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Abstract. Under geometric mixing condition, we presented asymptotic expansion of the
distribution of an additive functional of a Markov or arMarkov process with finite autore-
gression including Markov type semimartingales and time series models with discrete time
parameter. The emphasis is put on the use of the Malliavin calculus in place of the condi-
tional type Crarér condition, whose verification is in most case not easy for continuous time
processes without such an infinite dimensional approach. In the second part, by means of the
perturbation method and the operational calculus, we proved the geometric mixing property
for nonsymmetric diffusion processes, and presented a sufficient condition which is easily
checked in practice. Accordingly, we obtained asymptotic expansion of diffusion function-
als and proved the validity of it under mild conditions, e.g., without the strong contractivity
condition.

1. Introduction

In the asymptotic statistical theory, after studies of the first-order asymptotics, the
asymptotic expansion is a promising tool to investigate the higher-order perfor-
mance of statistics used for statistical inference, and thorough investigations have
been made mainly for independent cases; see e.g. the monograph by Ghosh [6].
As for dependent data, the work ofi@e and Hipp [7] was a breakthrough: they
gave an asymptotic expansion of the distribution of an additive functional of a
discrete-time process under the geometric mixing condition and a conditional type
of Craner condition. To execute their program, checking the conditional type of
Cramér condition is not a simple matter, and they successively in [8], presented
sufficient conditions for time series models. The reason of the difficulty is that it is
nothing but the problem of regularity of the distribution of a random variable, and

it is in many cases a difficult problem, unlike in independent observation cases, to
prove the regularity of the distribution from a structural definition of the random
variable, e.g., a solution of a stochastic difference/differential equation. Here we
are aiming at expansions for stochastic processes with continuous-time parame-
ter such as semimartingales. In this case, the regularity part inevitably requires
an infinite-dimensional argument, and really, it is possible if we make use of the
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Malliavin calculus over the Wiener space or, if necessary, that over more abstract
space including the Wiener-Poisson space to treat jump processes.

In the first part, as an underlying process with geometric mixing condition, we
will deal with a somewhat abstractMarkov process driven by another process with
independent increments, and present an asymptotic expansion of the distribution
of an additive functional defined with those processes; we indeed encounter such
functionals in most statistical applications. By considering dvarkov process,
more general than a Markov process, it is possible to treat time series models with
discrete time parameter together in a unified framework because the adopted general
Malliavin calculus by Bichteler, Gravereaux and Jacod [2] is available even for such
processes. The conditional type Cirnondition is replaced by the nondegeneracy
condition of the Malliavin covariance of the functional, and it can be verified for
practical models appearing in applications; indeed, we can apply dhedhder
condition to diffusion models, and a set of conditions in Bichteler et al. [2] to a
stochastic differential equation with jumps.

In order to apply the first part, it is necessary to verify the naive geometric
mixing condition. In the second part, we will confine our attention to diffusion pro-
cesses, and present a sufficient condition which is easily checked by looking at the
coefficient vector fields of the stochastic differential equation. It has been known
that the geometric mixing condition holds for certain symmetric diffusions, cf.
Stroock [14], Doukham [4], Roberts and Tweedie [11]. If one considers a symmet-
ric diffusion process, then by using properties of a compact self-adjoint operator,
the mixing condition is obtained because of the existence of the spectral gap. For
nonsymmetric diffusions, we cannot follow this plot, but by using the perturba-
tion method and the operational calculus, we can still prove the geometric mixing
property. The reader will observe that the Malliavin calculus (or hypoellipticity
argument) also works implicitly in the fundamental level of our discussion in the
second part.

Finally, combining the first and second parts, with the help of a result at hand
on the nondegeneracy of the Malliavin covariance of the diffusion process, we
will provide a sufficient condition which is easy to verify since it has replaced the
original two technically difficult conditions, i.e., the geometric mixing condition
and the conditional type Cra@mcondition, by an easily checked condition written
with a dual generator, and a nondegeneracy condition of the Lie algebra of vector
fields.

The organization of the present article is as follows. In Section 2, we will
give the definition of the-Markov model and examples. Section 3 presents fun-
damentals of the Malliavin calculus for jump processes. In Section 4, under the
geometric mixing condition, we will present asymptotic expansion for functionals
of e-Markov processes in two cases with different Malliavin operators. Also as
examples, we discuss applications to an ARMA(p,q) process and a semimartingale
satisfying a stochastic differential equation with jumps. In Section 5, we will confine
our attention to diffusion processes, and provide a result on the geometric mixing
property under a set of mild, easily verifiable conditions. It should be noted that
we there treat generalon-symmetric diffusion processes, and certain functional
analytic technigues are used in the proof. After that, we will present the asymptotic
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expansion of diffusion functionals by combining the results there and in Section 4.
In Section 6, the expansion for a functional having a stochastic expansion will be
presented. Most of statistics have such a stochastic expansion; thus it provides us
with a basis of higher-order statistical inference for stochastic processes. Finally in
Section 7, we will give proofs of our results.

2. e-Markov model

In order to treat generalized Markov chains with discrete time parameter and
Markov processes with continuous time parameter in a unified way, we will consider
the followinge-Markov process.

Given a probability spac@, 7, P),letY = (Y;)ier,: 2 xRy — R4 denote
a cadlag process (or a separable process),Xand (X;);cr, a di-dimensional
cadlag process with independent increments, @% is independent oe@[r 00)
forr € Ry, where

1,-]

By =0lXu Yy iu €[0,r]] VA

andﬂdx =o[X;—X, s, t € INRL]Vv A, I CR, A beingthes-field generated
by nuII sets. Define sub-fields 4}, #; of Z by #Y = o[V, 1t e INRy]V A
and by%; = o[X, — X, Y, is,t e INRy]V A/ Assume that, for some fixed
€ > 0, the procesy is ane-Markov process driven by; more precisely, we
assume that for an e R,

Vi 7 (B cq v 2Y)
fore <s <t Clearly s} _., C #}_ gV B}
In this paper, we are interested in the asymptotic expansion of the distribution of
the normalized additive function@l=/2Z, whereZ = (Z1)ier, IS anR“-valued
process satisfyingo € 7 %[0 and

Z; =7 —Z; € FBs 1

foreverys,t e R;,0<s <t.

For a subo-field % of #, BY denotes the set of all boundédmeasurable
functions. In order to derive asymptotic expansions, we will consider the situation
where the following two conditions hold true:

[A1] There exists a positive constamtsuch that

1Py, L1 = PU ey < a e fllos

foranys,t € Ry, s <t, and for anyf € B%’Em).
[A2] For any A > 0, SURR, o<h<a IIZ{ ;llLr(p) < oo forany p > 1, and

P[Z! +A] = 0. Moreover,Zg € N,~1L?(P) and P[Zg] = 0.
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Example 1. Let {Y,},cz+ be anm-Markov chain (non-linear time series model)
taking values irR% satisfying the stochastic equation

Yy =8 Yu-1,.. . Yo—m,&n), n>m | (1)

where(&,},>n is an independent sequence taking valueR4hand independent
of {Y,,}Z“;Ol. LetZ, = >7i_, fi(¥;, &) and X, = 37_, &;. Clearly, it is possi-
ble to embed the proce$X,, Y,, Z,} ez, into a processX;, Y;, Z;};er, With
continuous time parameter & = X[, Y; = Y| andZ; = Z;;. ThenY is an
(m — 1)-Markov process driven by the proce¥swith independent increments.

Example 2. Let us consider a stochastic procg¥s Z;};cr, defined as a strong
solution of the following stochastic integral equation with jumps:

Y, =Yo+AY_)xt+ B(Y_)xw; + C(Y_) * i,
Zi=Zo+ A Y )t +B Y )xw +C'(Y_)*fir , 2

whereZgiso[Yg]-measurabled € C®°(R%; R%2), B € C*(R%; R2QR™),C ¢
C*®(R% x E;R%), andsimilarlyA’ € C*(R%; R%), B’ € C*(R%; RI@R™),

C' € C®(R% x E;R%), wherew is an m-dimensional Wiener procegsjs an
open setirR?, andji is a compensated Poisson random measuf,orx E with
intensitydt ® A(dx), A being the Lebesgue measure BnUnder usual regularity
conditions(Y;, Z;) can be regarded as smooth functionals over the canonical space
Q = {(yo, w, n)}, whereu denotes the integer-valued random measufR oix E.
For details, see 1ll.6 and 1V.10 of Bichteler et al. [2]. Denote $ythe o -field
generated by the canonical mapst@rThe procesX; may in this case be taken as
X; = (wy, ne(gi); i € N), where(g;) is a countable measure determining family
over E; see RemarR. In this casey is a Markov process, i.es,= 0, driven byX
with independent increments.

3. Malliavin calculus

To ensure the regularity of distributions, we will use the nondegeneracy of the
Malliavin covariance in place of the conditional type C&maondition. We here
adopted the formulation of the Malliavin calculus by Bichteler et al. [2] in view of
semimartingales with jumps.

Let (2, 4, 1) be a probability space. A linear operatéf on (%) C
Np=1LP(IT) into N, 1 LP(I1) is called aMalliavin operatorif the following con-
ditions are satisfied:

(1) #is generated by (%).

(2) Forf € C2(R",n e N,andF € Z(%)", f o F € Z(%).

(3) ForanyF, G € (%), E'N[F¥G] = EN[GZF].

(4) ForF € (%), #(F?) > 2F ZF. In other words, the bilinear operatbron
2(&%) x 9(&) associated witl? by I'(F, G) = (FG)— F¥G - G¥F
is nonnegative definite.

(5) ForF = (FY,...,F") € 2(¥)",n € N,andf € CZ(R"),
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n n
1 o
L(foF)=Y 8foFLF +5 > 9i0;f o FT(F', F) .
i=1 ij=1

Fix a Malliavin operato ., #(.%)). For p > 2, define| F||p, , by

1
I1Flipy, = I1Fllp + 1 LFIp+ IT2(F, F)llp -

Let D, , denote the completion a? (%) with respect tq - D, - Then(Do ,,
I - Ip,,) is a Banach space, and there are inclusions:

Dy, CLy
U u
Dy C Ly
for 2 < p < ¢q. The existence of a Malliavin operator leads us to the existence of

an integration-by-parts setting (IBPS). LB$ o«o— = Np>2D2 ,. Then by Theorem
8-18 of [2] p. 107, we have the following IBP formula (with truncation).

Proposition 1. (1) % is extended uniquely to an operator (S&) on D2 oo,
and the operato(.¥, D2 «—) is a Malliavin operator. In particularD2 «— is an
algebra.

(2) There exists an IBPS: fof e C%(Rd), F € Do (RY) = (D20-)? and
1# € D2,oo—,

d
EN [Z a,-f(F>a;fx/f} = E"[f(O1iW)]
i=1
forj=1,.---,d,where N
op! =T(F', F/) ,

and . ' ‘

Ti(Y) = -2y LF/ —T(y, F/) .
(3) LetA = Ap = detop, oF = (of;j)ijzl. oy;,i1 denotes thei, i")-cofactor of
or. Suppose thaF € Dy o, (R?) and thatA - A=Yy = ¢ as.,i.e,A =0=
A~y = 0a.s.: this implicitly means that = 0a.s. on{A = 0} sinceA™! = oo
onit. Ifo;) € D2, andA~Yy € Dy o, thenforf e C%(Rd),

EM (o f(Fy) = EM [ f(P)sf ]

where the operator#’ : {y : ® — R such that A" € Do} —
Np>1L,(IT) is defined by

d
sV = Z T (A Yoy
i'=1
d
=2 [ZAilwali,i’]gFi/ +T (Ailwo'[i,i’]ﬂ Fi,)} .
i'=1
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Fork e N, defineS;[F] and 5[] as follows:
S[Fl:= {0} 1i,j=1,....d}if F € Dpoo_(RY);
SIIF] = {ob, ZFi, S, J[FI,T(S,_y[Fl,F) : i,j = 1,....,d} if F ¢
D3,0o—(R?) andS;_,[F] C D200
S{[¥; F1:={A7 1y} if A = 0impliesA~Yy = 0;
S{: Fl i= {A7IS] [y FLATID(S) 4[y: FILF) @i = 1,....d} if
Sy 4[¥; F] C Dpoo— and if A = 0 impliesA~1S) [y FJU AL
L(S;_4[y; F1, F) = {0}.
Put
Sily; F] := Si[F1U S{[¢; F1if F € Dyo—(R?) and if A = 0O implies
ATy =0;
Selwrs F1 i= Si-alys F1U SIF1 U S{[y; F1if F € Do (RY), S, 4[F] C
Dy and 8] j[¥; F1 C Dpeo—, and if A = 0 implies A7LS! ,[y; F] U
ATID(S!_[¥; F], F) = {0}. Here we denoteli (A, B) = {I'(a,b) ;a € A, b €
B} for function setsA and B, and denoted\ r simply by A.

Proposition 2. Suppose thaf' € Dz,oo_(Rd). If S[v; F] C D200, then for
feCyRY,

E [0,0;, ... 05 f(F)y] = E™ [f(F)f}Z : ..j,@f}jw] .
4. Asymptotic expansion for the functional Zr

Lett denote afixed positive constant satisfying ¢. Suppose that for eadh > 0,
u(j) andv(j) are sequences of real numbers such ¢hat u(l) < u(l) + 1 <
vD) < u@ <u@+1t <v@ <...and that supr{v(j) —u(j)} < oo. Let
Ij =[u(j) —e,u(jH]andJ; = [v(j) — €, v(j)]. Suppose that for each € R,
n(T) € N and tha(n(T)) < T. LetZ; = Z(}) for j =1.2,....n(T).2

The r-th cumulanz ., (1) of T=Y/2Z is defined by

d r
xr.r () = <§) log Plexplieu - T~Y2Z7)] .
0

Next, define functionsST,, (u) by the formal Taylor expansion:

o0 l o ~

r=2 r=1

Let \i/r,k(u) be thek-th partial sum of the right-hand side of (3) with= 1:

k
. 1 _
U7k (u) = eXp(éXT,Z(“)) + Y T2Pr, ()
r=1

! An abusive use ofZ™: Z; isnotZr atT = ;.
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Finally, for T > 0 andk € N, a signed measurdr ; is defined as the Fourier
inversion of\iJT,k(u). Inthe sequel, we willassume that the second cumyiaatu)
converges to a negative definite quadratic fermiZu asT — oo. Fix a symmetric
matrix X¢ satisfyingz < x°.

Theorem 1 below is rather for processes with finite range dependency than for
e-Markov processes; Theorem 2 is suitable for them. However, the method used
in the proof of Theorem 2 is essentially the same as that of Theorem 1, which is
rather simpler than Theorem 2. Another connection is explained in Refedt&r
the proof of Theorem 2 in Section 7.

Let

F = f(Xuk - Xuk,ls Yuk; le - le,la le; l1<k=m,1=<l=<n), (4)

whereu(j) —€ <ug < - < up < u(j), v(j) —€ <vo < --- < vy, < V(j),
m,n € N,and f € CPRMMELTR) . R) Let (Z;)j=12...(r) be a fam-
ily of Malliavin operators, eacly’; being defined ovet2, %[, (j)—¢,v(j), P), and
suppose that for every = 1,2,...,n(T), Xt(’) — X;l()j)fg, Yt(’) € 9(¢;) for

t € [u(j)—e,v(j)], henceF € 2(Z;), and suppose thdt’ ; F = 0. The measur-
able functiony; : (22, BLu(j)—e,v(jy) — ([0, 1], B([O, 1])) denotes a truncation
functional. Put

S1j =18,V 08 L2k T (05 Zjm) T, (A Z)

corresponding ta?;. Let &(M,y) = {f . RY — R, measurable | f(x)| <
M@+ |x])” (x € RY}. ¢(x; u, X) is the density function of the normal distribu-
tion with meary and covariance matriX. The sequences (), v(j)}, {<;} and
{1;} may depend off". We will assume
[A3] (i) inf j 7 P[] > O;
@iy iminf 7 0o n(T)/T > O;
(i) Z; € (D37 ), Sa[w;: Z;] € Dy, andU ..o S1j is bounded in

J s h 4 T>0 ’
LP(P)foranyp > 1.

Theorem 1. Letk € N, and letM, y, K > 0. Suppose that Conditiofia1], [A2]
and[A3] are satisfied. Then there exist constahts 0 andc¢ > 0 such that for
feé&M,y),

‘P[f(z—,ﬂ — Uil fl| < co( £ T8+

7

where
o(f,r) = /Rd Supllf(x +y) = f)| : |yl <r}o(x; 0, X%)dx

ande® = o(T~*+9/2) uniformly in&(M, y).
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4.1. Process with finite autoregression

Suppose that a sequenge ), v(j)} is given as before. The process considered
here is a process with finite autoregression; more precisely, we assume that for
each intervall; = [v(j) — €, v(j)], there exists a finite number of functionals

@j = {@j,k}kzl,.“,M_/ such thato[@j] =: ﬁ&j C %’Jj and P%[O,u(j)] = Pﬂ/]]_

on BA[y(j),o0)- FOr eachj, let (L;, Z(L;)) denote a Malliavin operator over

(2, Blu(j)—e,v(j)]» P). Here we do not assume thaj F vanishes for functionals

F of the form of (4); contrarily, we will assume that for affye C3°(R1+d2)m)

and anyuo, u1, ..., Uy satisfyingu(j) —e<up<up <---<uy <u(j),the
functional F = f(Xu, — Xu 4, Y, 1 <k <m) € D2 andL;F = 0.
Letoy, be the Malliavin covanance matrix ot ; = (Z;, %), “and suppose that

Zj1, J,k,aJ eD2 _,whereZ; = (Z; ). SupposesuM, < 00.

¥; denotes a truncation functional defined(@n, @[u(]) e P)-
As before, let

S1j =185 .08 LiZ k. TLy (05 Z jon) TL (MG V5, 2 1)

for operatorL ;.

[A3'] (i) inf j 7 P[¥,] > O;

(ii) lim inf Tﬁoon(T)/T > 0;

(i) Z; € (D5 S M Si[ys # ] € Dy
in L?(P) foranyp > 1.

2 oo andu_,-zl,r...,gm S1,; is bounded
>

Theorem 2. Letk € N. Suppose that Conditiofia1], [A2] and[A3'] are satisfied.
Then the same inequality as Theorgimolds true.

Remark 1 We may takel; = oo if necessary. The proofs do not change except for
minor modifications even in this case; thus we can treat Poisson random measures
as the input process.

Models in Example 1 and 2 satisfy the finite autoregression condition.
Example 1. (Continuation of Example 1) Assume that the driving procgss
X; is an R%-valued i.i.d. sequence with smooth densityand ¥, is defined
by (1) with m = 1. Taking @ = {(yo. (xi)ien): Yo € R%,x; € R} and

Blj-1,;] = ol¥j-1, X;1(= o[Y;-1, ¥;, X;]), the j-th Malliavin operatoL ; over
(2, Bj-1,j1. P)is defmed by

D(Lj) ={f = fVj-1(30, ¥1, ..., Xj-1), x)); f € CF(RNT%))

and

1 1
Lif =5pG)Af + 5w) " Ve (ow) - Vi, f
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for f € Z(L}). pis an auxiliary smooth positive function. We may use consecutive
noises forx;, if necessary. As an example, let us consider an ARMA(p,q) process
{¥,} which is defined by the equation

d(B)Y, =0(B)X,, teZ, ,
whereg¢ andé are polynomials :

$@)=1—prz—--- — ppz”
and

0(z) =1+61z+---+60427 ,

andB is the backward shift operatoBY;, = Y,_1. It is known thatY, has a state-
space representation as follows (cf. Brockwell and Davis [3], Chapter 12). Let
r=maxp,q + 1} andY; = (y;—r+1, yr—ri2, ..., y:), and define¥; so thatY;
satisfies

0 I 015
Y, = Y X
! |:¢r ¢r—1"‘¢1i| ! 1+[ 1 :| t

and
¥ = [6r—16,—2---60] Y: ,

where¢; = 0 for j > p,6p = 1 andd; = 0 for j > ¢. The driving process
X; may in this case be taken &5 = Z[j.’]zl 5(,-. A typical form of Z, in statisti-

cal applications iZ!~1 = f£,(v;, X,), which is within the present scope. In this
exampley itself is note-Markov but its functional can be dealt with in our context.

Example 2. (Continuation of Example 2) The j-th Malliavin operator is defined as
follows. Let 1; = 1y,(j),v(j)] x £- The domaiZ; = (L ;) is the set of functionals
@ of the form

(I) - F(Yu(j)a wtl - wt09 ) wl‘N - th,l’ (1]I’L)(fl)7 sy (1111«)(fn)) (5)

whereu(j) = to <11 < -ty < v(j), fi € CIZ(’”(RjL x E) (continuous
functions with compact support, and of clas$ in the v e E-direction), and
F e C3(R%FNmm) Clearly,%; generatesb. ,v(j)- With an auxiliary function
o . E — R4, we defineL ; by

o= @
Lio=L7d+L70

where

N

N 2
1 d°F 1 oF
Dg _ = .t _Z . —
Ly =3 iz_;trace—axi2 (i —ti1) = 5 ; o (W~ W)
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and

}Z g(lju)(amﬁ + (dya) - 3vfi)

@ g —
Lj CI>—2'

n

2
1 Z 0°F T (s - @)

for & € #; having the form of (5). In this case, the reference variables are given

by@j = Yv(j) and:fj = (ZZ((;)), Y, (,)).

PutX, = (v, Z;‘(j)), then (2) is written as

)_(, = }_(u(j) —i—A(}_(,) *xt 4+ B()_(,) * wy + C_'()_(,) *lata 1 e [M(J)a U(])],
Xu(jy = Yu(j), 0)

As 1V.10 Bichteler et al. [2], let us consider a procégs defined by a stochastic
differential equation correspondingXowith Xu(,) = x like (10-4) in [2]. PutQ; =
det(U;") andtg = v(j). Assume that there exists an open$@t R4, SN {z =

0} # ¢, on which the mapping — E[|Q; |~ ?]is locally bounded for any > 1.

ThenX (to, x) is nondegenerate umformlyihn the wide sense. Taking atruncation
functionaly; = W(X,(;)) with W e C¥(R?%"; [0, 1]) satisfying suppl C S,
andlnt (supp¥)N{z = 0} # ¢, we can apply Theorem 2 under Condition [KB—

(i) and the conditions of moments, and hence obtain an asymptotic expansion of
P[f(Z7/~/T)]. For details of this example, see [17].

5. Geometric mixing property of diffusion processes and asymptotic
expansion

As seen in the previous section, the geometric mixing condition is a key to obtain
asymptotic expansion for functionals of stochastic processes. For a class of sym-
metric diffusions, this property was proved by using the spectral gap of the compact
self-adjoint operator when the elements of the semigroup are of the Hilbert-Schmidt
type. See Stroock [14], also Roberts and Tweedie [11]. The aim of this section is
to prove that the geometric mixing property holds true for diffusion processes that
are not necessarily symmetric.

In this section, we consider&dimensional diffusion proces¥? defined as
the strong solution of the following stochastic differential equation:

dX(t,x) = Z Vi(X(t,x)) o dwf + Vo(X (¢, x))dt
i=1
X0,x)=x ,

2 We here use the letterx” to denote a diffusion process differently from the previous
sections, wher& stood for a driving process with independent increments.



Malliavin calculus, geometric mixing, and expansion of diffusion functionals 467

whereV; € CF(R?; RY), Vo € C*(R?; R?) with VVp € CF¥(R?; R?®R?), and
w = (w') is anr-dimensional Wiener process. We assume that

[C1] Lie[Va, ..., V,](x) = R¢ forall x € RY.

Let

1. o
L=3 Vi
i=1
The formal adjointL* of L can be written as
1 r
L* = EZViZ+V0+U0 )

i=1
whereUp € CP(RY R) and Vo € C®(RY; R?) is a vector field withVVp €
C¥ (R4 R @ RY).

Moreover, we assume
[C2] there exists a functiop e C%O(Rd; R) such thajp > O,fRd p(x)dx = 1and

limsupp™*(x)L*p(x) <O .

|x|—>00

Let P, denote the semigroup associated with the operatdiVe then have the
following theorem:

Theorem 3. Suppose that Conditioff€1] and[C2] hold. Then

(1) there exists a unique invariant probability measwren R¢ corresponding to
P;.

(2) u has aC*°-density with respect to the Lebesgue measame

d
sup ,o(x)_l—M(x) <00 .
xeRd dx

(3) There exist positive constaritsand C such that

122 = [ Fdiliagoan = Ce 1A

forall f € Cg(R%;R) .
We are now on the point of combining Theorem 3 with Theorem 2. For a diffusion
processX; satisfying

dX, =Y Vi(X,) o dw] + Vo(X,)dt (6)
i=1
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let Z, be defined by
r t ) t
Z, = ZO+Z/ Vl.’(Xx)odngL/ Vo(Xs)ds
i=170 0

where Zg is o[ Xo]-measurable withZg € N,-1L?(P) andE[Zo] = 0, V/ €
CE (R R?)andV; e CE (R R?"). Moreover, the flowZ (¢, 0) is defined by the
same equation correspondingXaz, x). As in Example 2, define the extended dif-
fusion proces¥X (¢, x) by X (r, x) = (X (¢, x), Z(z, 0)), then it has a representation:

-

dX(t,x) = Z Vi(X (1, x)) o dw! + Vo(X (t, x))dr .

i=1

Among several possible sufficient conditions for regularity, tligrkinder con-
dition for the extended process is a practical convenience. For vector fields
Vo, Vi,..., V, let g = {(Vp,...,V,}and X, = {[V,, V;V € 1,0 =
0,1,...,r}forn € N. Moreover,Lie[Vp; V1, ..., V] denotes the linear manifold
spanned by 1 %,. The next theorem uses the following condition:
[C3] There exists am € R? such that

Lie[Vo; V1,..., V,](x,0) = Ra+d"

By using the relation between theknander condition and the regularity of dis-
tributions (cf. Kusuoka-Stroock [10]), we obtain the following theorem.

Theorem 4. Let X, be a stationary diffusion process satisfying the stochastic dif-
ferential equatior(6). Assume Conditiorfé1] with 5 for ‘Y (or [C1], [C2]),
[C3] at an x in the support of the invariant measure §A&]. Then the asymptotic
expansion given in Theorem 1 is validiifs replaced by/'.

6. Expansion for functionals admitting a stochastic expansion

Estimators for unknown parameter appearing in the statistical inference are not
in general a normalized additive functional itself but have a stochastic expansion
with the principal part being a normalized additive functional and the higher parts

written as functions of the first term and other functionals. When we consider the

maximum likelihood estimator, the Bayes estimator, etc., the higher-order terms
are a polynomial of normalized additive functionals, while other estimators such as
U-statistics need another development of the asymptotic theory. Thus, Degltlae
method if necessary, we may without loss of generality consider the expansion
corresponding to a sequence of random varialjedefined by

k .
Sr=27 +y 1720, 2%
i=1

whereQ; areR?” -valued polynomialszy’ = 7-12z%, j = 0,1, andz; :=
z©, 7Py is ad = d© + dY-dimensional additive functional satisfying the
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measurability condition stated in Section 2 for the proceXsaxsdY . Moreover we
assume thatthere exists afinite regreggpfor eachinterval; = [v(j) — €, v(j)]
as Theorem 2. The coefficients f may depend off if they are bounded.

Theorem 5. LetM, y, K > 0. Suppose that Conditiofi&1], [A2] and[A3'] hold.
Then for anyK e N, there exist smooth functiors ;7 : RY? _ R such that
qgox,7 = ¢(:; 0, Cov(Z(To))) and that for somé > 0 and B > 0,

g k7 ()] < Be VO

and there exist constands> 0 andc¢ > 0 such that

k

PUFSII= | o FOO 2T 2j0r 6Oy < cotr. 775 + €
j=0

forany f € £&(M, y), wheree® is a sequence of constants independent wfith

e®) = o(T~3*k+HAK)

Remark 2 Sakamoto and Yoshida [12] gave expressiopitgr, j =0, 1, 2:
q0270?) = /R ) pr2dy®,
127 (%) = =, fR P01y,
12210 ==, [ pro)Q3ds®

1

50 [ promoimeiedy® . @)
q

Herey = (y©,y®D), p = d©, ¢ = d® and functionspr ;, j = 0, 1,2, are

defined, with the summation convention, by:

pr.0(z) = ¢(z; 0, Zr),

1
Pra) = (0, 57)(1+ 2% hagy (3 E1) ).

pr.2(2) = pra(z) + ¢(z; 0, 1)
(Aaﬂyﬁ )\aﬂykéeo

———hapys(z; 1) + 7

24 haﬂy&ea(z§ ET)) s

whereX; = Cov(Z7) and the Hermite polynomialg,, ...q, (z; £7) are defined by

oy, (23 21) = (=DFp(2; 0, £7) 18y, - - 0,0 (2; 0, T7)

andA%1% denoteqa; - - - ax)-cumulant ofZ7. Moreover, it is possible to show

that Formulas (7) are valid even when there is a linear relation between the ancil-
lary elementZ D if one interprets Formulas (7) with Schwartz distribution theory;
thus it extends Theorem 5. Such extension is necessary when we treat the maximum
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likelihood estimator in the context of the M-estimator, cf. Sakamoto and Yoshida
[13]. In [12], they also directly obtained the third order expansion formula for the
maximum likelihood estimator for a diffusion process.

Remark 3 The approach adopted in this paper is the “local approach”, which uses
the Malliavin calculus over shorttime intervals. Contrarily, itis also possible to take
the “global approach”, which applies the Malliavin calculus directly to functionals
defined over a global time interval. The advantage of the global approach was that
it can apply in various situations with or without mixing condition or Markovian
property; examples are in [15, 16]. However, if those conditions are assumed, the
present “local approach” provides a more effective way to the solution and reduces
conditions such as the strong contractivity condition as [16].

7. Proofs

Lemma 1. Suppose that ConditiofA1] holds true. Then there exists a positive
constantz such that

[AL] 1Pag,—c g LFT = PLANLpy < @™ te 7 flloo
foranys,r € Ry, s <t,and anyf € B#[; -

Proof. Since X has independent increments, when< u < v, Py, ,[C] €
B%’[’;_e,u] for everyC € B[y« In particular, forr € [¢, o0) andC € B[, ),
there exists a measurabf® < B.%'[Y,%J] such that||C’|lec < |IClleo and that
C' = Pyy,[C] as. Lete < s < t — e. Then, in the same fashion, we see
that Py, 4[C'] € B,%[Ys_é’s]; hencePy,, ,[C'] = Pﬂlys_é S][C/] a.s., and it equals
Py, 4[C’]. Therefore, by using Condition [A1], we obtain

” R%[.Y—e.x] [C] - P [C] ||L1 P = a_leae_a(t_S)”C”OO. H
(P)

As stated in RemarR, the approach taken here is the “local approach”. To reduce
the estimate of the characteristic function?f/2Z; into those over short time
intervals, we will later use the following lemma.

Lemma 2. Let(2, #, P) be aprobability space, ands;; I C R} anincreasing
family of subo -fields of#, i.e.,4; c #;if I C J.
(1) Letu > €. Suppose that

Pc%’[o,u] [¢] = Pﬂfu_e’“] [g]

foranyg € B#[, ), Where;
BAjo,,) andg € BA[, ),

is a subo-field of Z[, ¢ 4. Then forf e

u—e,u]

Pl f8] = Payucy[f1- Pogy, L8] -
In particular,

Pﬂiu—e.u][fg] - Pﬂiu—e,u][f] ’ Pﬂiu—&“] [g] '
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(2 Lete <u <v-—e¢€,andletl =[u —¢€,u] andJ = [v — ¢, v]. Suppose that
fu_e,u] C Blu—eu] ande%’fv_&v] C Blv—e,v) are subo-fields and that

P,%[o.s] [g/] = Pﬂix_m] [g/]

for all g’ € B#[500), s = u,v. Then, forf € BABp., § € BAu,» and
h € BA[y,00),

a) Py o [ f1= Py lfl1and Py 4 [h] = Py [h];
b) Py o, [fh] = Py v [ f1Py, v, [h] = Py [ f1 Py [R];

&) Paoqv By 08l = Pt v Ay, o0 [P,o/] v, [g]], or equivalentlyP[ fgh] =
PLf Py, [8]h].
Proof. (1) By assumption, one haBy, ;[fg] = fPﬂE - ][g]. The operator
Py,_.., Yields the result. ’

(2) For simplicity, we will useP; for Py, P; for Py, and Py, ; for Py v,
respectively.

(a) As for the second par;.j[h] = Prvy [Ra,g[o_v] [h]] = Py[h]. Next, for all
i € B#,andj € B#,, (1) implies thatP;[ fij] = i P[ f1P1[j] = Prlij P f1],
and hence thaP[ijf] = P[ij P;[ f]], and we obtained the first part.

(b) Fori, j given above,

PlijPryy[f] Prvs[h]l = P[Prvs[Prvslf]Rij]]
= P[ij Pi[f]h]
= P[Pi[filhj]
= P[P[fi]Pi[hj]]
= P[Pi[finj]] (by (1))
= P[ijfh] .

Consequently, we have the desired result.

(c) By assumption, we see th#y[gh] = Pi[gPy,  [h]l = PilgPs[h]] =
P;[ Py s[g] Ps[h]]. This together with (1) and (2b) implies that

P[fgh]l = P[Pi[f]P/[ghl]]
= P[Pi[f]P1vi[g]Ps[h]]
= P[PrvyLfh]Prvslgl]
= P[fhPrv,[gll
= P [fhPag A [Prvr[8]]

which completes the proof. O
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Proof of Theorem 1.Let F denote any functional taking the form of (4). Let
Bj = B, v By, andg; = Py e Ziy;]. We see that|lT ¢, (F, F)|l1 <
2|Fll2ll % Fll2 = 0 and hencel' ¢ (F, Z5)| < Ty, (F, YT ¢ (Z, Z})1/?

= 0; thereforel" ¢, (F, Z’j?) = 0. WhenSi[y;; Z;] C pli

2,00—"!

il/lk P[eiu-Z_,- wj F] — P[ein_,' /]fj (w] F)] ,

where
V4 d VA
F i Y — 1, j K
fk (ij)— Z{ZAZjl/f]FO'[k’k,]b?]Zj
k=1
_ Z; /
+Fl, (Azjle"’[k,]k’]’ Zf)}
=G« F (say) .
Therefore, .,
ullPLg; F11 < Y IG 1k F 1l i@ ey P’
k=1

since the family off’s is dense inL” (2, #;, P), p > 1,

d
lgjlly < 1ul™ Y 1G ikl
k=1
foranyq > 1.

Choose a smooth functiah: RY — [0, 1] so thatg (x) = 1 if |x| < 1/2, and
¢(x) = 0if |x| > 1. Let be a positive constant with < 1/2. Define a functional
V; depending o’ by ¥; = y;¢(Z;/T#?), and letz* = Zip(Z;](2TF)) —
P[Z,-¢(Z,-/'(2T5))]. SinceU; rS1,; is bounded inL”(P), p > 1, we obtain for
8j = Pyle"%iv],

iu-Z*
supP [P, 7]

pu [ 10,

< Clu|™ + sup||1 — ¥,y
J

] < S;JpP [lgi]]+ S;JpP [

< Clu|™ +sup||1 — v;ll1 + supP[|Z;| > T#/2]
J J
<Clul"t+1- in; Ply;]+CcT7F |
Js
whereC is a constant independent@ofind7. Consequently,

I
sup P HP%, |:elu Z]]
j=1,--.n(T) '

T>Ty

|=c ®)

for |u| > b, wherec < 1,b > 0 andTp > 0 are some constants.



Malliavin calculus, geometric mixing, and expansion of diffusion functionals 473

Fix ¢/ > 0 arbitrarily, and let 0< v; < ¢’ A 1. By assumption, we can find
J1s J2, s jur € {1, 2, ..., n(T)} such that for larg&, v(j;) + T"* < u(j;41) for
1=1,2,...,n,and that:’ > BT1"1, whereB is a positive constant depending
onlyont, liminfr_,on(7T)/T andry := sup; 7{v(j) —u(j)}. Indeed, puf = 1
andj; = min{j; u(j) > v(j;—1) + T"} as far as it can be defined. Then one has

n'(T" 4 211) = n(T)t

which yields that for som& > 0 and largel’, n’ > BT1 1.

Divide each one of the intervals,[B(j1)], [v(j1), u(j2)], - .., [v(jw), T]into
subintervals with lengtl except for the last interval with length at mastand call
themlo1, ..., lokg I01s oo Tokgs s I 1y - - In’,kn/- Let

Zy, = Zi,$(Zy, ) 2TP)) = P[Z1,¢(Z1,, /TP))] |

where Z; denotesZ; for interval I = [s,t]. Put Ipo = [0] and defineZ;kOO
similarly for Z;, , = Zo. Line up the intervalg; , and u(ji), v(;1)], and call them
T1, T, ..., Ts from the left. Fork € Z, choose ang numberssy, ..., s; from
C:={12,..., S8} with replacement. Let

Ci1={ne C: T, =[u(jn,v(j] for somej; andT, & {Ty,. ..., Ty} ,

and Iet%; = %[mm T;—e,min Tl] Vv g[maxn_e’male] . We W|” eSt'mate
E Z*(il) . Z*(ik) iu-Z;
(27, R I

whereZh = 74 /T, Zh = ¥5_; Zy , andi, ....i; € {1.....d}.
FOr #[min 7,—e, maxr; -Measurable random variablas, [ € Cy = {l1, ..., lsc, }s
with ||A;llc < 1, we see from Lemma 1 that
| P[T <, AlJ Ty 51,4 PIAI] — Py Al T PLA]
= [Pty AP e, y[AL] = PLAG DTz, PLA]

= ”Pﬂ[maXTli,l’ﬁmaXTl,-,l][Ali] - P[Al,]”l

— — V] _
< g lpaT"=o)

for largeT . It follows from Lemma 2 that for some > O,

P[Z;k"fil) .. Z;i(;k)eluz;] ZT]

K

— ‘P[Z;fil) . Z;k“f;k)nlec_clelu.

x Tiec, Py [e"“'ziz]” (;1 - z;/ﬁ)

< 4T P[Ticc,| Py, " 4]

< 47 My, P Pyl P01 + e oo 0|

< 4k kB (max{e_bo“”z/T, C})n’—k
L gk TRy g~ Lp—a(T =)

— (1-vp)/2 _1 _pe-v 1 78
581CT 1 +516T l+51eT
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if Ju] > 7¢ andT > To, Wwherebg, Top andé are some positive values. Here, in the
third inequality, we used Petrov’s lemma (Lemma (3.2) 6t£& and Hipp [7]).

PutHr (u) = Plexp(iu - T~Y2Z%)]. From the above inequality, it follows that
for every positivers, c2, e andE, there exists a positive constansuch that

|D*Hy (u)| < 5"’ )

foru e R?, c1T¢ < |u| < 2T, anda € Z%, || < k, whereD* = D}* ... DY,
D; = 3/3u’, witha = (a1, ..., ag).

Thus the validity of the asymptotic expansion follows from a continuous ver-
sion of Theorem 2.8 of Gtze and Hipp [7]. In fact, their Condition (2.3) can be
immediately checked, and Lemma 1 implies Condition (2.4): for ary %o 4]
and f € Byy.o0) With Jlefloo < Land|| fllo < 1,

|Plef] — Pe]PLf]l = |P [ePay  [f — P L]
= “ Pﬂ[o.s] [f - P [f]] “Ll(P)
Py [f —PLf]] ||L1(P) (the proof of Lemma 1)

= |
<a?t exp(—a (t —s)) .

Therefore, it is possible to obtain the same estimate as Lemma (3.38)z¢ &nd

Hipp [7]. Instead of Conditions (2.5) and (2.6) irb@e and Hipp [7], under the
present assumptions, we have already had the estimate (9) corresponding to Lemma
(3.43) of Gtze and Hipp [7]. We then obtain the desired result as they did so from
Lemmas (3.33) and (3.43). Jensen [9] gave a good expositiobtak@nd Hipp's

work. O

Proof of Theorem 2.We assume thaty[v;; 2 ;] C D2L{>o7’ in particular,AE v
L.
€ Dy

Leto e Digo_ and assume thaﬁtdetaﬁ,;/l € Dégo_. Then

Ay, = detoy,. The matrix(ygf) denotes the inverse matrix ofy; .

M;
OTL,(Zjs  F) = Y &TL(Zj0s ¥ )V ' Te; (Y jn, F) (10)

m,n=1

for functionalsF taking the form of
F = f(Xuk - Xuk,lv Yuk 1<k < ml)g(@j)

for f € CP(RUHMm) andg e CP(RMi). The integration-by-parts formula
yields

Y iupPle"?io)I¢F] = Ple"“{~2¢FL;Z; 4 —T1;($F., Zjg))] -
! (a1
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Since forA, B, C € DZL’QO,,
P[AT;(B,C)] = P[{-T'L,(A, B) — 2AL;B}C] ,
we obtain

Y iupPle™ AT, (Y jx, Zj )y T, (¥ 1, 2§ F
p

= P[lL; (¥, ei"‘zj)VqI}{iFL, Wi, Zjq)F]
= Pl “H{~T 1, Wk, v, T, (¥ 1, Zj )¢ F)
~2y4 1, (W1, Zj, O F LW 1] (12)
On{¢ > 0}, define&z. by

_5q—az ZFL(/]k, ]p)VoJFL (//jlv jq)

It follows from (11), (12) and (10) that

Zl—upp[eiuljag;ld)F] — P[e"”'Zf\IJ?(qﬁ)F] , (13)
p
where

V@) =D T,k vi) Tr; (¥ 1, Zj)$) = T, (@, Zjg)
k1
—2¢LjZj4+2) yz’;’jr(@j,l, Zi)OL Yk .
k.l
Since det‘r‘,1 = detoy, -detog};, ¢’ = (detay, )—16-]- o gV € Digo_, where
j1q.5] IS the(g, s)-cofactor ofoz;, andg’ deta{y € D2 _. Substitutingp’ into
¢ of (13), and summing up, we obtam
iup Ple"%iy;F] = P[e"?%IG; ,F] ,

where

Gjp= Z v (detoz,) 5 1.V )) -

Takingg; = P%I v, [e™ Zx\I/ ;] and with the help of Lemma 2, it is possible to
obtain the result in the same fashion as Theorem 1. O
Remark 4 ForL;, define another operato# ;, (¥ ;)) by

L)) ={F:FePLj)TL,(F.F)e%(Lj)}
and

M M;

1
i =L;F=Y " =0, (T, (@10 F) 74 950) = YT (e F) v L%
k=1 k=1
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Suppose tha¥ ; is nondegenerate ar; ;, ojj]j € Z(Lj). Then(Z;, 2(Z)))is
a Malliavin operatoif (% ;) generates#[, j)—e,»(;)- It is then also possible to
obtain the same result as in Theorem 1 as a corollary of it.

Proof of Theorem 3.
Step 1Define a stochastic flod(* (¢, x) by the stochastic differential equation

dX*(t,x) = Y Vi(X*(t,x)) o dw] + Vo(X*(t, x))dt
i=1
X*0,x) =x .

Under Condition [C1]X*(s, x) is nondegenerate uniformly in every compact set
in (0, 00) x RY.

It follows from Condition [C1] that there exisis € C* ((0, 00) x RY x R?)
such that

Pif(x) = /R px ) f)y
for f € Cp(R?; R). Put
t
P f(x)=E [exp(/o Uo (X* (s,x))ds> f(X*(z,x))]

for f € Cp(R?; R). Then, Feynman-Kac formula says that figtx) = P;* f (x),
au,
at

Since forf, g € Cx (RY; R), withu; = P} f andv, = Pig,

= L*u;, up=f .

d
/E(uthft)dx = /(vrer*ut —uLvr—)dx =0,

(PFf, ) 12(ax) = (fs Pt8) 12(ax), @nd hence we see that

Prf(x) = /de(t,y,x)f(y)dy

for f € Cp(R%; R).
Step 2L et
1. -1
€= ——Ilmsup(,o L ,0) x))Al
|x]—00
and letUy(x) = —p~1(x)L*p(x). Then there exist® > 0 such that/1(x) > 2¢
if x| > R, and(L* + U1)p = 0. The Feynman-Kac formula again yields

t
p(x)=E I:exp(/(; (Uo + Uy) (X* (s, x))ds) 0 (X* (t, x))] . (14)
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Take a functionp € C,‘?(Rd) satisfying that 0< ¢ < 1 and thatp(x) = 1 if
|x| < R. LetUz(x) = ¢(x)(U1r(x) — 2¢) € C,%O(Rd), then

Ur(x) = 2€ + (1 — p(x))(U1(x) — 2€) + Up(x)
> 2¢ 4 Us(x) (15)

forx € R?, |x| > R. Therefore, it follows from (14) and (15) that
t
p(x) > E |:eXp<2€l + / (Uo + U2) (X* (5, x)) ds) p (X* (s, x))i| . (16)
0
DefineQ; : Cz(R%;R) - Cp(R%; R) by

t
01 f(x) = p(x)lE[exp( /0 (Uo + U2) (X* (s,x>)ds) (of) (X* @.2)] -

(17)
Then
0,20 and Q,1 < e %! (18)
forr € Ry.
PutTy = p~1P}p, s € Ry. We know that
sup |V{p(s, y, x)| < oo (19)
s€[sg.s1]
xeC
)'ERd

for any 0 < so < s1 and compact c R?. [Let G, = exp(fg Uo(X*(u, x))du).
Under [C1], for anyk € N, p(s, y, x) can be expressed as

p(S, Vs X) = E[G;Sy(X*(Sv X))]
= E[hi,y(X*(s, ) Wi (G} X™ (5, 0))]

wherehy , : RY — R e Ck(R?) with uniformly (in y € R?) bounded derivatives
up tok-th order, andVy (G3; X*(s, x)) are certainL?(P)-bounded uniformly in
(s, x) over every compact set {0, co) x R4. LetS = [so, s1] x RY x C.ltis easy
to show that sup , ycs [yI'|V{ VEd p(s, y, x)| < oo by usingdsp(s, y,x) =
Lyp(s,y,x). ] Consequently, for every bounded getC Cp(RY), f € Ty(B)
are equi-continuous on each compact set, and hépce Upp 1P p is compact
sincelUop 1 e‘CIO(O(Rd). Moreover,C,(B) is bounded inC%° (RY) equipped with
seminormg|V’ fl«, and supg C supp/z for all f € C(B).

Clearly,|| 75 [lop < expls([[U2]lco—2€)),and||Csllop < (U200 €XPis (| U2]loo—
2¢)), where]| - ||, is the operator norm oh(Cp(RY) — Cp(RY)). Again with
(19), we see that : (0, o0) — L(Cp(R?) — Cp(R%)) is continuous with respect
to ” ' ”op-
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Let B’ be any bounded set'(hﬁ(Rd)such thatsupp c suppU: forall f € B'.
Then, forf € B and 0O< s < 1,

Ts f = T; flloo = ||p_1/ (pGs,y,)—pEt,y, ) pMFfOdyloo
! 0
= ||p*1/ du/ a—i(u,y, Yo F )Yl
t
_ f du / P, v, )L (0f) (3)d oo

t
< / dull T(L*(0f)/0) oo

< (t =) exptllU2ll) IL*(pf) /Pl -

Therefore,
SUPIITs f — T flloo < Cpr eXptl|U2lloo)(t —5) . (20)
feB’
Forn € N andsg, s1, ..., s, € (0, 00), definek,, (so, s1, ..., sp) by
K, (s0, 51, ..., 80) = Ty, Csn,l ce Cso .
Then||K, (so, 51, - -, sn)llop < cjerTDe2mso.s1...5) for some constants, ca,

and the continuity of”; and (20) implies thak,, : (0, c0)"*1 — L(Cz(RY) —
Cs(R%)) is continuous with respect to the operator narmi,,. The Riemann sum
approximation shows that

- 50 51 Sn—1
K, (s0) 2=/ dS1/ dsz.--f dspKn(s0 — 51,51 — 52, Sn—1 — Su, Sn)
0 0 0
is a compact operator frofig (R?) into C(RY), and that
Cne(n+1)czt

& 1
I1Kn(@llop < —t" .
n:

After all, K, := Y | K, (¢) is a compact operator frofiz (R?) into Cp(R?).
From the definition ofQ,, we obtain

Qt = T} + K[ .
In fact, for f € Cp(R?),

oo 1 t
Q) =T () +p~ @) ) ;E[exp( /O Uo (X* (5, 1)) ds)
n=1""

( | va(xs.0) ds) (o) (X" ¢,

sp—1

0 t s
=T,f(x)+2/o dslfoldsz.../o dsy

n=1
Tsn Cs,,,lfsn ce Cslfsz leslf(x)
=T f(x)+ K f(x) .
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Step 3.Hereafter, the operatorg,, T;, K; are regarded as operators Gh =
Cp(RY;C). LetT = T1 = Q1 — K1 = p~1Pjp, thenT is a bounded linear
operator o’ and||T + K1llp < e~%_In the same way as the proof of VIII 8.2,
p. 709, of Dunford-Schwartz [5], it is possible to prove

Claim1l.0(T)N{z € C; |z| > e~ ¢} is a finite set, and the dimension of the range
R(E(z; T)) of E(z; T) isfiniteifz € o(T), |z] > e™¢.

Claim2.0(T)N{z €C;|z| > 1} = {1}.
(proof) SinceT” f = p~LP*pf for f € Cp(R?),
/ (T )(0)p(x)dx = / P (of)()dx
Rd Rd

= f p () f(x)dx .
R4

Letz € o(T)N{z € C;|z| = 1}. The subspace’, := E(z; T)% of 4 is finite-
dimensional (Claim 1) and’; is invariant byT; therefore, there exists a nonzero
vectorf € 2, forwhichTf = Af for somex € C. By using the Dunford-integral
representation of (z; T), we see that fof = E(z; T)g,

0=A-Df=G-DETg=A-0ExT)g=x—-2f,
and hence. = z, after all,Tf = zf. Since

T(f) = TF = LI/ (21)
/ T(Ifl)(x)p(x)dlezlf 1 (0)o(0)dx
Rd Ra’

= IZI/ T(fhx)px)dx
R4

and hencez| < 1. If |z| = 1, thenT (| f|) = |Tf|, which implies that for some
constant = ¢y € C, f(x) = c|f(x)| for all x € R? since supp; (x, -) = R%.

zelfl=zf =Tf =cT(fD)=clTfl=c|f] ;
thereforez = 1. Thus we obtain
o(T)N{zeC:lz|>1) c {1} .
If o(T)N{z € C; |z| > 1} were void, because of Claim&(T) c {z € C; |z] < r}

for somer < 1, and

lim sup||T"||g,/," <r.

n—oo

In particular,|T"1||c — 0 asn — oo. On the other hand,

/R "D = /R pwdr =1,

which is a contradiction.
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Claim 3. The dimension of¢'1 is one.
(proof) Since%1 is finite dimensional, it follows from the equivalence of norms
that there exists a constafitsuch that

”f”oo S C”f”Ll(pdx)’ f S v%‘l .
As

IT" flloo < CIT"f L2 (paxy = CLF L2 g0ax)

forany f € 21 andn € N. Thus we see that
.1
lim — 7" fllc =0 .
n—-oon

From Theorem 3, VIII. 8, Dunford-Schwartz [5] p. 711 (or the proof of it), and
Claim 2, the spectral point 1 is a simple pole. Moreover, Theorem 18, VII. 3,
Dunford-Schwartz [5] p. 573, yields that

Tf= fforall fe% .
Clearly, for anyf € 21,

1l L1oaxy = IT* LF N Lacoaxy = WT" Fllicpary = 1 F I 2cpan)

and soT”|f| = |T" f|, therefore,f = cy|f| for some constant; € C. This
implies thatdim(Z'1) = 1. Indeed, for anyf,g € %1 and anyx,y € R,
(f(x) +ug(x))/(f(y) +ug(y)) must be positive for any € R, but this means
that £ (x)g(y) — f(y)g(x) = 0.

Step 4Now we return to the proof of Theorem 3. In view of the last part of the
proof of Claim 3, there existg € Cg(R?) such thau > 0, fRd ux)p(x)dx =1
andTu = u.LetE; = E(L; T), 2 = {x € Z; Exx = 0}, andT = T|;; note that
TZ C Z.PutG(¢) = ¢(1— g(¢)), whereg(¢) is an analytic function near(T),

and it equals one near 1 and zero otherwise. By the spectral mapping theorem,
o(T(1— E1)) = G(o(T)). SinceG(1) = 0,G(a(T)) C {¢;1¢| < r} for some

r < 1. From the fact that fof € Z, T" f = T" f = (T(1— E1))" f, it holds that

lim sup(| 7" (13" < r .

n— o0

For f, g € Cp(RY),
[ Proesopmds i) [ smptoucoasd
Rd R4
= |[ " nwepmax i) [ swptoucoasd
R4 R4

<IT" = Exllopll flloo /Rd lg(x)p(x)|dx .
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Define a probability measugeby u(dx) = p(x)u(x)dx. WithT" — Eq = T"(1—
E1), we obtain an estimate
[ (Pao) f oo — Exh) [ etonidx)
R4 R4
< Cr'| fllocollgllLapax) -

In particular, substituting = 1 and taking limit, we have

Ev(f) = /R Fptod

Hence, it follows from the duality that

for g € Cp(RY).

For anyr € Ry, T;u = u. [In the same argument, for every positive irra-
tional numbery, there exists &, € Cp(RY) such thatlyu, = u,. It is easy to
show thatu, = u by using (22) and a similar inequality and the continuity of the
semigroup{7;}. Thenu, = u also follows from the continuity.] In particulas, is
smooth. Finally, the semigroup propet®y = P, P;_[;; completes the proof of
Theorem 3. O

=< Crn”g”Ll(pdx) (22)
L(pdx)

Png—/ g(x)u(dx)
Rd

Proof of Theorem 4.Condition [A3] follows from Condition [C3] by the same ar-
gument as Exampl€Zherefore, the assertion is just a corollary of Theorem 2 under
Condition [A1]. We shall verify [A1l] under Conditions [C1] and [C2] together with
the stationarity. First, note that Theorem 3 (3) holds for any bounded measurable
function f. Let f € B,%’[’f’oo). (The symbol X' here takes the place of” in the
previous sections.) Theorem 3 (2) says that SUP,cge 0 (x) 1du(x)/dx < oo.

For ﬁ[’f]—measurable functiodf{%[;fl[f], there exists a Borel measurable function

H; : R? - R such thatl{@[x][f] = H;(X;) P-a.s.and|H;|lcc < || fll>o- By using

the stationarity ofX, and the Markov property’ﬂ[x][f] = P% ][f] P-a.s., we
t N3

see that

[P 111- P11

= || P, H; (X;)] — P[H; (X
L(P) H ,,;[)g][ r ( t)] [ r ( t)] Li(P)

= | P—s Hi (Xy) — P[Ht(Xt)]”Ll(P)

- f Py () — plH ()
R

<cl|P_sH — M[Ht] ”Ll(pdx)

< cCe M9 I He ll 11 pax)

<cCe™ | fllo -

This completes the proof. O
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For convenience of reference, we will give:

Proof of Theorem 5. Forz = (z©, z(D), defineSr(z) by

k
Sr@) =29+ 17770;?. ) .
j=1

Let My = {z € R?||z| < T*}. Takea > O sufficiently small so that for some
constantC,

T2 0P (T Ty < €T

forj =1,...,k, T > 1, Where|Q5.i)| denotes the polynomial with coefficients
of Qi.") replaced by their absolute values. The Bhattacharya-Ghosh map ([1]) is

defined by
_[yO7_[sr@
Y=o @

Let f € &(M, y). Applying Theorem 2 tof o S7(-)1{.em,) and using Condition
[A2], we see that, withl W7 ¢ (z) = pk.7dz,

P[f(Sp)] = /de(ST(Z))l{zeMT}Pk,T(Z) + O(T*(k+5)/2)
+O0(@yy f o ST, TF)) (23)

wheres is a positive constant and the small o-term dependé @i, y). By def-
inition, there exists a constany such thatz € M7 implies|y| < C1T%. From

the non-degeneracy of the Jacobian, it is easy to see that the mapping is
one-to-one onM7. Consequently, the first term on the right-hand side of (23) is
equal to

Jayf ey iyi=cire 3—;@)\ prr () (24)

PutAr(z) = y(z) —z, and letz] = y — Ar(y), z3 = y — Ar(y — Ar (),
3=y —Ar(y — Ar(y — Ar(y))), ... Itis then easy to obtain

2% — 2] < 7-U*D/2 « (@ polynomial ofiz(y)|)

and similar estimates for the gradients. Expandidgf /0y (y)|pk, 1 (25 (y)), we
have

dz; i
‘aiy"(y)’ P () = ¢ (v 0, £F) (1 +2 T_l/zqffk,r(y)>
i=1

+7-® V2R 1 (y)
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whereE% = Cov(Z7), q; .7 are smooth functions of at most polynomial growth
order and

|Re.7(»)] < e~ x (a polynomial of|y|)

for some positive constang. Since for smalt1 > 0,z(y) € M7 if |y| < c1T%, it
follows from (24) that, taking sufficiently small if necessary,

k
PLf(SP)] = f dyf (Y (y: 0, =F) (1+ > T"'/quik,r<y>) +o(T /2

i=1
+0(w(Apy f o S7, T™5Y)

k
= f dy @ f ) Y T 241k (vO) + o~ EH/2)
i=0

+0(@Ayy f oS, T~ %)) |

whereg; x.r are given by

k k
Y T2k (0O) = / dyP¢(y; 0, 27) (1 +y° T'/Zq;fk,T(w)

i=0 i=1

This completes the proof since one can estimate the last term on the right-hand side
with o (1p,., T~K) andw (f, T=K), first taking a different? if necessary. O
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