Skip to main content
Log in

Structural evolution of larger gold clusters

  • Published:
Zeitschrift für Physik D Atoms,Molecules and Clusters

Abstract

The preferred structures of larger gold clusters comprised of 100 to 1000 atoms (1.4–C3.0 nm equivalent diameter) have been determined theoretically via exhaustive search and energy-minimization methods and experimentally by synchrotron x-ray diffraction analysis of purified powder samples of small gold nanocrystals passivated by alkylthiol(ate) self-assembled monolayers. Theory predicts a persistent, close competition, across the entire size-range, among three structure-types: Marks-type decahedral (Dh) structures, monocrystals of a particular (TO+) truncated-octahedral (or ‘Wulffi’) morphology, and symmetrically twin-faulted variants (t-TO+) of the second; all other forms are much less stable. Quantitative comparison of the experimental diffraction patterns with patterns calculated from the structures provides clear evidence for a high abundance of the Dh and t-TO+ forms, but also reveals a definite transition from the former to the latter structures in the 1.7 to 2.0 nm range (~ 200 atoms). Further, the observed (mean) lattice contraction is only about half that predicted, suggesting that the surfactant monolayer acts to reduce the surface energy of the clusters. Taken together, these results suggest that the surfactant monolayer may play a small but important role in differentially stabilizing the higher energy {100}-type facets present to a greater extent in the TO-type structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For a comprehensive review, see L. D. Marks, Rep. Prog. Phys. 57, 603–649 (1994)

    Article  ADS  Google Scholar 

  2. A. N. Patil, D. Y. Paithankar, N. Otsuka, R. P. Andres, Z. Phys. D26, 135 (1993)

    Google Scholar 

  3. L. D. Marks, private communication to one of the authors (RLW)

  4. W. Vogel, B. Rosner, B. Tesche, J. Phys. Chem. 97, 11611–11616 (1993)

    Article  Google Scholar 

  5. W. Vogel, D. G. Duff, A. Baiker, Langmuir 11, 401–404 (1995)

    Article  Google Scholar 

  6. L. R. Wallenberg, J. O. Bovin, G. Schmid, Surf. Sci. 156, 256 (1985)

    Article  ADS  Google Scholar 

  7. D. G. Duff, A. Baiker, P. P. Edwards, J. Chem. Soc. Chem. Commun. 1993, 97 (1993); Langmuir 9, 2301 (1993)

    Google Scholar 

  8. B. K. Teo, X. Shi, H. Zhang, J. Am. Chem. Soc. 113, 2743 (1992)

    Article  Google Scholar 

  9. C. L. Cleveland, U. Landman, J. Chem. Phys. 94, 7376 (1991)

    Article  ADS  Google Scholar 

  10. R. L. Whetten, J. T. Khoury, M. M. Alvarez, Srihari Murthy, I. Vezmar, Z. L. Wang, P. W. Stephens, C. L. Cleveland, W. D. Luedtke, U. Landman, Adv. Mater. 5, 428–433 (1996); R. L. Whetten, J. T. Khoury, M. M. Alvarez, S. Murthy, I. Vezmar, Z. L. Wang, C. L. Cleveland, W. D. Luedtke, U. Landman, in “Chemical Physics of Fullerenes 5 and 10 Years Later“, pp. 475–490. W. Andreoni (ed.) Dordrecht: Kluwer 1996

    Article  Google Scholar 

  11. M. Shafigullin, I. Vezmar, J. T. Khoury, R. L. Whetten (submitted)

  12. A. Guinier, “X-Ray Difraction”. San Francisco: Freeman 1963

    Google Scholar 

  13. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, J. Chem. Soc. Chem. Commun. 801 (1994)

  14. Z. L. Wang, unpublished HREM observations

  15. G. E. Dieter, Mechanical Metallurgy, pp. 104–107. New York: McGraw -Hill 1961

    Google Scholar 

  16. W. D. Luedtke, U. Landman, J. Phys. Chem. 100, 13323 (1996)

    Article  Google Scholar 

  17. L. H. Dubois, R. G. Nuzzo, Annu. Rev. Phys. Chem. 43, 437 (1992)

    Article  ADS  Google Scholar 

  18. R. G. Nuzzo, B. R. Zegarski, L. H. Dubois, J. Am. Chem. Soc. 109, 733–740 (1987); see also C. D. Bain, E. B. Troughton, Y.-T. Tao, J. Evall, G. M. Whitesides, R. G. Nuzzo, J. Am. Chem. Soc. 111, 321 (1989)

    Article  Google Scholar 

  19. P. Fenter, A. Eberhardt, P. Eisenberger, Science 266, 1216 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cleveland, C.L., Landman, U., Shafigullin, M.N. et al. Structural evolution of larger gold clusters. Z Phys D - Atoms, Molecules and Clusters 40, 503–508 (1997). https://doi.org/10.1007/s004600050263

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004600050263

PACS

Navigation