulation of local oxidation in semiconductor processing, In: Whitemann JR (eds). The mathematics of finite elements and applications VII. Academic, New York

    Google Scholar 

  19. Rusten T, Vassilevski PS, Winther R (1998) Domain embedding preconditioners for mixed systems. Numer Linear Algebra Appl 5:321–345

    Article  MATH  MathSciNet  Google Scholar 

  20. Sethian JA (1999) Level-Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  21. Singh KM, Williams JJR (2005) A parallel fictitious domain multigrid preconditioner for the solution of Poisson’s equation in complex geometries. Comput Methods Appl Mech Eng 194:4845–4860

    Article  MATH  Google Scholar 

  22. Strouboulis T, Babuška I, Copps K (2000) The design and analysis of the generalized finite element method. Comput Methods Appl Mech Eng 181:43–69

    Article  MATH  Google Scholar 

  23. Szabó BA, Düster A, Rank E (2004) The p-version of the finite element method. In: Stein E, de Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics, Vol. 1, Chapter 5. Wiley, New York, pp. 119–139

  24. Szabó BA, Babuška I (1991) Finite element analysis. Wiley, New York

    MATH  Google Scholar 

  25. Zhou YC, Wei GW (2006) On the fictitious-domain and interpolation formulations of the matched interface and boundary (MIB) method. J Comp Phys 219:228–246

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamshid Parvizian.

Additional information

The first author would like to appreciate the financial support of his stay in Germany, where this research has been carried out, by the Alexander von Humboldt foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parvizian, J., Düster, A. & Rank, E. Finite cell method. Comput Mech 41, 121–133 (2007). https://doi.org/10.1007/s00466-007-0173-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-007-0173-y

Keywords

Navigation