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Fitting hyperelastic models to experimental data

R. W. Ogden, G. Saccomandi, I. Sgura

Abstract This paper is concerned with determining
material parameters in incompressible isotropic elastic
strain–energy functions on the basis of a non-linear least
squares optimization method by fitting data from the
classical experiments of Treloar and Jones and Treloar on
natural rubber. We consider three separate forms of
strain-energy function, based respectively on use of the
principal stretches, the usual principal invariants of the
Cauchy-Green deformation tensor and a certain set of
‘orthogonal’ invariants of the logarithmic strain tensor.
We highlight, in particular, (a) the relative errors gener-
ated in the fitting process and (b) the occurrence of mul-
tiple sets of optimal material parameters for the same data
sets. This multiplicity can lead to very different numerical
solutions for a given boundary-value problem, and this is
illustrated for a simple example.

Keywords Constitutive laws, Elasticity, Elastomers,
Finite deformation, Isotropic

1
Introduction
In this paper, we carry out a systematic analysis of the
fitting of incompressible isotropic hyperelastic constitutive
laws to experimental data, the determination of material
parameters and the corresponding relative errors. For this
purpose we use the original data of Treloar [1] and Jones
and Treloar [2] for natural rubber, a non-linear least

squares optimization tool from Matlab, and three specific
material models due to Ogden [3], based on stretches,
Pucci and Saccomandi [4], based on the usual invariants I1

and I2 of the Cauchy-Green deformation tensor, and
Criscione et al. [5], based on a set of ‘orthogonal’
invariants of the logarithmic strain tensor.

An important aim of the paper is to show, by means of
numerical examples, that the fitting of experimental data
within the framework of the mechanics (or thermome-
chanics) of elastomeric solids is a very delicate question.
In particular, non-uniqueness of ‘optimal’ material
parameters often occurs, and this non-uniqueness may be
reflected very markedly in the solution of boundary-value
problems. The difficulties arising in the fitting procedure
are intrinsic to the considered problem and are not in
general dependent on the specific choice of constitutive
law, although in some cases uniqueness may be achieved;
one case in point is where the material constants occur
linearly in the stress-deformation equations; another that
of the Pucci–Saccomandi model discussed in Sect. 5.
Moreover, the difficulties are not functions of the partic-
ular formulation, whether in terms of stretches or invari-
ants. If, for example, polynomial models are used (with the
material constants appearing linearly) then to obtain
‘good’ fits to the data for an extensive range of deforma-
tions it is necessary to employ high-order polynomials,
which typically introduce numerical instabilities. On the
other hand, if the material constants feature in a non-
linear way then non-uniqueness of the optimal set of
constants can be the rule unless some intrinsic property of
the problem is used to avoid this.

We begin, in Sect. 2, by summarizing the relevant
equations that describe the stresses in a homogeneous
pure strain of an incompressible isotropic elastic solid as
derivatives of the strain-energy function and the important
special cases of simple tension and equibiaxial tension. In
Sect. 3 the optimization method to be used in the
subsequent sections is described.

The Ogden model, with either six or eight material
parameters, is the focus of attention in Sect. 4. It is shown
that by fitting the Treloar data for simple tension (equi-
biaxial tension) the prediction for equibiaxial tension
(simple tension) is not good. This is not surprising. On the
other hand, if both sets of data are fitted together then
good overall fits are obtained with reasonably low relative
errors. Corresponding fits are performed for the full set of
the Jones–Treloar biaxial data. An important feature of the
results is that multiple sets of optimal values of the
material parameters are generated by taking different
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Università degli Studi di Lecce, 73100 Lecce, Italy
e-mail: ivonne.sgura@unile.it

The work of G. S. was partially supported by GNFM, INDAM,
Italy. The work of I. S. was partially supported by the Progetto
Giovani Ricercatori Università di Lecce – MIUR 2001/2002.
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starting values and/or by setting different levels of accu-
racy in the optimization procedure. This clearly has
implications for the solution of boundary-value problems,
and we emphasize this point by considering, in Sect. 7, a
simple boundary-value problem in which significantly
different numerical predictions of the solution are ob-
tained by using different optimal sets of parameters. It also
has serious implications in respect of implementation of
material models in commercial software, particularly since
non-uniqueness is inherent in problems of non-linear
elasticity. Thus, careful mathematical analysis is needed to
ensure confidence in the resulting numerical solutions.

In Sect. 5, for the Pucci and Saccomandi model, an
extension of the Gent model [16] having three material
parameters, we find that there is no multiplicity of optimal
sets of parameters. This model fits the Treloar data well
and also the Jones–Treloar data except in the compression
range. We also report, in Sect. 7, the predictions of the
different parameter sets obtained for this model for
different sets of data in respect of the boundary-value
problem mentioned above.

In Sect. 6, we examine the Criscione et al. [5] model on
the same basis as for the other two models. We find that
whilst this model gives a good fit to the Jones–Treloar data
for moderate stretches with just five material parameters it
does not fit the Treloar simple tension data well for higher
stretches unless a very much larger number of parameters
is used.

2
Basic equations
In this section we summarize briefly the equations of
incompressible isotropic non-linear elasticity that are
required for comparing the theory with experimental data
in standard experimental protocols. The data that we shall
consider in this paper relate to experiments in which the
deformation is homogeneous. More specifically, we con-
sider homogeneous deformations that can be classified as
pure homogeneous strain, i.e. deformations of the form

x1 ¼ k1X1; x2 ¼ k2X2; x3 ¼ k3X3; ð1Þ
where ðX1;X2;X3Þ are rectangular Cartesian coordinates
that identify material particles in some unstressed refer-
ence configuration, ðx1; x2; x3Þ are the corresponding
coordinates after deformation with respect to the same
axes, and the coefficients k1; k2; k3 are positive constants,
referred to as the principal stretches of the deformation.
The principal axes of the deformation coincide with the
Cartesian coordinate directions and are fixed as the values
of the stretches change.

In the theory of hyperelasticity there exists a strain-
energy function (or stored-energy function), defined per
unit volume and denoted W . It depends symmetrically on
k1; k2; k3, i.e.

Wðk1; k2; k3Þ ¼ Wðk1; k3; k2Þ ¼ Wðk2; k1; k3Þ; ð2Þ
and for an incompressible material the principal stretches
satisfy the constraint

k1k2k3 ¼ 1: ð3Þ
The principal Cauchy stresses ri; i 2 f1; 2; 3g (defined

per unit cross-sectional area normal to the xi axis in the

deformed configuration), are related to the stretches
through W according to the equations

ri ¼ ki
oW

oki
� p; ð4Þ

where p is a Lagrange multiplier associated with the con-
straint (3). Note that in (4) there is no summation over the
repeated index i. The corresponding Biot (or nominal)
stresses ti (defined per unit reference cross-sectional area)
are the stresses that are often measured directly in
experiments and are given by

ti ¼
oW

oki
� pk�1

i � rik
�1
i : ð5Þ

Since the material considered is incompressible, only
two stretches can be varied independently and hence
biaxial tests are sufficient to determine the form of W . For
this reason it has been found convenient to use the
incompressibility constraint (3) to express the strain
energy as a function of two independent stretches, and
here we use k1 and k2 and the notation defined by

Ŵðk1; k2Þ ¼ Wðk1; k2; k
�1
1 k�1

2 Þ: ð6Þ
This enables p to be eliminated from (4) and leads to

r1 � r3 ¼ k1
oŴ

ok1
; r2 � r3 ¼ k2

oŴ

ok2
: ð7Þ

For the energy and stresses to vanish in the chosen ref-
erence configuration and for consistency with the classical
theory of incompressible isotropic elasticity we must have

Ŵð1; 1Þ ¼ 0; Ŵ1ð1; 1Þ ¼ Ŵ2ð1; 1Þ ¼ 0;

Ŵ12ð1; 1Þ ¼ 2l; Ŵ11ð1; 1Þ ¼ Ŵ22ð1; 1Þ ¼ 4l; ð8Þ
where the subscripts 1 and 2 signify differentiation with
respect to k1 and k2, respectively, and lð> 0Þ is the shear
modulus of the material in the reference configuration.

If the deformation (1) is applied to a thin sheet of
material (a common situation experimentally) then a plane
stress condition applies and we may set r3 ¼ 0, the stress
normal to the plane of the sheet. In terms of the nominal
stresses we then have simply

t1 ¼
oŴ

ok1
; t2 ¼

oŴ

ok2
; ð9Þ

which provides two equations relating k1; k2 and t1; t2 and
therefore a simple basis for characterizing Ŵ from mea-
sured (homogeneous) biaxial data.

There are several special cases of the biaxial test which
are important from the experimental point of view. These
are simple tension and equibiaxial tension, which we now
discuss separately and briefly, and pure shear, which we do
not examine here. A subscript s or e will be used to label
quantities associated with, respectively, simple tension and
equibiaxial tension.

(i) Simple tension
For simple tension we set t2 ¼ 0 and t1 ¼ t. Then, by
symmetry, the incompressibility constraint yields
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k2 ¼ k3 ¼ k�1=2
1 and we write k1 ¼ k. The strain energy

may now be treated as a function of just k, and we define

WsðkÞ ¼ Ŵðk; k�1
2Þ; ð10Þ

and (9) reduces to

t ¼ W 0
sðkÞ; ð11Þ

where the prime indicates differentiation with respect to k.

(ii) Equibiaxial tension
For equibiaxial tension we have k1 ¼ k2 (¼ k, say),
k3 ¼ k�2

1 and t1 ¼ t2 (¼ t, say). Then, we define

WeðkÞ ¼ Ŵðk; kÞ; ð12Þ
and (9) reduces to

t ¼ 1

2
W 0

eðkÞ: ð13Þ

For discussion of the possible ranges of values of the
stretches in various tests we refer to Ogden [6].

In Sect. 4 we shall focus on fitting members of a specific
class of energy functions to various sets of experimental
data. The considered strain-energy functions have the
form

W ¼
X1

i¼1

li

ai
ðkai

1 þ kai
2 þ kai

3 � 3Þ; ð14Þ

where each li and ai is a material constant, the latter not
necessarily being integers (Ogden [3, 7, 8]). For practical
purposes the sum in (14) is restricted to a finite number of
terms, while, for consistency with the classical theory, the
constants must satisfy the requirement

XM

i¼1

liai ¼ 2l; ð15Þ

where M is a positive integer and l is again the shear
modulus of the material in the undeformed stress-free
(natural) configuration, as identified in (8).

We shall also make use of the strain energy expressed as
a function of invariants (symmetric functions of the
stretches). In particular, we mention here the representa-
tion of W in terms of the two independent invariants I1

and I2 defined in terms of the stretches by

I1 ¼ k2
1 þ k2

2 þ k2
3; I2 ¼ k�2

1 þ k�2
2 þ k�2

3 : ð16Þ
Let W, regarded as a function of I1; I2, be written �WðI1; I2Þ.
Then, we have the identification

Wðk1; k2; k3Þ � �WðI1; I2Þ: ð17Þ
In terms of �W the principal Cauchy stress differences

(7) become

r1�r3¼ 2ðk2
1�k�2

1 k�2
2 Þ

o �W

oI1
þ2ðk2

1k
2
2�k�2

1 Þ
o �W

oI2
;

r2�r3¼ 2ðk2
2�k�2

1 k�2
2 Þ

o �W

oI1
þ2ðk2

1k
2
2�k�2

2 Þ
o �W

oI2
: ð18Þ

Analogues of the conditions (8) may be written down in
respect of �W but we omit the details.

Many specific forms of strain energy may be found in
the literature, expressed either in terms of the stretches or
the invariants I1 and I2 or other choices of independent

deformation variables. For representative reviews of many
of these we refer to, for example, Ogden [3, 7, 9], Treloar
[10], Beatty [11] and Boyce and Arruda [12].

3
Outline of the optimization method
The experimental data used in this paper are the classical
data of Jones and Treloar [2] for the biaxial tension data
and of Treloar [1] for the other tests, their numerical
values having been obtained from the original experi-
mental tables. These data have been used to identify the
parameters in specific strain-energy functions by means of
the least squares (LS) technique. It should, however, be
pointed out that sometimes in the literature these data are
obtained by digitization of the figures in [1] and [2], with
consequent loss of accuracy.

Let K ¼ ½K1;K2; . . . ;Km�T be the vector of values of a
measure of stretch appropriate to the considered defor-
mation and s ¼ ½s1; s2; . . . ; sm�T be the corresponding
values of stress, which may be either nominal stress or
Cauchy stress, again depending on the deformation in
question. Hence ðK; sÞ are the given pairs of data values.
The considered material model is represented by the
strain-energy function W , from which the stress is calcu-
lated and written FðK; pÞ : R� Rn ! R, where K takes
values Ki; 1 ¼ 1; . . . ;m, and p ¼ ½p1; p2; . . . ; pn�T is a set of
n material parameters (constants) to be identified.

Let us define the objective function as the squared
2-norm

SFðpÞ :¼ kFðK; pÞ � sk2
2 ¼

Xm

i¼1

½FðKi; pÞ � si�2; ð19Þ

where FðK; pÞ :¼ ½FðK1; pÞ; . . . ; FðKm; pÞ�T.
Hence, the minimization problem is given by

min
p

SFðpÞ: ð20Þ

If FðK; pÞ is a non-linear function with respect to p, then a
non-linear least squares (NLS) problem arises.

Several numerical algorithms have been used in the
literature to solve NLS problems (see, for example, Bjorck
[13]) and they are usually based on some suitable modi-
fication of the Newton method and require an initial guess
for the solution. Therefore, when some appropriate stop-
ping criteria are satisfied, the iterative technique approx-
imates numerically a minimum for the problem (20) and
then furnishes an optimal solution, p� say, for the fitting
problem with residual S � SFðp�Þ.

For our purposes in the present paper we use the func-
tion Lsqcurvefit in the Optimization Toolbox of MATLAB
[14]. We choose the trust region (TR) method (see [14] for
details) as the option for the descent algorithm and, in
general, we choose a randomly generated starting point.
The iterations of the NLS algorithm can stop either when
the Newton step becomes less than TolX ¼ 1e)8 or the
infinity norm of the estimated gradient r of the objective
function is less than TolFun ¼ 1e)12 or when a maximum
of 3000 iterations have been performed. We remark that the
value of r for each approximation obtained can be
regarded as an indicator of the attainment of a local
minimum for the NLS function.
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We did not impose upper and lower bounds on the
parameters p since we chose to use an unconstrained
optimization algorithm and to discard non-physical
solutions a posteriori.

Finally, to allow comparisons between the different
forms of FðK; pÞ, we report also the relative errors in the
data obtained for the corresponding optimal numerical
fitting and calculated as

erri ¼
jFðKi; p�Þ � sij
maxf0:5; jsijg

for i ¼ 1; . . . ;m:

This is a slight modification of the usual definition in that
the 0:5 has been included in the denominator so as to
avoid division by small values of jsij when the stretches are
close to 1.

Moreover, in order to estimate the predictive ability of
each model, we propose a suitable modification of the
above MATLAB function so as to fit several different sets
of data together. For example, if the simple tension ðKs; ssÞ
and the equibiaxial tension data ðKe; seÞ are considered
together we choose to minimize the new objective function

min
p
ðkFsðKs; pÞ � ssk2

2 þ kFeðKe; pÞ � sek2
2Þ; ð21Þ

where FsðKs; pÞ ¼ ½FsðKs1; pÞ; . . . ; FsðKsm; pÞ�T, with
Ksi; i ¼ 1; . . . ;m, being the entries in the vector Ks and Fs

the appropriate form of F for simple tension. Similarly for
FeðKe; pÞ, except that the number of data pairs (i.e. the value
of m) may be different. More details will be given in each
section dedicated to specific models under examination.

We mention here that the units used in Treloar [1] are kg
cm�2 and those in Jones and Treloar [2] are N mm�2. We use
these original units without further reference throughout
the following sections, and we emphasize that the tests in
these two papers were carried out for different materials.

4
The Ogden model
In this section we focus on the Ogden model identified in
(14). Considerations of physically realistic response and
material stability lead to the inequalities

liai > 0; ð22Þ
for each i ¼ 1; . . . ;M (no sum over i) in addition to the
connection (15). Note, however, that, in general, if M � 3
it is not necessary that these hold for every i. This model is
most commonly implemented with M ¼ 3 or M ¼ 4, and
the theoretical predictions of such a model are generally
very satisfactory, at least from a qualitative point of view.
Based on the same set of data as used here, the paper by
Twizell and Ogden [15] is dedicated to fitting (14) by
means of the Levenberg–Marquardt algorithm.

In the following subsections we shall examine this
model in order to show that, given a set of experimental
data, the following conclusions can be drawn:

� it is possible to find a large number of optimal sets of
parameters;

� the number of the optimal sets of parameters and the
values of the parameters depend on M and also in a very
sensitive way on the numerical accuracy required in the

NLS algorithm used (maximum number of iterations
permitted, tolerance errors, etc.);

� the effect of this multiplicity of optimal parameters on
the solution of a boundary-value problem is not negli-
gible from the quantitative point of view.

4.1
Simple tension
In [15] the set of optimal parameters obtained in order to
fit Treloar’s simple tension experiment data [1] are

i ai li

1 2:26 2:22
2 �2:01 �0:448
3 10:01 3:9e)7

ð23Þ

for M ¼ 3 and

i ai li

1 1:23 6:27
2 �2:99 �0:054
3 4:44 0:036
4 19:49 0:8e)15

ð24Þ

for M ¼ 4. The analysis is based on equations equivalent
to (11) with

Ws ¼
XM

i¼1

li

ai
kai þ 2k�ai=2 � 3
� �

; ð25Þ

which is the appropriate specialization of (14) for simple
tension. For the set of parameters (23) (M ¼ 3) the
residual Sð23Þ is found to be 13:449, and from Fig. 1, in
which the relative errors are plotted as functions of the
stretch k, it is clear that the relative error may be very large
for low values of the stretch and moderate around k ¼ 4.
For the set of parameters (24) (M ¼ 4) the residual Sð24Þ is
lowered to 8.0129 and Fig. 1 shows that the relative error is

Fig. 1. Plots of the relative errors (%) against stretch k in the
simple tension data fits of the Twizell-Ogden parameter sets for
M ¼ 3; 4
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very low across the range of values of the stretch except for
limited ranges where it is moderate.

Let us focus on the case M ¼ 3 and use the set (23)
together with 30 sets of random values as starting guesses
for the NLS algorithm. The algorithm converges to the set
of parameters reported in Table 1, where for each optimal
set p� ¼ ½a1; l1; . . . ; aM; lM�T we report also the residual
S � Sðp�Þ and the measure of the gradient r, as explained
in Sect. 3.

By OT we identify the solution obtained from our algo-
rithm by starting from (23) with at most four significant
digits and by OSSi; i ¼ 1; 2; 3, the other possible solutions
obtained by starting from the random guesses. By using a
larger number of random guesses it is possible to find other
solutions. In this case, starting from the (23) guess, we find a
set of parameters very similar to those in (23), but the new
solution OT improves the fit, as illustrated by the distribu-
tion of the relative errors shown in Fig. 2, and, in particular,
it should be noted that OSS2 gives the lowest relative error.

We repeat this procedure for the case M ¼ 4. The results
are reported in Table 2 and the relative errors in Fig. 3. Note
that the OSS2 set of parameters gives theoretical predic-
tions with all the relative errors under the 5% level.

As a general comment on the Ogden model, Tables 1
and 2 give evidence of the multiple choices encountered.

To emphasize that application of the NLS method to the
Ogden function (14) can be very sensitive to the numerical
settings used in the implementation of the algorithm, we
report the following considerations. In the numerical
experiments above, we found that the NLS optimization
often stops when the Newton step becomes less than
TolX ¼ 1e)8 even if neither the estimated gradient r nor
the residual S is sufficiently small. Moreover, if we set
TolX ¼ 1e)15 up to the machine precision and we restart
the algorithm from one solution p� obtained when
TolX ¼ 1e)8 is used, sometimes a completely different set
of parameters with a lower residual can be obtained. For

example, if we choose p� � OT in Table 1 as a new starting
guess, then the new set

i ai li

1 2:7908 0:81107
2 �1:6207 �3:9647
3 10:95 5:0211e)8

ð26Þ

with a residual S ¼ 9:57949 and r ¼ 0:504 is obtained.
This behavior of the Newton iterations usually indicates

that the problem becomes ill-conditioned, that is ‘low’ and
‘flat’ local minima can be present in the objective function
of the optimization problem.

Fig. 2. Plots of the relative errors (%) against stretch k in respect
of the Ogden strain energy with M ¼ 3 in simple tension for the
parameter sets OT, OSS1, OSS2, OSS3 given in Table 1

Table 2. Parameter values for the Ogden model with M ¼ 4: simple tension

i OT OSS1 OSS2 OSS3

ai li ai li ai li ai li

1 1.23 6.27 10.376 1.6988e)7 2.4536 0.15853 22.89 6.1302e)19
2 )1.99 )0.054 )1.605 )1.4396 )2.0354 )3.8145 )12.161 )9.8765e)4
3 4.44 0.036 )1.6087 )2.0189 13.945 9.5425e)11 )0.039294 )43.239
4 19.49 7.6559e)16 2.654 1.0229 3.2503 0.33457 )4.3008 )2.0949

S 6.97 10.386 8.1035 5.7977
r 1175.1 0.68402 1.6933 38416

Table 1. Parameter values for the Ogden model with M ¼ 3: simple tension

i OT OSS1 OSS2 OSS3

ai li ai li ai li ai li

1 2.2519 2.2118 )3.3288 )2.7776 10.666 9.1866e)8 )4.6141 )0.92354
2 )2.054 )0.61139 3.2481 0.25031 2.845 0.63604 )4.5926 )1.2037
3 10.01 3.9204e)7 )22.522 )2.5625e)8 )2.7138 )2.7391 )20.594 )2.1212e)7

S 12.876 9.3318 9.9655 11.1
r 5.82 0.24963 0.56965 0.03575
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4.2
Sensitivity of the Ogden strain energy
In the fittings discussed above we have noted that the
relative errors are always higher in the region of small
stretches. It is therefore interesting to perform a sensitivity
analysis for the Ogden strain-energy function (14) in the
case of simple tension, in which case, with
k1 ¼ k; k2 ¼ k3 ¼ k�1=2, we may write the energy as a
function of k, as in (25). The corresponding nominal stress
ts is then

ts ¼
XM

i¼1

li kai�1 � k�ai=2�1
� �

� Fsðk; pÞ: ð27Þ

For each i, the absolute sensitivities of the parameters ai; li

can be assessed by considering

ots

oli

����

���� ¼ kai�1 � k�ai=2�1
���

���;

ots

oai

����

���� ¼ li ln kð Þ kai�1 þ 1

2
k�ai=2�1

� �����

����:

However, such quantities can be inappropriate because
they are not invariant with respect to changes in the
magnitude of either ts or of one parameter. Relative
changes in ts with respect to a relative change in ai or li

are provided, respectively, by

li

t0

ots

oli

����

����;
ai

t0

ots

oai

����

����;

where t0 is the value of ts at some specified set of
parameter values. For example, by considering ts to be
evaluated at the set (23) for M ¼ 3, we obtain, for
i ¼ 1; . . . ; 3,

li

t0

ots

oli

����

���� ¼
li kai�1 � k�ai=2�1
� ����

���
jt0j

ð28Þ

and

ai

t0

ots

oai

����

���� ¼
li ln kð Þ kai�1 þ 1

2 k�ai=2�1
� �

ai

����

����
t0j j

; ð29Þ

where

t0 ¼ 2:22ðk1:26 � k�2:13Þ � 0:448ðk�3:01 � k0:005Þ
þ 3:9e� 7ðk9:01 � k�6:005Þ:

Since these functions are both linear in li, we fix li ¼ 1
and we plot them in Fig. 4 as functions of ai and k. We
observe that all parameters are sensitive for stretches in
the region 0:5 � k � 1:5 in each case. This could also
explain why bigger relative errors are generally concen-
trated in this region. A similar analysis can be carried out
for the other deformations considered in the following
subsections.

4.3
Equibiaxial deformations
We now turn attention to equibiaxial deformations. The
parameters reported in [15] that provide fits to the Treloar
data are

i ai li

1 1:46 5:39
2 �2:03 �0:531
3 9:68 0:19e)5

ð30Þ

for M ¼ 3, and

i ai li

1 1:26 6:17
2 �2:01 �0:0091
3 4:26 0:046
4 19:49 1e)14

ð31Þ

for M ¼ 4, and the relevant relationship between k and t is
given by (13) with (12), specialized in respect of (14).

Fig. 3. Plots of the relative errors (%) against stretch k in respect
of the Ogden strain energy with M ¼ 4 in simple tension for the
parameter sets OT, OSS1, OSS2, OSS3 given in Table 2

Fig. 4. Relative sensitivity of the Ogden parameters: plot of (28)
(left) and (29) (right) against k and ai
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The set of parameters reported for M ¼ 3 is not con-
sidered since in this case the total residual is 4158:9, while
for M ¼ 4 it is 3:6391. The results obtained from our
simulations are summarized in Tables 3 and 4, and the
corresponding distributions of relative errors are shown in
Figs. 5 and 6, respectively. Note that if the NLS technique
starts with (30) then the solution obtained does not satisfy
the condition (22) for every i.

4.4
Simple and equibiaxial tension compared
In this section we compare the fits for simple and equi-
biaxial tension by selecting those parameters in the pre-
vious tables that give the lowest relative error in the
infinity norm for both sets of Treloar data.

Consider the case M ¼ 3. Among the optimal
minima obtained for simple tension, the OT set in
Table 1 produces the best fit (in the sense just
specified) for the equibiaxial data. On the other hand,
among the optimal minima obtained for equibiaxial
tension, the OSS2 set in Table 3 produces the best fit
for the simple tension data. These behaviours are
reported in Figs. 7 and 8, respectively, and it easy to
see that in each case no good agreement is obtained for
both simple tension and equibiaxial tension simulta-
neously. The situation is only slightly improved if we
take M ¼ 4, so we do not show the analogues of Figs. 7
and 8 for this case.

A better fit is obtained if we apply the NLS algorithm to
both sets of Treloar data simultaneously, i.e. ðKs; ssÞ for

Table 4. Parameter values for the Ogden model with M ¼ 4: equibiaxial tension

i OT OSS1 OSS2 OSS3

ai li ai li ai li ai li

1 1.2619 6.1718 1.6918 0.89887 )0.017504 )125.91 2.8434 0.88898
2 )2.0115 )0.092621 1.6918 1.6841 )0.017524 )124.9 )0.49624 )3.9819
3 4.2615 0.047581 5.4929 0.013381 )0.017577 )125.22 )0.49625 )3.8157
4 19.49 1.0484e)12 1.6918 2.31 )2.1483 )0.13082 )7.9792 )8.5091e)10

S 0.43686 0.30387 0.80212 3.5249
r 2.3394 1.0259e)7 0.027966 0.78817

Fig. 5. Plots of the relative errors (%) against stretch k in respect
of the Ogden strain energy with M ¼ 3 in equibiaxial tension for
the parameter sets OSS1, OSS2, OSS3 given in Table 3

Fig. 6. Plots of the relative errors (%) against stretch k in respect
of the Ogden strain energy with M ¼ 4 in equibiaxial tension for
the parameter sets OT, OSS1, OSS2, OSS3 given in Table 4

Table 3. Parameter values for
the Ogden model with M ¼ 3:
equibiaxial tension

i OSS1 OSS2 OSS3

ai li ai li ai li

1 )6.7054 )4.0441e)9 1.6918 4.4184 4.259 0.13873
2 1.58 5.1733 5.4929 0.013381 )0.022671 )144.69
3 )2.4591 )0.03445 1.6919 0.47456 )0.022671 )142.01

S 0.31666 0.30387 0.70829
r 0.020419 2.821e)5 0.0088361
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simple tension and ðKe; seÞ for equibiaxial tension. In this
case we optimize the objective function (21), where
p ¼ ½a1; l1; . . . ; aM; lM�T.

Consider M ¼ 3. By starting the algorithm with, for
example, the optimal set OT – Table 1 and also from 10
random choices, the optimal set obtained is, in each
case,

i ai li

1 8:3952 1:2069e)5

2 1:8821 3:7729

3 �2:2453 �0:052171

ð32Þ

with S ¼ 20:013, r ¼ 0:0015682, Ss ¼ 17:233, Se ¼ 2:7801,
where Ss and Se are the residuals for the simple tension

Fig. 7. Fit to the simple tension and equibi-
axial tension data (circles) using the OT –
Table 1 parameter set obtained from the sim-
ple tension data, and the relative errors:
M ¼ 3. In the left-hand (right-hand) figures
nominal stresses (relative errors) are plotted
against stretch

Fig. 8. Fit to the simple tension and equibi-
axial tension data (circles) using the OSS2 –
Table 3 parameter set obtained from the equ-
ibiaxial tension data, and the relative errors:
M ¼ 3. In the left-hand (right-hand) figures
nominal stresses (relative errors) are plotted
against stretch
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and equibiaxial tension data separately. The correspond-
ing fits and relative errors are shown in Fig. 9. Note that
relative errors around the 10% level are obtained.

If M ¼ 4, the solution obtained is

i ai li
1 2:7971 0:77817
2 �2:7188 �0:011229
3 10:505 1:269e)7
4 0:33382 16:169

ð33Þ

and in this case we have S ¼ 10:904, r ¼ 1:3192,
Ss ¼ 10:427, Se ¼ 0:4765, and the simple tension and
equibiaxial tension fits are both shown in Fig. 10 along
with the relative errors.

4.5
Biaxial data
As discussed in Ogden [6] as well as in the book [9], the set
pog given by

Fig. 9. Fits using both simple and equibiaxial
tension data (circles) and the corresponding
relative errors: M ¼ 3. In the left-hand (right-
hand) figures nominal stresses (relative errors)
are plotted against stretch

Fig. 10. Fits using both simple and equibi-
axial tension data (circles) and the corre-
sponding relative errors: M ¼ 4. In the left-
hand (right-hand) figures nominal stresses
(relative errors) are plotted against stretch
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i ai li

1 1:3 0:69
2 4 0:01
3 �2 �0:0122

ð34Þ

provides a good prediction of the biaxial data for the
material tested by Jones and Treloar [2], which is a dif-
ferent material from that used by Treloar [1] so that cross-
correlation between the two sets of data is not admissible.
The basis for the fitting in this case is the stress difference
r1 � r2, calculated from (7) and specialized for (14),
plotted against k1 for a series of fixed values of k2. The
relevant function Fðk; pÞ is given by

Fðk1; pÞ ¼
XM

i¼1

liðkai
1 � kai

2 Þ; ð35Þ

with p ¼ ½l1; a1; . . . ; lM; aM�T, M ¼ 3 and k2 fixed. We
estimate that pog produces a minimum residual

Smin ¼ 0:026728 and a maximum residual Smax ¼ 0:035938
on the biaxial data amongst the different values of k2.

In our simulation, the NLS algorithm is applied for
each set of data with k2 fixed and then predictions for the
sets of data with other values of k2 are derived using the
optimal set of parameters obtained. Also, for the biaxial
data, we show that the Ogden strain-energy function
gives good fits with several different optimal sets of
parameters. In fact, by starting the NLS procedure from
pog, we find the set reported as OG in Table 5, while
starting with 30 random samples different local minima
are obtained. Some of these sets of parameters are shown
in Table 5 together with the corresponding minimum and
maximum residuals between the different values of k2. In
Fig. 11 we show the fits obtained using the OSS1 set
(which has the lowest residuals) and the corresponding
relative errors.

If the Ogden strain energy with M ¼ 4 is considered,
then the optimal sets in Table 6 are obtained, but the

Fig. 11. Fit of the biaxial data (circles)
using the Ogden strain energy for the
optimal set OSS1 in Table 5, and the cor-
responding relative errors: M ¼ 3. In the
left-hand figure r1 � r2 is plotted against
k1 for the fixed values of k2 indicated

Table 5. Parameter values for
the Ogden model with M ¼ 3:
biaxial deformation

i OG OSS1 OSS2

ai li ai li ai li

1 1.2921 0.7332 6.8269 3.8409e)4 4.5686 0.0048952
2 4.5537 0.0049951 1.3193 0.73974 1.2935 0.73275
3 )2.4381 )0.0052363 )2.6059 )0.0040178 )2.4363 )0.0052583

Smin 0.0064745 0.004571 0.0064744
Smax 0.061694 0.051234 0.06157
r 2.0927e)6 3.6893e)6 5.63e)7
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relative errors are not improved compared with the case of
M ¼ 3.

5
Limiting chain extensibility models
In order to contrast with the results in Sect. 4 we now
consider the strain energy introduced by Pucci and
Saccomandi [4], which we referred to in Sect. 1 as the
Pucci–Saccomandi model. The Gent model itself reflects,
at the phenomenological level, the behaviour of molecular
models based on Langevin statistics. In particular, it rep-
resents very well the stiffening of the material at large
strains. It has the advantage of mathematical simplicity
and allows detailed analysis and explicit solution of par-
ticular boundary-value problems. Since the Pucci–Sacco-
mandi model is a modification of the Gent model [16] with
the addition of a logarithmic term similar to that in the
Gent model we also refer to it as the ‘Gent þ Gent’ model.

We use the abbreviation GG to identify the model, which
has the form

�WðI1; I2Þ ¼ �
l
2

Jm log 1� I1 � 3

Jm

� �

þ C2 log
I2

3

� �
;

ð36Þ

where Jm is a positive material constant that identifies the
upper limit of I1 (i.e. I1 < 3þ Jm) associated with limiting
chain extensibility in the molecular-based models, C2 is
another material constant (associated with the contribu-
tion of I2) and we recall the expressions (16) for the
invariants I1 and I2, which are subject to (3). Note that
lþ 2C2=3 is the infinitesimal shear modulus and that the
original Gent model corresponds to C2 ¼ 0. The associated
principal stress differences may be calculated from the
formulas (18), but we do not give them explicitly here.

By fitting the GG model for the simple tension and
equibiaxial tension data we obtain the sets of parameters
in Table 7. In Figs. 12 and 13 we show that each set
exhibits a valuable predictive property since relative errors
below 20% are generated when the parameters obtained by
the simple tension (equibiaxial tension) fit are used to
compare the theory with the data for equibiaxial tension

Table 6. Parameter values for the Ogden model with M ¼ 4:
biaxial deformation

i OSS1 OSS2

ai li ai li

1 )0.0067956 )15.013 )0.0079652 )17.824
2 )3.3132 )8.0266e)4 )3.4693 4.5919e)4
3 1.7426 0.43689 2.0035 0.3301
4 )0.0067961 )15.284 )0.0079625 )18.026

Smin 0.0058526 0.00948
Smax 0.53747 0.12028
r 1.1627e)5 3.2675e)4

Fig. 12. Fit of the GG model to simple tension
and equibiaxial tension data (circles) and the
corresponding relative errors with the optimal
parameter set based on use of the simple
tension data. In the left-hand (right-hand)
figures nominal stresses (relative errors) are
plotted against stretch

Table 7. Parameter values from the fit of the GG model to simple
tension and equibiaxial tension data

l Jm C2 S r

Simple tension 2.4195 77.931 1.0233 7.6082 4.4123e)5
Equib. tension 3.1674 88.13 0.43659 0.36221 8.1682e)8
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(simple tension). We remark that the GG model does not
produce multiple local minima in the NLS optimization
approximation. This is associated with the form of the log
function and the fact that only three material constants are
involved.

If the two data sets are fitted together according to (21)
then the NLS yields the optimal set

l ¼ 2:5343; Jm ¼ 79:793; C2 ¼ 1:0368;

with residual S ¼ 38:754, r ¼ 2:58e)5, Ss ¼ 12:574,
Se ¼ 26:179. The fits and the corresponding relative errors
are shown in Fig. 14. Note that the coupled data do not
lead to an improvement in the fit. This is because the
limited number of constants does not allow enough flexi-
bility to accommodate the additional data and the con-
straints associated with the location of the ‘limiting-chain
extensibility’ asymptotes.

Fig. 13. Fit of the GG model to simple tension
and equibiaxial tension data (circles) and the
corresponding relative errors with the optimal
parameter set based on use of the equibiaxial
tension data. In the left-hand (right-hand)
figures nominal stresses (relative errors) are
plotted against stretch

Fig. 14. Fit of the GG model to simple tension
and equibiaxial tension data (circles) and the
corresponding relative errors with the optimal
parameter set based on use of both the simple
tension and equibiaxial tension data together.
In the left-hand (right-hand) figures nominal
stresses (relative errors) are plotted against
stretch
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If the GG model is used to fit the biaxial tension data, we
find that each data set for a fixed value of k2 yields a good
fit, with the values of l and C2 very similar in each case.
For example, the set

l ¼ 0:34676; Jm ¼ 85:79; C2 ¼ 0:05471

is obtained for k2 ¼ 1 and then used to fit the data for the
other values of k2. The resulting fits are shown in Fig. 15.
The minimum and the maximum residuals with respect to
all the biaxial data are Smin ¼ 0:039846, Smax ¼ 0:9132.
Note, however, that the predictive property of the biaxial
tension fitting is not good for compressive strains, irre-
spective of the value of Jm.

Let us now apply the GG model to the biaxial case by
fitting separately the data in the compression and exten-
sion ranges. Consider the data for k1 < 1. The solution

l ¼ 0:3313; Jm ¼ 32:823; C2 ¼ 0:050567

is obtained with residuals Smin ¼ 0:00045909, Smax ¼
0:37933. The fits and relative errors are shown as the upper
two figures in Fig. 16. Consider next the data for k1 � 1.
Then, the solution

l ¼ 0:34112; Jm ¼ 133:52; C2 ¼ 0:10485

is obtained with residuals Smin ¼ 0:0010215, Smax ¼
0:016084. The corresponding fits and relative errors are
shown in the lower two figures in Fig. 16.

This difference between the two estimated values of Jm

may be clarified by considering simple tension. For this
case I1 ¼ k2 þ 2=k. Therefore, for fixed Jm ¼ I1max � 3, the
resulting cubic equation k3 � ðJm þ 3Þkþ 2 ¼ 0 for k has
three real roots. One of these roots is negative and need

not be considered; of the other roots one is less than and
one greater than 1. The roots are important because they
fix the locations of the asymptotes between which the
simple tension curve lies. Clearly, when the stresses for the
data in tension and in compression are considered the
asymptote in the compressive region and that in tension
zone will not in general correspond to the same value of
Jm. This suggests that the assumption of isotropy should be
viewed with caution since it is clear that we do not have
‘reflectional symmetry’ with respect to the undeformed
configuration.

To avoid this limitation of the GG model, one approach
is to modify it by incorporating an element of anisotropy.
A possible procedure for incorporating anisotropy in a
slightly different context, but which could be adapted here,
is provided by Horgan et al. [17]. In the present paper,
however, we restrict attention to isotropy.

6
Logarithmic strain based models
In Criscione et al. [5], a new constitutive formulation
based on certain invariants, denoted K1;K2;K3, of the
natural or Hencky strain is considered. The latter has
principal values ðln k1; ln k2; ln k3Þ. These invariants pos-
sess the property that they form an orthogonal invariant
basis, so that the associated stress response terms are
mutually orthogonal [18]. The authors assert that this is
advantageous since the orthogonal entities exhibit a min-
imum covariance and therefore maximal independence. In
particular, for incompressible materials, K1 �
lnðk1k2k3Þ ¼ 0, and, in terms of the stretches, the other
two invariants are given as

Fig. 15. Fit of the GG model to biaxial
data (circles) and the relative errors. In
the left-hand figure the stress difference
r1 � r2 is plotted against k1 for the fixed
values of k2 indicated
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K2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðln k1Þ2 þ ðln k2Þ2 þ ðln k3Þ2

q
;

K3 ¼ 3
ffiffiffi
6
p ln k1 ln k2 ln k3

K3
2

; ð37Þ

and the strain energy of an isotropic material may be
regarded as a function of K2 and K3: W ¼ WðK2;K3Þ. In [5]
a specific form of energy depending linearly on K3 is con-
sidered for purposes of comparison with the Jones–Treloar
data. Explicitly, Criscione et al. [5] consider

Fig. 16. Fit of the GG model
and the relative errors sepa-
rately for biaxial compression
(upper figures) and biaxial
tension (lower figures); the
circles correspond to the data.
In the left-hand figures the
stress difference r1 � r2 is
plotted against k1 for the fixed
values of k2 indicated
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WðK2;K3Þ ¼
X1

i¼2

1

i
ci�1Ki

2 þ K3

X1

j¼3

njK
j
2; ð38Þ

where ci, i ¼ 1; 2; . . ., and ni; i ¼ 3; 4; . . ., are material
constants and l ¼ c1=2 is the infinitesimal shear modulus.

The model may be approximated by a truncated N-term
series, so that, in particular,

oW

oK2
¼
XN

i¼1

ciK
i
2 þ K3

XN�1

j¼1

njþ2ðjþ 2ÞKjþ1
2 :

Then, 2N � 1 parameters p ¼ ½c1; . . . ; cN ; n3; . . . ; nNþ1�T
have to be determined.

In this case application of the LS method yields a
linear problem. In fact, if m is the size of the data set,
an over-determined linear system Ap ¼ s has to be
solved, where A : Rð2N�1Þ ! Rm. In the following we
denote by Ss ¼ kAsp� ssk2

2 the residual for simple
tension.

It is easy to show that for the simple and equibiaxial
tension tests K3 ¼ 1;K2 ¼

ffiffiffi
6
p
ðln kÞ=2 and K3 ¼ �1,

K2 ¼
ffiffiffi
6
p

ln k, respectively. For biaxial tension, we have

Fig. 17. Fits of the Criscione
strain energy (N ¼ 3) for sim-
ple tension data (circles, upper
left figure) and relative errors
(upper right figure), and com-
parison of the predictive capa-
bility on all the data (circles)
with respect to the Mooney–
Rivlin and Ogden ðM ¼ 1Þ
models (lower figure)
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K2 ¼
ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðln k1Þ2 þ ðln k2Þ2 þ ln k1 ln k2

q
;

K3 ¼ �3
ffiffiffi
6
p ln k1 ln k2ðln k1 þ ln k2Þ

K3
2

;

and the Cauchy stress difference

r1 � r2 ¼ k1
oWðK2;K3Þ

ok1
� k2

oWðK2;K3Þ
ok2

may be calculated accordingly.
In the analysis of the Jones–Treloar data conducted in

[5] the value N ¼ 3 is suggested. Here, we begin the fitting
of the Treloar simple tension data by taking N ¼ 3. We
find that not only is the fit poor quantitatively, but it is also
poor qualitatively and the main features of the data curve
are not captured (see Fig. 17). To obtain an acceptable
fitting we have determined that it is necessary to increase
the value of N up to 8 (which involves 15 material
parameters).

If we fix N ¼ 3 it is possible to obtain a good fit only by
restricting attention to moderate stretches (k < 3). (In-
deed, this is the range of stretches for all the examples
reported in [5].) The parameters identified for this reduced
range of stretches are

pred � fc1 ¼ 9:7841; c2 ¼ �0:4506; c3 ¼ 0:3789;

n3 ¼ �1:3517; n4 ¼ 1:5157g;
with residual Ss ¼ 0:0424. The optimal set obtained for the
whole range of data is

pall � fc1 ¼ 58:073; c2 ¼ �11:351; c3 ¼ 3:2796;

n3 ¼ �34:053; n4 ¼ 13:118g;
with residual Ss ¼ 985:59.

In Fig. 17 (upper) we show both fits for the Criscione
model with N ¼ 3 and the corresponding relative errors.
We note, however, that for k < 3 very good agreement is
also obtained using, for example, the Ogden model for
M ¼ 1 ða1 ¼ �2:1474; l1 ¼ �1:2487; Ss ¼ 0:0556Þ, or the
classical Mooney-Rivlin model ðc1 ¼ 1:0505; c2 ¼ 1:0878;
Ss ¼ 0:0716Þ. In Fig. 17 (lower), we show the predictive
capability of these two models compared with that of the
N ¼ 3 Criscione model on the whole range of simple
tension data.

In Sect. 4 and 5 we have seen that the main difference
between the Ogden and GG models is that the first one
admits multiple NLS solutions (for M � 3) while the
second one admits a unique NLS solution for each data
set. Concerning the linear least squares (LLS) approxi-
mation of the Criscione model, it is easy to verify that
when simple, equibiaxial and biaxial tension data are
considered the coefficient matrix A does not have full
rank, which means that infinitely many solutions with
the same residual are present. This is due to the choice
of the particular polynomial form of WðK2;K3Þ. In this
case, we have calculated the solution with minimum
2-norm by means of the singular value decomposition
(SVD) of A according to well known formulae, given, for
example, in [19].

Criscione et al. [5] did not encounter the problem of
multiple solutions. In fact, they took advantage of the
properties of the K invariants in order to identify the
parameters c ¼ ðc1; c2; c3ÞT and n ¼ ðn3; n4ÞT by means of
two different fits with third order (N ¼ 3) polynomials,
that is by solving two different LLS problems, namely

min jjA1c� b1jj22; min jjA2n� b2jj22;
where A1 2 Rm�3;A2 2 Rm�2 are in the class of Vander-
monde matrices and b1 and b2 contain the Cauchy stress
data or linear combinations of these data. In [5] these
problems are solved only for pure shear (k2 ¼ 1) and the
parameters identified are

pcr � fc1 ¼ 0:96; c2 ¼ �0:16; c3 ¼ 0:35; n3 ¼ 0:065;

n4 ¼ 0:039g:

The authors declare a ‘good’ predictive capability for this set
of parameters on the simple, equibiaxial and biaxial tension
data. However, we find that for simple tension the set pcr
leads to the residuals Ss ¼ 110:6067 with k < 3 and
Ss ¼ 20975 if all the values of k are included. Moreover, their
equibiaxial data are extracted from the biaxial ones and are
different from those considered in the present paper.

It is worth noting that to obtain good fits for all the
stretches it would be necessary to consider, for example,
A1 2 Rm�8. But, it is well known that the Vandermonde
matrices become ill-conditioned as the dimensions
increase.

7
A test boundary-value problem
In this section we solve the boundary-value problem
(BVP) arising in the modelling of rectilinear shear for the
strain energies examined in Sects. 4 and 5. In particular,
for the Ogden model we show how the presence of mul-
tiple solutions in the NLS approximation carries over to
the approximation of the BVP solution. For this purpose,
for each table in Sect. 4, we illustrate the results graphi-
cally and compare the numerical solutions corresponding
to the different sets of parameters.

The differential equation and boundary conditions
modelling the deformation yðxÞ in a slab x 2 ½0; 1� are

Cðy02Þ ¼ k̂ x� 1

2

� �
; yð0Þ ¼ yð1Þ ¼ 0; ð39Þ

where

Cðy02Þ ¼ 2½ �W1ðy02Þ þ �W2ðy02Þ�;
k̂ is a constant and �Wiðy02Þ is the value of o �W=oIi for
I1 ¼ I2 ¼ 3þ y02. By differentiation, we transform the
problem into a second-order two-point BVP and we use
the function bvp4c in MATLAB 6.5 as the numerical solver.
Since we are interested in comparing the solutions
independently of the values of k̂, we fix it as k̂ ¼ 0:5 and
note that if higher values of k̂ are chosen the code is not
always able to approximate the solution since boundary
layers appear, in which case a different numerical method
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coupled with a more suitable stepsize variation strategy
would be needed.

7.1
The Ogden strain energy
Let us solve the problem (39) using the Ogden strain
energy for the cases M ¼ 3 and M ¼ 4 with the parameters
reported in Tables 1 and 2 and (23) and (24) (simple
tension) and in Tables 3 and 4 and (30) and (31) (equi-
biaxial tension). The numerical solutions are shown in
Figs. 18 and 19, respectively. Included, additionally, are
the results, labelled OSSse, based on the parameter sets (32)
and (33) for M ¼ 3 and M ¼ 4, respectively. We note that
the presence of multiple optimal sets of parameters from
the NLS fittings produces numerical BVP approximations
that are similar qualitatively but often very different
quantitatively. In Fig. 18 the labels of the solutions cor-
responding to the smallest residuals in the parameter fits
are shown in bold type. They are OSSs

1 for M ¼ 3 and OSSs
3

for M ¼ 4 and we remark that in each case they corre-

spond to the uppermost solution. The curves labelled set
(23) and set (24) are based on the parameters in (23) and
(24), respectively. In Fig. 19 the picture is similar except
that the solution corresponding to the lowest residual is
OSSe

1 for both M ¼ 3 and M ¼ 4. In the case of M ¼ 4,
however, the data set OT (from Table 4), which also has
small, but a slightly larger, residual, yields the uppermost
solution.

7.2
The GG strain energy
The BVP has also been solved for the GG strain energy for
the parameters determined by the fits for all the defor-
mations examined in Sect. 5. The optimal sets were given
in Sect. 5 and are collected together here for convenience
in Table 8, in which the subscripts indicate the associated
deformation (s: simple tension; e: equibiaxial tension; se: s
and e combined; biax: biaxial data; biax-c: biaxial data in
compression; biax-e: biaxial data in extension). The
corresponding solutions of the BVP are shown in Fig. 20.
Note, however, that the first three sets of parameters
correspond to the Treloar data and the last three to the
Jones–Treloar data, which, we mention again, are for a
different material.

8
Concluding remarks
In this paper we have carried out a systematic study of the
fitting of stress-stretch equations for incompressible iso-
tropic hyperelastic constitutive laws to experimental data
for rubber in simple tension, equibiaxial tension and

Table 8. Parameters for the GG strain energy

GG l Jm C2

GGs 2.4195 77.9310 1.0233
GGe 3.1674 88.1300 0.4366
GGse 2.5343 79.793 1.0368
GGbiax 0.3468 85.7900 0.0547
GGbiax-c 0.3313 32.8230 0.0506
GGbiax-e 0.3411 133.5200 0.1049

Fig. 18. Solution of the BVP (39) using the Ogden strain energy
with different parameter sets obtained from the simple tension
fits: M ¼ 3 (left figure) and M ¼ 4 (right figure)
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general biaxial tension tests. We have focused on the
determination of material parameters and the corre-
sponding relative errors. We have highlighted, in partic-
ular, the occurrence of multiple sets of optimal material
parameters in the Ogden strain-energy function, which is
formulated in terms of principal stretches, and the con-
sequences of this for the solution of boundary-value
problems. It appears that a study of this kind has not been
conducted previously, although the paper by Gendy and
Saleeb [20] should be mentioned since it considers certain

aspects of the optimization problem in respect of the
Ogden strain-energy function. However, in that paper the
question of multiple optimal sets of parameters was not
encountered.

For comparison, we have applied a similar analysis and
fitting procedure to the Pucci–Saccomandi model, which is
based on the invariants I1 and I2, and to the Criscione
model, formulated in terms of the invariants K2 and K3.
We have found that the Pucci–Saccomandi model, con-
sidering that it involves only three material constants,

Fig. 20. Solution of the BVP (39) using the GG
strain energy with parameters obtained from all the
data fits with parameters given in Table 8

Fig. 19. Solution of the BVP
(39) using the Ogden strain
energy with parameters ob-
tained from the equibiaxial
tension fits: M ¼ 3 (left figure)
and M ¼ 4 (right figure)
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gives a good fit to the range of data except for compressive
values of the stretch in biaxial tests.

The Criscione model, while fitting the Jones–Treloar
data well with five material constants for moderate stret-
ches, does not provide an adequate representation of the
data at larger stretches, such as those achieved in the
Treloar simple tension tests, although this can be
improved at the expense of introducing significantly more
material parameters. Thus, the feature of the special
invariants introduced in the Criscione model that they
minimize the covariance between the various tensorial
quantities in the Cauchy stress representation formula
does not appear to be advantageous in helping to find
easily and directly improved functional forms for possible
strain energies. In fact, since the considered space is finite
dimensional all norms are equivalent and it cannot be
expected that there is a privileged set of invariants for
purposes of fitting the data.

We hope that the results in this paper will be useful
for improving understanding of problems encountered
in fitting theory to experimental data and their practical
effect on the solution of boundary-value problems. One
possible outcome of this study is that, at least in the
case of elastomeric materials, it is advisable to examine
their behaviour first via mathematical models rather
than by simulation models since the former can be
designed to capture in a clear way the main qualitative
features of the experimental data while the latter often
aim to produce quantitative predictions by introducing
large numbers of material parameters whose physical
significance is unclear.
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