Skip to main content
Log in

Measurement of bubble and pellet size distributions: past and current image analysis technology

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Measurements of bubble and pellet size distributions are useful for biochemical process optimizations. The accuracy, representation, and simplicity of these measurements improve when the measurement is performed on-line and in situ rather than off-line using a sample. Historical and currently available measurement systems for photographic methods are summarized for bubble and pellet (morphology) measurement applications. Applications to cells, mycelia, and pellets measurements have driven key technological developments that have been applied for bubble measurements. Measurement trade-offs exist to maximize accuracy, extend range, and attain reasonable cycle times. Mathematical characterization of distributions using standard statistical techniques is straightforward, facilitating data presentation and analysis. For the specific application of bubble size distributions, selected bioreactor operating parameters and physicochemical conditions alter distributions. Empirical relationships have been established in some cases where sufficient data have been collected. In addition, parameters and conditions with substantial effects on bubble size distributions were identified and their relative effects quantified. This information was used to guide required accuracy and precision targets for bubble size distribution measurements from newly developed novel on-line and in situ bubble measurement devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

a 32 :

interfacial area, surface area per unit volume, 1/μ

A :

area of object

A c :

experimentally determined constant in Calderbank equation (Eq. 20)

A 3 :

skewness of distribution

A 4 :

kurtosis of distribution

AR:

aspect ratio, longest to shortest diameter

C :

circularity, 1/SF (Eq. 5)

C v :

coefficient of variation

d :

equivalent spherical bubble diameter

d a :

sample mean bubble diameter, arithmetic mean (Eqs. 9, 1113)

d F :

Feret diameter (Eq. 6), diameter of equivalent circular object with same area as irregularly shaped object

d g :

log-geometric mean diameter (Eq. 3)

d i :

diameter of bubble i

d long :

longest diameter of a single circular object

d max :

maximum stable bubble size; maximum bubble diameter

d min :

minimum bubble diameter

d short :

shortest diameter of a single circular object

d 30 :

volumetric mean diameter (Eq. 4)

d 32 :

Sauter mean diameter (Eq. 2)

d 50 :

median value of diameter; diameter for which normalized cumulative volume curve is 0.5

d 99 :

diameter that is larger than 99% of all diameters in the cumulative number distribution of bubbles

KLa:

volumetric gas–liquid mass transfer coefficient

N :

impeller speed

n :

total number of bubbles, sample size

n i :

number of bubbles of diameter d i

P :

perimeter of object

P/V L :

power input to dispersion per unit liquid volume (gassed power)

Q :

volumetric gas flow rate

R :

roundness

SF:

shape factor (Eq. 5)

V b :

total volume of bubbles

β:

experimentally determined constant in Calderbank equation (Eq. 20)

γ:

experimentally determined constant (Eq. 21)

δ:

experimentally determined constant (Eq. 23)

ρc :

liquid (continuous phase) density

ρg :

gas (dispersed phase) density

ρp :

pellet density

Φ:

void fraction of dispersed phase (hold up) (Eqs. 16 and 20)

ɛT :

gassed power input per unit mass (Eq. 17)

μG :

gas viscosity

μL :

liquid viscosity

σa :

standard deviation from arithmetic mean

σg :

log-geometric mean standard deviation

σT :

surface tension

BSA:

Bovine serum albumin

CCD:

Solid state charge-coupled device cameras, two-dimensional, self-scanning, electronic analog imaging device

CC-TV:

Closed circuit television, standard camera equipment

Chalnicon:

Sensor tube that has cadmium selenide-based target layer for face plate material

DAT:

Data acquisition time

EC:

Electronic commerce

fps:

Frames per second

IPS:

In-plane-switching, technology to produce high-quality LCDs

LED:

Light emitting diode

MAT:

Measurement acquisition time

NTSC:

National Television System Committee, 525 lines, 30 Hz (Americas and Far East)

PAT:

Process analytical technology

PC:

Personal computer

RW:

Read/write

SVHS:

Super VHS (vertical helical scan), enhanced quality and higher horizontal resolution

References

  1. Adams HL, Thomas CR (1988) The use of image analysis for morphological measurements on filamentous microorganisms. Biotechnol Bioeng 32:707–712

    CAS  Google Scholar 

  2. Akita K, Yoshida F (1974) Bubble size, interfacial area, and liquid-phase mass transfer coefficient in bubble columns. Ind Eng Chem Process Des Develop 13(1):84–91

    CAS  Google Scholar 

  3. Allen DG, Robinson CW (1989) Hydrodynamics and mass transfer in Aspergillus niger fermentations in bubble column and loop bioreactors. Biotechnol Bioeng 34:731–740

    CAS  Google Scholar 

  4. Alves M, Cavaleiro AJ, Ferreira EC, Amaral AL, Mota M, daMotta M, Vivier H, Pons M-N (2000) Characterisation by image analysis of anaerobic sludge under shock conditions. Water Sci Technol 41(12):207–214

    CAS  Google Scholar 

  5. Araya-Kroff P, Amaral AL, Neves L, Ferreira EC, Pons M-N, Mota M, Alves MM (2004) Development of image analysis techniques as a tool to detect and quantify morphological changes in anaerobic sludge: I. Application to a granulation process. Biotechnol Bioeng 87(2):184–193

    CAS  Google Scholar 

  6. Barigou M, Greaves M (1992) Bubble size distributions in a mechanically agitated gas–liquid contactor. Chem Eng Sci 47(8):2009–2025

    CAS  Google Scholar 

  7. Barigou M, Greaves M (1992) Bubble size in the impeller region of a Rushton turbine. Trans IChemE 70(Pt A):153–160

    CAS  Google Scholar 

  8. Bittner C, Wehnert G, Scheper T (1998) In situ microscopy for on-line determination of biomass. Biotechnol Bioeng 60(1):24–35

    CAS  Google Scholar 

  9. Brentrup L, Onken U (1979) Measurement of bubble size distribution in fermentors. Biotechnol Lett 1(10):427–432

    Google Scholar 

  10. Buchholz R, Schugerl K (1979) Bubble column bioreactors, I. Methods for measuring the bubble size. Eur J Appl Microbiol Biotechnol 6:301–313

    Google Scholar 

  11. Burschäpers J, Schustolla D, Schügerl K, Röper H, de Troostembergh JC (2002) Engineering aspects of the production of sugar alcohols with the osmophilic yeast Moniliella tomentosa var pollinis. Part 2. Batch and fed-batch operation in bubble column and airlift tower loop reactors. Process Biochem 38:559–570

    Google Scholar 

  12. Carlsen M, Spohr AB, Nielsen J, Villadsen J (1996) Morphology and physiology of an α-amylase producing strain of Aspergillus oryzae during batch cultivations. Biotechnol Bioeng 49:266–276

    CAS  Google Scholar 

  13. Chen F, Gomez CO, Finch JA (2001) Bubble size measurement in floatation machines. Miner Eng 14(4):427–432

    Google Scholar 

  14. Choi DB, Park EY, Okabe M (1998) Improvement of tylosin production from Streptomyces fradiae culture by decreasing apparent viscosity in an air-lift bioreactor. J Ferment Bioeng 86(4):413–417

    CAS  Google Scholar 

  15. Choi DB, Park EY, Okabe M (2000) Dependence of apparent viscosity on mycelial morphology of Streptomyces fradiae culture in various nitrogen sources. Biotechnol Prog 16:525–532

    CAS  Google Scholar 

  16. Christiansen T, Sophr AB, Nielsen J (1999) On-line study of growth kinetics of single hyphae of Aspergillus oryzae in a flow-through cell. Biotechnol Bioeng 63(2):147–153

    CAS  Google Scholar 

  17. Coelho MAZ, Belo I, Pinheiro R, Amaral AL, Mota M, Coutinho JAP, Ferreira EC (2004) Effect of hyperbaric stress on yeast morphology: study by automated image analysis. Appl Microbiol Biotechnol 66:318–324

    CAS  Google Scholar 

  18. Colella D, Vinci D, Bagatin R, Masi M, Bakr EA (1999) A study on coalescence and breakage mechanisms in three different bubble columns. Chem Eng Sci 54:4767–4777

    CAS  Google Scholar 

  19. Crawley G, Malcolmson A (2004) Online particle sizing as a route to process optimization. Chem Eng 111(9):37–41

    Google Scholar 

  20. Cronenberg CCH, Ottengraf SPP, van den Heuvel I-C, Pottel F, Sziele D, Schügerl K, Bellgardt KH (1994) Influence of age and structure of Penicillium chrysogenum pellets on the internal concentration profiles. Bioprocess Eng 10:209–216

    Google Scholar 

  21. Cui YQ, van der Lans RGJM, Luyben KCAM (1997) Effect of agitation intensities on fungal morphology of submerged fermentation. Biotechnol Bioeng 55(5):715–726

    CAS  Google Scholar 

  22. Dodd PW, Pandit AB, Davidson JF (1988) Bubble size distribution generated by perforated baffle plates in large fermenters. In: King R (ed) 2nd international conference on bioreactor fluid dynamics. Elsevier, New York, pp 319–335

  23. Dudley BT, Howgrave-Graham AR, Bruton AG, Wallis FM (1993) Image analysis to quantify and measure UASB digester granules. Biotechnol Bioeng 42:279–283

    CAS  Google Scholar 

  24. Durant G, Cox PW, Formisyn P, Thomas CR (1994) Improved image analysis algorithm for the characterisation of mycelial aggregates after staining. Biotechnol Tech 8(11):759–764

    CAS  Google Scholar 

  25. Durant G, Crawley G, Formisyn P (1994) A simple staining procedure for the characterisation of basidiomycetes pellets by image analysis. Biotechnol Tech 8(6):395–400

    Google Scholar 

  26. Franz K, Buchholz R, Schugerl K (1980) Comprehensive study of the gas hold up and bubble size distributions in highly viscous liquids. Chem Eng Commun 5:165–202

    CAS  Google Scholar 

  27. Galindo E, Pacek AW, Nienow AW (2000) Study of drop and bubble sizes in a simulated mycelial fermentation broth of up to four phases. Biotechnol Bioeng 69(2):213–221

    CAS  Google Scholar 

  28. Gehrig I, Bart H-J, Anke T, Germerdonk R (1998) Influence of morphology and rheology on the production characteristics of the Basidiomycete Cyathus striatus. Biotechnol Bioeng 59(5):525–533

    CAS  Google Scholar 

  29. Glasgow LA, Erickson LE, Lee CH, Patel SA (1984) Wall pressure fluctuations and bubble size distributions at several positions in an airlift fermentor. Chem Eng Commun 29:311–336

    CAS  Google Scholar 

  30. Greaves M, Barigou M (1988) The internal structure of gas–liquid dispersions in a stirred reactor. In: Proceedings 6th European conference on mixing, BHRA, Fluid Engineering Centre, Bedford, England, pp 313–320

  31. Greaves M, Kobbacy KAH (1984) Measurement of bubble size distribution in turbulent gas–liquid dispersions. Chem Eng Res Des 62(1):3–12

    CAS  Google Scholar 

  32. Grimm LH, Kelly S, Hengstler J, Göbel A, Krull R, Hempel DC (2004) Kinetic studies on the aggregation of Aspergillus niger conidia. Biotechnol Bioeng 87(2):213–218

    CAS  Google Scholar 

  33. Gualtieri P, Coltelli P (1991) A real-time automated system for the analysis of moving images. J Comput Assist Microsc 3(1):15–21

    Google Scholar 

  34. Hotop S, Möller J, Dullau T, Schügerl K (1989) Influences of preculture conditions on the morpholgy of Pencillium chrysogenum. In: Dechema Biotechnol. Conf. 3. VCH Verlagsgesellschalt, Weinheim, pp 597–601

  35. Hotop S, Möller J, Niehoff J, Schügerl K (1993) Influence of the preculture conditions on the pellet size distribution of Penicillium chrysogenum cultivations. Process Biochem 28(2):99–104

    Google Scholar 

  36. Jeison D, Chamy R (1998) Novel technique for measuring the size distribution of granules from anaerobic reactors for wastewater treatment. Biotechnol Tech 12(9):659–662

    CAS  Google Scholar 

  37. Joeris K, Frerichs J-G, Konstantinov K, Scheper T (2002) In situ microscopy: on-line process monitoring of mammalian cell cultures. Cytotechnology 38:129–134

    CAS  Google Scholar 

  38. Junker B (1988) Assessment of oxygen transfer in water-in-perfluorocarbon dispersions. PhD thesis, MIT, pp 146–147

  39. Junker BH, Hatton TA, Wang DIC (1990) Oxygen transfer enhancement in aqueous/perfluorocarbon fermentation systems: I. Experimental observations. Biotechnol Bioeng 35:578–585

    CAS  Google Scholar 

  40. Junker BH, Hesse M, Burgess B, Masurekar P, Connors N, Seeley A (2004) Early phase process scale up challenges for fungal and filamentous bacterial cultures. Appl Biochem Biotechnol 119:241–277

    CAS  Google Scholar 

  41. Jüsten P, Paul GC, Nienow AW, Thomas CR (1996) Dependence of mycelial morphology on impeller type and agitation intensity. Biotechnol Bioeng 52:672–684

    Google Scholar 

  42. Kawalec-Pietrenko BT (1992) Time-dependent gas hold-up and bubble size distributions in a gas–highly viscous liquid–solid system. Chem Eng J 50:B29–B37

    CAS  Google Scholar 

  43. Kawalec-Pietrenko B, Pietrenko W (1999) Generation of small bubbles and small bubble–liquid mass transfer in airlift reactors containing highly viscous liquids. Bioprocess Eng 21:89–95

    CAS  Google Scholar 

  44. Kumar R, Kuloor NR (1970) The formation of bubbles and drops. In: Drew TB, Cokelet GR, Hoopes, JW Jr, Vermeulen T (eds) Adv Chem Eng, vol 8. Academic, New York, pp 255–368

  45. Laakkonen M, Honkanen M, Saarenrinne P, Aittamaa J (2005) Local bubble size distributions, gas–liquid interfacial areas and gas holdups in a stirred vessel with particle image velocimetry. Chem Eng J 109:37–47

    CAS  Google Scholar 

  46. Lage PLC, Esposito RO (1999) Experimental determination of bubble size distributions in bubble columns: prediction of mean bubble diameter and gas hold up. Powder Technol 101:142–150

    CAS  Google Scholar 

  47. Leschonski K (1986) Particle characterization, present state and possible future trends. Part Charact 3:99–103

    CAS  Google Scholar 

  48. Li ZJ, Shukla V, Fordyce AP, Pedersen AG, Wenger KS, Marten MR (2000) Fungal morphology and fragmentation behavior in a fed-batch Aspergillus oryzae fermentation at the production scale. Biotechnol Bioeng 70(3):300–312

    CAS  Google Scholar 

  49. Litchfield JB, Reid JF, Richburg BA (1992) Machine vision microscopy for on-line sampling analysis and control. In: Karim MN, Stephanopoulos G (eds) IFAC modeling and control of biotechnical processes. Pergamon Press, Oxford, pp 275–278

    Google Scholar 

  50. Loera O, Viniegra-Gonźalez G (1998) Identification of growth phenotypes in Aspergillus niger pectinase over-producing mutants using image analysis procedures. Biotechnol Tech 12(11):801–804

    CAS  Google Scholar 

  51. Lübbert A (1992) Advanced methods for bioreactor characterization. J Biotechnol 25:145–182

    Google Scholar 

  52. Lucatero S, Larralde-Corona CP, Corkidi G, Galindo E (2003) Oil and air dispersion in a simulated fermentation broth as a function of mycelial morphology. Biotechnol Prog 19:285–292

    CAS  Google Scholar 

  53. Luo R, Song Q, Yang XY, Wang Z (2002) A three-dimensional photographic method for measurement of phase distribution in dilute bubble flow. Exp Fluids 32:116–120

    Google Scholar 

  54. Ma N, Chalmers JJ, Aunins JG, Zhou W, Xie L (2004) Quantitative studies of cell–bubble interactions and cell damage at different Pluronic F-68 and cell concentrations. Biotechnol Prog 20:1183–1191

    CAS  Google Scholar 

  55. Machon V, Pacek AW, Nienow AW (1997) Bubble sizes in electrolyte and alcohol solutions in a turbulent stirred vessel. Trans IChemE 75(Pt A):339–348

    CAS  Google Scholar 

  56. Malysa K, Ng S, Cymbalisty L, Czarnecki J, Masliyah J (1999) A method of visualization and characterization of aggregate flow inside a separation vessel, part 1. Size, shape and rise velocity of the aggregates. Int J Miner Process 55:171–188

    CAS  Google Scholar 

  57. Metz B, De Bruijn EW, Van Suijdam JC (1981) Method for quantitative representation of the morphology of molds. Biotechnol Bioeng 23:149–162

    Google Scholar 

  58. Meyerhoff J, Bellgardt KH (1995) A morphology-based model for fed-batch cultivations of Pencillium chrysogenum growing in pellet form. J Biotechnol 38:201–207

    CAS  Google Scholar 

  59. Miyahara T, Hayashino T (1995) Size of bubbles generated from perforated plates in non-Newtonian liquids. J Chem Eng Jpn 28(5):596–600

    CAS  Google Scholar 

  60. Miyahara T, Matsuba Y, Takahashi T (1983) The size of bubbles generated from perforated plates. Int Chem Eng 23(3):517–523

    Google Scholar 

  61. Moo-Young M, Blanch HW (1981) Design of biochemical reactors, mass transfer criteria for simple and complex systems. Adv Biochem Eng 19:1–69

    CAS  Google Scholar 

  62. Moreira MT, Sanromán A, Feijoo G, Lema JM (1996) Control of pellet morphology of filamentous fungi in fluidized bed bioreactors by means of a pulsing flow. Application to Aspergillus niger and Phanerochaete chrysosporium. Enzym Microb Technol 19:261–266

    CAS  Google Scholar 

  63. Moreira MT, Feijoo G, Sanromán A, Lema JM (1996) Effect of pulsation on morphology of Aspergillus niger and Phanerochaete chrysosporium in a fluidized-bed reactor. In: Wijffels RH, Buitelaar RM, Bucke C, Tramper J (eds) Immobilized cells: basics and applications, vol 11. Elsevier, Amsterdam, pp 518–523

  64. Nakanoh M, Yoshida F (1980) Gas absorption by Newtonian and non-Newtonian liquids in a bubble column. Ind Eng Chem Process Des Dev 19:190–195

    CAS  Google Scholar 

  65. Nielsen J, Krabben P (1995) Hyphal growth and fragmentation of Penicillium chrysogenum in submerged cultures. Biotechnol Bioeng 46:588–598

    CAS  Google Scholar 

  66. Nielsen J, Johansen CL, Jacobsen M, Krabben P, Villadsen J (1995) Pellet formation and fragmentation in submerged cultures of Penicillium chrysogenum and its relation to penicillin production. Biotechnol Prog 11:93–98

    CAS  Google Scholar 

  67. O’Connor CT, Randall EW, Goodall CM (1990) Measurement of the effects of physical and chemical variables on bubble size. Int J Miner Process 28:139–140

    CAS  Google Scholar 

  68. Pacek AW, Moore IPT, Nienow AW, Calabrese RV (1994) Video technique for measuring dynamics of liquid–liquid dispersion during phase inversion. AIChE J 40(12):1940–1949

    CAS  Google Scholar 

  69. Pacek AW, Man CC, Nienow AW (1998) On the Sauter mean diameter and size distributions in turbulent liquid/liquid dispersions in a stirred vessel. Chem Eng Sci 52(11):2005–2011

    Google Scholar 

  70. Packer HL, Thomas CR (1990) Morphological measurements on filamentous microorganisms by fully automatic image analysis. Biotechnol Bioeng 35:870–881

    CAS  Google Scholar 

  71. Packer HL, Keshavarz-Moore E, Lilly MD, Thomas CR (1992) Estimation of cell volume and biomass of Penicillium chrysogenum using image analysis. Biotechnol Bioeng 39:384–391

    CAS  Google Scholar 

  72. Pan X-H, Luo R, Yang X-Y, Yang H-J (2002) Three dimensional particle image tracking for dilute particle–liquid flows in a pipe. Meas Sci Technol 13(8):1206–1216

    CAS  Google Scholar 

  73. Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22:189–259

    CAS  Google Scholar 

  74. Papagianni M, Mattey M, Kristiansen B (1998) Citric acid production and morphology of Aspergillus niger as functions of the mixing intensity in a stirred tank and a tubular loop bioreactor. Biochem Eng J 2:197–205

    CAS  Google Scholar 

  75. Parthasarathy R, Ahmed N (1996) Size distributions of bubbles generated by fine-pore spargers. J Chem Eng Jpn 29(6):1030–1034

    CAS  Google Scholar 

  76. Patel SA, Glasgow LA, Erickson LE, Lee CH (1986) Characterization of the downflow section of an airlift column using bubble size distribution measurements. Chem Eng Commun 44:1–20

    CAS  Google Scholar 

  77. Paul GC, Thomas CR (1998) Characterisation of mycelial morphology using image analysis. Adv Biochem Eng Biotechnol 60:1–59

    CAS  Google Scholar 

  78. Paul GC, Kent CA, Thomas CR (1992) Quantitative characterization of vacuolization in Penicillium chrysogenum using automatic image analysis. Trans IchemE 70:13–20

    CAS  Google Scholar 

  79. Pichon D, Vivier H, Pons MN (1993) Growth monitoring of filamentous microorganisms by image analysis. In: Karim MN, Stephanopoulos G (eds) Modeling and control of biotechnology processes. Pergamon, New York, pp 307–317

    Google Scholar 

  80. Pichon D, Vivier H, Pons MN (1993) Growth monitoring of mammalian cells on microcarriers by image analysis. In: Karim MN, Stephanopoulos G (eds) Modeling and control of biotechnology processes. Pergamon, New York, pp 311–314

    Google Scholar 

  81. Pons MN, Wagner A, Vivier H, Marc A (1992) Application of quantitative image analysis to a mammalian cell line grown on microcarriers. Biotechnol Bioeng 40:187–193

    CAS  Google Scholar 

  82. Pottel F, Bellgardt KH (1992) Investigation of morphology of pellets during cultivations of Penicillium chrysogenum by digital image processing. In: Dechema biotechnology conference 5 (pt A). Microbial principles in bioprocesses: cell culture technology, downstream processing and recovery. VCH-Verlagsgesellschaft, Karlsruhe, pp 381–386

  83. Pulido-Mayoral N, Galindo E (2004) Phase dispersion and oxygen transfer in a simulated fermentation broth containing caster oil and proteins. Biotechnol Prog 20:1608–1613

    CAS  Google Scholar 

  84. Randall EW, Goodall CM, Fairlamb PM, Dold PL, O’Connor CT (1989) A method for measuring the sizes of bubbles in two- and three-phase systems. J Phys E Sci Instrum 22(10):827–833

    CAS  Google Scholar 

  85. Reichl U, Gilles ED (1991) Investigations of pellet-forming microorganisms by means of an image processing system. In: Reuss M, Chmiel H, Gilles ED (eds) Biochemical engineering. Gustav Fischer, Stuttgart, pp 336–339

    Google Scholar 

  86. Reichl U, King R, Gilles ED (1992) Characterization of pellet morphology during submerged growth of Streptomyces tendae by image analysis. Biotechnol Bioeng 39(2):164–170

    CAS  Google Scholar 

  87. Rinas U, El-Enshasy H, Emmler M, Hille A, Hempel D, Horn H (2005) Model-based prediction of substrate conversion and protein synthesis and excretion in recombinant Aspergillus niger biopellets. Chem Eng Sci 60:2729–2739

    CAS  Google Scholar 

  88. Rodger WA, Trice VG, Rushton JH (1956) Effect of fluid motion on interfacial area of dispersions. Chem Eng Prog 52(12):515–520

    CAS  Google Scholar 

  89. Russ JC (1995) The image processing handbook, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  90. Ryoo D (1999) Fungal fractal morphology of pellet formation in Aspergillus niger. Biotechnol Tech 13:33–36

    CAS  Google Scholar 

  91. Saberi S, Shakourzadeh K, Bastoul D, Militzer J (1995) Bubble size and velocity measurement in gas–liquid systems: applications of fiber optic techniques to pilot plant scale. Can J Chem Eng 73:253–257

    Article  CAS  Google Scholar 

  92. Schafer R, Merten C, Eigenberger G (2002) Bubble size distributions in a bubble column reactor under industrial conditions. Exp Therm Fluid Sci 26:595–604

    CAS  Google Scholar 

  93. Shenoy P (2004) Process analytical technology. Pharma Times 36:37–38

    Google Scholar 

  94. Song Q, Luo R, Yang XY, Wang Z (2001) Phase distributions for upward laminar dilute bubbly flows with non-uniform sizes in a vertical pipe. Int J Multiph Flow 27:379–390

    CAS  Google Scholar 

  95. Sotiriadis AA, Thorpe RB, Smith JM (2005) Bubble size and mass transfer characteristics of sparged downwards two-phase flow. Chem Eng Sci 60:5917–5929

    CAS  Google Scholar 

  96. Spohr A, Dam-Mikkelsen C, Carlsen M, Nielsen J (1998) On-line study of fungal morphology during submerged growth in a small flow-through cell. Biotechnol Bioeng 58(5):541–553

    CAS  Google Scholar 

  97. Srivastava P, Hahr O, Buchholz R, Worden RM (2000) Enhancement of mass transfer using colloidal liquid aphrons: measurement of mass transfer coefficients in liquid–liquid extraction. Biotechnol Bioeng 70(5):525–532

    CAS  Google Scholar 

  98. Stravs AA, Pittet A, von Stockar U, Reilly PJ (1986) Measurement of interfacial areas in aerobic fermentations by ultrasonic pulse transmissions. Biotechnol Bioeng 28:1302–1309

    CAS  Google Scholar 

  99. Taboada B, Larralde P, Brito T, Vega-Alvarado L, Diaz R, Galindo E, Corkidi G (2003) Image acquisition of multiphase dispersions in fermentation processes. J Appl Sci Technol 1(1):78–82

    Google Scholar 

  100. Takahashi K, Nienow AW (1993) Bubble sizes and coalescence rates in an aerated vessel agitated by a Rushton turbine. J Chem Eng Jpn 26(5):536–542

    CAS  Google Scholar 

  101. Takahashi K, McManamey WJ, Nienow AW (1992) Bubble size distributions in impeller region in a gas-sparged vessel agitated by a Rushton turbine. J Chem Eng Jpn 25:427–432

    CAS  Google Scholar 

  102. Tamura S, Park Y, Toriyama M, Okabe M (1997) Change of mycelial morphology in tylosin production by batch culture of Streptomyces fradiae under various shear conditions. J Ferment Bioeng 83(6):523–528

    CAS  Google Scholar 

  103. Tough AJ, Prosser JI (1996) Experimental verification of mathematical model for pelleted growth of Streptomyces coelicolor A3(2) in submerged batch culture. Microbiology 142(3):639–648

    Article  CAS  Google Scholar 

  104. Treskatis S-K, Orgeldinger V, Wolf H, Gilles ED (1997) Morphological characterization of filamentous microorganisms in submerged cultures by on-line digital image analysis and pattern recognition. Biotechnol Bioeng 53:191–201

    CAS  Google Scholar 

  105. Tucker KG, Kelly T, Delgrazia P, Thomas CR (1992) Fully-automatic measurement of mycelial morphology by image analysis. Biotechnol Prog 8:353–359

    CAS  Google Scholar 

  106. Vanhoutte B, Pons MN, Thomas CR, Louvel L, Vivier H (1995) Characterization of Penicillium chrysogenum physiology in submerged cultures by color and monochrome image analysis. Biotechnol Bioeng 48:1–11

    CAS  Google Scholar 

  107. van Suijdam JC, Metz B (1981) Influence of engineering variables upon the morphology of filamentous molds. Biotechnol Bioeng 23:111–148

    Google Scholar 

  108. Vardar-Sukan F (1985) Dynamics of oxygen mass transfer in bioreactors. Part I. Operating variables affecting mass transfer. Proc Biochem 20(6):181–184

    CAS  Google Scholar 

  109. Vecht-Lifshitz SE, Magdassi S, Braun S (1990) Pellet formation and cellular aggregation in Streptomyces tendae. Biotechnol Bioeng 35:890–896

    CAS  Google Scholar 

  110. Vega-Alvarado L, Cordova MS, Taboada B, Galindo E, Corkidi G (2004) Online Sauter diameter measurement of air bubbles and oil drops in stirred bioreactors using Hough transform. In: Campilho A, Kamel M (ed) ICIAR 2004, image analysis and recognition, pt. 2 proceedings. LNCS 3212. Springer, Berlin, pp 834–840

  111. Vermeulen T, Williams GM, Langlois GE (1955) Interfacial area in liquid–liquid and gas–liquid agitation. Chem Eng Prog 51(2):85F–94F

    CAS  Google Scholar 

  112. Walter JF, Blanch HW (1986) Bubble break-up in gas–liquid bioreactors: break-up in turbulent flows. Chem Eng J 32:B7–B17

    CAS  Google Scholar 

  113. Wittler R, Baumgartl H, Lübbers DW, Schügerl K (1986) Investigations of oxygen transfer into Penicillium chrysogenum pellets by microprobe measurements. Biotechnol Bioeng 28:1024–1036

    CAS  Google Scholar 

  114. Yang H, Reichl U, King R, Gilles ED (1992) Measurement and simulation of the morphological development of filamentous microorganisms. Biotechnol Bioeng 39:44–48

    CAS  Google Scholar 

  115. Zalewski K, Buchholz R (1996) Morphological analysis of yeast cells using an automated image processing system. J Biotechnol 48:43–49

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beth Junker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Junker, B. Measurement of bubble and pellet size distributions: past and current image analysis technology. Bioprocess Biosyst Eng 29, 185–206 (2006). https://doi.org/10.1007/s00449-006-0070-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-006-0070-3

Keywords

Navigation