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Abstract. Under geometric mixing condition, we presented asymptotic expansion of the
distribution of an additive functional of a Markov or anε-Markov process with finite autore-
gression including Markov type semimartingales and time series models with discrete time
parameter. The emphasis is put on the use of the Malliavin calculus in place of the condi-
tional type Craḿer condition, whose verification is in most case not easy for continuous time
processes without such an infinite dimensional approach. In the second part, by means of the
perturbation method and the operational calculus, we proved the geometric mixing property
for non-symmetric diffusion processes, and presented a sufficient condition which is easily
checked in practice. Accordingly, we obtained asymptotic expansion of diffusion function-
als and proved the validity of it under mild conditions, e.g., without the strong contractivity
condition.

1. Introduction

In the asymptotic statistical theory, after studies of the first-order asymptotics, the
asymptotic expansion is a promising tool to investigate the higher-order perfor-
mance of statistics used for statistical inference, and thorough investigations have
been made mainly for independent cases; see e.g. the monograph by Ghosh [6].
As for dependent data, the work of Götze and Hipp [7] was a breakthrough: they
gave an asymptotic expansion of the distribution of an additive functional of a
discrete-time process under the geometric mixing condition and a conditional type
of Craḿer condition. To execute their program, checking the conditional type of
Craḿer condition is not a simple matter, and they successively in [8], presented
sufficient conditions for time series models. The reason of the difficulty is that it is
nothing but the problem of regularity of the distribution of a random variable, and
it is in many cases a difficult problem, unlike in independent observation cases, to
prove the regularity of the distribution from a structural definition of the random
variable, e.g., a solution of a stochastic difference/differential equation. Here we
are aiming at expansions for stochastic processes with continuous-time parame-
ter such as semimartingales. In this case, the regularity part inevitably requires
an infinite-dimensional argument, and really, it is possible if we make use of the
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Malliavin calculus over the Wiener space or, if necessary, that over more abstract
space including the Wiener-Poisson space to treat jump processes.

In the first part, as an underlying process with geometric mixing condition, we
will deal with a somewhat abstractε-Markov process driven by another process with
independent increments, and present an asymptotic expansion of the distribution
of an additive functional defined with those processes; we indeed encounter such
functionals in most statistical applications. By considering anε-Markov process,
more general than a Markov process, it is possible to treat time series models with
discrete time parameter together in a unified framework because the adopted general
Malliavin calculus by Bichteler, Gravereaux and Jacod [2] is available even for such
processes. The conditional type Cramér condition is replaced by the nondegeneracy
condition of the Malliavin covariance of the functional, and it can be verified for
practical models appearing in applications; indeed, we can apply the Hörmander
condition to diffusion models, and a set of conditions in Bichteler et al. [2] to a
stochastic differential equation with jumps.

In order to apply the first part, it is necessary to verify the naive geometric
mixing condition. In the second part, we will confine our attention to diffusion pro-
cesses, and present a sufficient condition which is easily checked by looking at the
coefficient vector fields of the stochastic differential equation. It has been known
that the geometric mixing condition holds for certain symmetric diffusions, cf.
Stroock [14], Doukham [4], Roberts and Tweedie [11]. If one considers a symmet-
ric diffusion process, then by using properties of a compact self-adjoint operator,
the mixing condition is obtained because of the existence of the spectral gap. For
nonsymmetric diffusions, we cannot follow this plot, but by using the perturba-
tion method and the operational calculus, we can still prove the geometric mixing
property. The reader will observe that the Malliavin calculus (or hypoellipticity
argument) also works implicitly in the fundamental level of our discussion in the
second part.

Finally, combining the first and second parts, with the help of a result at hand
on the nondegeneracy of the Malliavin covariance of the diffusion process, we
will provide a sufficient condition which is easy to verify since it has replaced the
original two technically difficult conditions, i.e., the geometric mixing condition
and the conditional type Craḿer condition, by an easily checked condition written
with a dual generator, and a nondegeneracy condition of the Lie algebra of vector
fields.

The organization of the present article is as follows. In Section 2, we will
give the definition of theε-Markov model and examples. Section 3 presents fun-
damentals of the Malliavin calculus for jump processes. In Section 4, under the
geometric mixing condition, we will present asymptotic expansion for functionals
of ε-Markov processes in two cases with different Malliavin operators. Also as
examples, we discuss applications to an ARMA(p,q) process and a semimartingale
satisfying a stochastic differential equation with jumps. In Section 5, we will confine
our attention to diffusion processes, and provide a result on the geometric mixing
property under a set of mild, easily verifiable conditions. It should be noted that
we there treat generalnon-symmetric diffusion processes, and certain functional
analytic techniques are used in the proof. After that, we will present the asymptotic
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expansion of diffusion functionals by combining the results there and in Section 4.
In Section 6, the expansion for a functional having a stochastic expansion will be
presented. Most of statistics have such a stochastic expansion; thus it provides us
with a basis of higher-order statistical inference for stochastic processes. Finally in
Section 7, we will give proofs of our results.

2. ε-Markov model

In order to treat generalized Markov chains with discrete time parameter and
Markov processes with continuous time parameter in a unified way, we will consider
the followingε-Markov process.

Given a probability space(�,F, P ), letY = (Yt )t∈R+ :�× R+ → Rd2 denote
a cadlag process (or a separable process), andX = (Xt )t∈R+ a d1-dimensional

cadlag process with independent increments, i.e.,BX,Y
[0,r] is independent ofBdX

[r,∞)

for r ∈ R+, where

BX,Y
[0,r] = σ [Xu, Yu : u ∈ [0, r]] ∨ N

andBdX
I = σ [Xt−Xs : s, t ∈ I∩R+]∨N, I ⊂ R,N being theσ -field generated

by null sets. Define subσ -fieldsBY
I ,BI of F byBY

I = σ [Yt : t ∈ I ∩ R+] ∨ N
and byBI = σ [Xt − Xs, Yt : s, t ∈ I ∩ R+] ∨ N. Assume that, for some fixed
ε ≥ 0, the processY is an ε-Markov process driven byX; more precisely, we
assume that for anε ∈ R+,

Yt ∈ F
(
BY

[s−ε,s] ∨ BdX
[s,t ]

)

for ε ≤ s ≤ t . Clearly,BY
[s−ε,t ] ⊂ BY

[s−ε,s] ∨ BdX
[s,t ] .

In this paper, we are interested in the asymptotic expansion of the distribution of
the normalized additive functionalT −1/2ZT , whereZ = (Zt )t∈R+ is anRd -valued
process satisfyingZ0 ∈ FB[0] and

Zst := Zt − Zs ∈ FB[s,t ]

for everys, t ∈ R+, 0 ≤ s ≤ t .
For a subσ -field G of F, BG denotes the set of all boundedG-measurable

functions. In order to derive asymptotic expansions, we will consider the situation
where the following two conditions hold true:
[A1] There exists a positive constanta such that

‖PBY
[s−ε,s]

[f ] − P [f ]‖L1(P ) ≤ a−1e−a(t−s)‖f ‖∞

for anys, t ∈ R+, s ≤ t , and for anyf ∈ BBY
[t,∞).

[A2] For any1 > 0, supt∈R+,0≤h≤1 ‖Ztt+h‖Lp(P ) < ∞ for any p > 1, and
P [Ztt+1] = 0. Moreover,Z0 ∈ ∩p>1L

p(P ) andP [Z0] = 0.
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Example 1. Let {Yn}n∈Z+ be anm-Markov chain (non-linear time series model)
taking values inRd2 satisfying the stochastic equation

Yn = Sn(Yn−1, . . . , Yn−m, ξn), n ≥ m , (1)

where{ξn}n≥m is an independent sequence taking values inRd1 and independent
of {Yn}m−1

n=0 . Let Zn = ∑n
j=1 fj (Yj , ξj ) andXn = ∑n

j=1 ξj . Clearly, it is possi-
ble to embed the process{Xn, Yn, Zn}n∈Z+ into a process{Xt, Yt , Zt }t∈R+ with
continuous time parameter asXt = X[t ] , Yt = Y[t ] andZt = Z[t ] . ThenY is an
(m− 1)-Markov process driven by the processX with independent increments.

Example 2. Let us consider a stochastic process{Yt , Zt }t∈R+ defined as a strong
solution of the following stochastic integral equation with jumps:

Yt = Y0 + A(Y−) ∗ t + B(Y−) ∗ wt + C(Y−) ∗ µ̃t
Zt = Z0 + A′(Y−) ∗ t + B ′(Y−) ∗ wt + C′(Y−) ∗ µ̃t , (2)

whereZ0 isσ [Y0]-measurable,A ∈ C∞(Rd2; Rd2),B ∈ C∞(Rd2; Rd2⊗Rm),C ∈
C∞(Rd2 × E; Rd2), and similarly,A′ ∈ C∞(Rd2; Rd),B ′ ∈ C∞(Rd2; Rd⊗Rm),
C′ ∈ C∞(Rd2 × E; Rd), wherew is an m-dimensional Wiener process,E is an
open set inRb, andµ̃ is a compensated Poisson random measure onR+ × E with
intensitydt ⊗ λ(dx), λ being the Lebesgue measure onE. Under usual regularity
conditions,(Yt , Zt ) can be regarded as smooth functionals over the canonical space
� = {(y0, w,µ)}, whereµdenotes the integer-valued random measure onR+ ×E.
For details, see III.6 and IV.10 of Bichteler et al. [2]. Denote byF the σ -field
generated by the canonical maps on�. The processXt may in this case be taken as
Xt = (wt , µt (gi); i ∈ N), where(gi) is a countable measure determining family
overE; see Remark1. In this case,Y is a Markov process, i.e.,ε = 0, driven byX
with independent increments.

3. Malliavin calculus

To ensure the regularity of distributions, we will use the nondegeneracy of the
Malliavin covariance in place of the conditional type Cramér condition. We here
adopted the formulation of the Malliavin calculus by Bichteler et al. [2] in view of
semimartingales with jumps.

Let (�,B,5) be a probability space. A linear operatorL on D(L) ⊂
∩p>1L

p(5) into ∩p>1L
p(5) is called aMalliavin operatorif the following con-

ditions are satisfied:

(1) B is generated byD(L).
(2) Forf ∈ C2

↑(R
n), n ∈ N, andF ∈ D(L)n, f ◦ F ∈ D(L).

(3) For anyF,G ∈ D(L), E5[FLG] = E5[GLF ].
(4) ForF ∈ D(L), L(F 2) ≥ 2FLF . In other words, the bilinear operator0 on

D(L) × D(L) associated withL by0(F,G) = L(FG)−FLG−GLF
is nonnegative definite.

(5) ForF = (F 1, . . . , F n) ∈ D(L)n, n ∈ N, andf ∈ C2
↑(R

n),
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L(f ◦ F) =
n∑
i=1

∂if ◦ FLF i + 1

2

n∑
i,j=1

∂i∂jf ◦ F0(F i, F j ) .

Fix a Malliavin operator(L,D(L)). Forp ≥ 2, define‖F‖D2,p by

‖F‖D2,p = ‖F‖p + ‖LF‖p + ‖0 1
2 (F, F )‖p .

Let D2,p denote the completion ofD(L) with respect to‖ · ‖D2,p . Then(D2,p,

‖ · ‖D2,p ) is a Banach space, and there are inclusions:

D2,p ⊂ Lp

∪ ∪
D2,q ⊂ Lq

for 2 ≤ p ≤ q. The existence of a Malliavin operator leads us to the existence of
an integration-by-parts setting (IBPS). LetD2,∞− = ∩p≥2D2,p. Then by Theorem
8-18 of [2] p. 107, we have the following IBP formula (with truncation).

Proposition 1. (1) L is extended uniquely to an operator (sayL) on D2,∞−,
and the operator(L,D2,∞−) is a Malliavin operator. In particular,D2,∞− is an
algebra.
(2) There exists an IBPS: forf ∈ C2

↑(R
d), F ∈ D2,∞−(Rd) ≡ (D2,∞−)d and

ψ ∈ D2,∞−,

E5

[
d∑
i=1

∂if (F )σ
i,j
F ψ

]
= E5

[
f (F )T

j
F (ψ)

]

for j = 1, · · · , d, where
σ
i,j
F = 0(F i, F j ) ,

and
T
j
F (ψ) = −2ψLFj − 0(ψ, F j ) .

(3) Let1 ≡ 1F = detσF , σF = (σ
i,j
F )di,j=1. σ[i,i′] denotes the(i, i′)-cofactor of

σF . Suppose thatF ∈ D2,∞−(Rd) and that1 · 1−1ψ = ψ a.s., i.e.,1 = 0 ⇒
1−1ψ = 0 a.s.: this implicitly means thatψ = 0 a.s. on{1 = 0} since1−1 = ∞
on it. If σ i,jF ∈ D2∞− and1−1ψ ∈ D2,∞−, then forf ∈ C2

↑(R
d),

E5 [∂if (F )ψ ] = E5
[
f (F )JF

i ψ
]
,

where the operatorJF
i : {ψ : 2 → R̄ such that 1−1ψ ∈ D2,∞−} →

∩p>1Lp(5) is defined by

JF
i ψ =

d∑
i′=1

T i
′
F (1

−1ψσ[i,i′])

= −
d∑
i′=1

{
21−1ψσ[i,i′]LF

i′ + 0
(
1−1ψσ[i,i′], F

i′
)}

.
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Fork ∈ N, defineS′
k[F ] andS′′

k [ψ ] as follows:

S′
1[F ] := {σ i,jF : i, j = 1, . . . , d} if F ∈ D2,∞−(Rd);

S′
k[F ] := {σ i,jF ,LF i, S′

k−1[F ], 0(S′
k−1[F ], F i) : i, j = 1, . . . , d} if F ∈

D2,∞−(Rd) andS′
k−1[F ] ⊂ D2,∞−;

S′′
1[ψ;F ] := {1−1ψ} if 1 = 0 implies1−1ψ = 0;
S′′
k [ψ;F ] := {1−1S′′

k−1[ψ;F ],1−10(S′′
k−1[ψ;F ], F i) : i = 1, . . . , d} if

S′′
k−1[ψ;F ] ⊂ D2,∞− and if1 = 0 implies1−1S′′

k−1[ψ;F ] ∪1−1

0(S′′
k−1[ψ;F ], F ) = {0}.

Put
S1[ψ;F ] := S′

1[F ] ∪ S′′
1[ψ;F ] if F ∈ D2,∞−(Rd) and if 1 = 0 implies

1−1ψ = 0;
Sk[ψ;F ] := Sk−1[ψ;F ] ∪ S′

k[F ] ∪ S′′
k [ψ;F ] if F ∈ D2,∞−(Rd), S′

k−1[F ] ⊂
D2,∞− and S′′

k−1[ψ;F ] ⊂ D2,∞−, and if 1 = 0 implies1−1S′′
k−1[ψ;F ] ∪

1−10(S′′
k−1[ψ;F ], F ) = {0}. Here we denoted0(A,B) = {0(a, b) : a ∈ A, b ∈

B} for function setsA andB, and denoted1F simply by1.

Proposition 2. Suppose thatF ∈ D2,∞−(Rd). If Sk[ψ;F ] ⊂ D2,∞−, then for
f ∈ Ck+1

↑ (Rd),

E5
[
∂i1∂i2 . . . ∂ik f (F )ψ

] = E5
[
f (F )JF

ik
. . .JF

i2
JF
i1
ψ
]
.

4. Asymptotic expansion for the functionalZT

Letτ denote a fixed positive constant satisfyingτ > ε. Suppose that for eachT > 0,
u(j) andv(j) are sequences of real numbers such thatε ≤ u(1) ≤ u(1) + τ ≤
v(1) ≤ u(2) ≤ u(2) + τ ≤ v(2) ≤ . . ., and that supj,T {v(j) − u(j)} < ∞. Let
Ij = [u(j)− ε, u(j)] andJj = [v(j)− ε, v(j)]. Suppose that for eachT ∈ R+,

n(T ) ∈ N and thatv(n(T )) ≤ T . LetZj = Z
u(j)

v(j) for j = 1,2, . . . , n(T ).1

The r-th cumulantχT,r (u) of T −1/2ZT is defined by

χT,r (u) =
(
d

dε

)r
0

logP [exp(iεu · T −1/2ZT )] .

Next, define functions̃PT,r (u) by the formal Taylor expansion:

exp

( ∞∑
r=2

r!−1εr−2χT,r (u)

)
= exp

(
1

2
χT,2(u)

)
+

∞∑
r=1

εrT −r/2P̃T ,r (u) . (3)

Let 9̂T ,k(u) be thek-th partial sum of the right-hand side of (3) withε = 1:

9̂T ,k(u) = exp

(
1

2
χT,2(u)

)
+

k∑
r=1

T −r/2P̃T ,r (u) .

1 An abusive use of “Z”: Zj is notZT atT = j .
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Finally, for T > 0 andk ∈ N, a signed measure9T,k is defined as the Fourier
inversion of9̂T ,k(u). In the sequel, we will assume that the second cumulantχT,2(u)

converges to a negative definite quadratic form−u′6u asT → ∞. Fix a symmetric
matrix6o satisfying6 < 6o.

Theorem 1 below is rather for processes with finite range dependency than for
ε-Markov processes; Theorem 2 is suitable for them. However, the method used
in the proof of Theorem 2 is essentially the same as that of Theorem 1, which is
rather simpler than Theorem 2. Another connection is explained in Remark4 after
the proof of Theorem 2 in Section 7.

Let

F = f (Xuk −Xuk−1, Yuk ;Xvl −Xvl−1, Yvl ; 1 ≤ k ≤ m,1 ≤ l ≤ n) , (4)

whereu(j) − ε ≤ u0 ≤ · · · ≤ um ≤ u(j), v(j) − ε ≤ v0 ≤ · · · ≤ vn ≤ v(j),
m, n ∈ N, andf ∈ C∞

B (R
(m+n)(d1+d2) → R). Let (Lj )j=1,2,···,n(T ) be a fam-

ily of Malliavin operators, eachLj being defined over(�,B[u(j)−ε,v(j)], P ), and

suppose that for everyj = 1,2, . . . , n(T ), X(i)t − X
(i)
u(j)−ε, Y

(i)
t ∈ D(Lj ) for

t ∈ [u(j)− ε, v(j)], henceF ∈ D(Lj ), and suppose thatLjF = 0. The measur-
able functionψj : (�,B[u(j)−ε,v(j)]) → ([0,1],B([0,1])) denotes a truncation
functional. Put

S1,j = {1−1
Zj
ψj , σ

kl
Zj
,LjZj,k, 0Lj

(σ klZj , Zj,m), 0Lj
(1−1

Zj
ψj , Zj,l)}

corresponding toLj . Let E(M, γ ) = {f : Rd → R, measurable, |f (x)| ≤
M(1+ |x|)γ (x ∈ Rd)}. φ(x;µ,6) is the density function of the normal distribu-
tion with meanµ and covariance matrix6. The sequences{u(j), v(j)}, {Lj } and
{ψj } may depend onT . We will assume
[A3] (i) inf j,T P [ψj ] > 0;
(ii) lim inf T→∞ n(T )/T > 0;

(iii) Zj ∈ (D
Lj

2,∞−)
d , S1[ψj ;Zj ] ⊂ D

Lj

2,∞−, and∪ j=1,...,n(T )
T >0

S1,j is bounded in

Lp(P ) for anyp > 1.

Theorem 1. Letk ∈ N, and letM,γ,K > 0. Suppose that Conditions[A1], [A2]
and [A3] are satisfied. Then there exist constantsδ > 0 andc > 0 such that for
f ∈ E(M, γ ), ∣∣∣∣P

[
f (
ZT√
T
)

]
−9T,k[f ]

∣∣∣∣ ≤ cω(f, T −K)+ ε
(k)
T ,

where

ω(f, r) =
∫

Rd
sup{|f (x + y)− f (x)| : |y| ≤ r}φ(x; 0, 6o)dx

andε(k)T = o(T −(k+δ)/2) uniformly inE(M, γ ).
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4.1. Process with finite autoregression

Suppose that a sequence{u(j), v(j)} is given as before. The process considered
here is a process with finite autoregression; more precisely, we assume that for
each intervalJj = [v(j) − ε, v(j)], there exists a finite number of functionals
Yj = {Yj,k}k=1,...,Mj

such thatσ [Yj ] =: B′
Jj

⊂ BJj andPB[0,v(j)] = PB′
Jj

on BB[v(j),∞). For eachj , let (Lj ,D(Lj )) denote a Malliavin operator over
(�,B[u(j)−ε,v(j)], P ). Here we do not assume thatLjF vanishes for functionals
F of the form of (4); contrarily, we will assume that for anyf ∈ C∞

B (R
(d1+d2)m)

and anyu0, u1, . . . , um satisfyingu(j) − ε ≤ u0 ≤ u1 ≤ · · · ≤ um ≤ u(j), the

functionalF = f (Xuk − Xuk−1, Yuk : 1 ≤ k ≤ m) ∈ D
Lj
2,∞− andLjF = 0.

Let σZj
be the Malliavin covariance matrix ofZj = (Zj ,Yj ), and suppose that

Zj,l,Yj,k, σ
pq

Zj
∈ DLj2,∞−, whereZj = (Zj,l). Suppose sup

j,T

Mj < ∞.

ψj denotes a truncation functional defined on(�,B[u(j)−ε,v(j)], P ).
As before, let

S1,j = {1−1
Zj
ψj , σ

kl
Zj
, LjZj,k, 0Lj (σ

kl
Zj
,Zj,m), 0Lj (1

−1
Zj
ψj ,Zj,l)}

for operatorLj .
[A3′] (i) inf j,T P [ψj ] > 0;
(ii) lim inf T→∞ n(T )/T > 0;

(iii) Zj ∈ (D
Lj
2,∞−)

d+Mj , S1[ψj ;Zj ] ⊂ D
Lj
2,∞−, and∪ j=1,···,n(T )

T >0
S1,j is bounded

in Lp(P ) for anyp > 1.

Theorem 2. Letk ∈ N. Suppose that Conditions[A1], [A2] and[A3′] are satisfied.
Then the same inequality as Theorem1 holds true.

Remark 1. We may taked1 = ∞ if necessary. The proofs do not change except for
minor modifications even in this case; thus we can treat Poisson random measures
as the input processX.

Models in Example 1 and 2 satisfy the finite autoregression condition.

Example 1′. (Continuation of Example 1) Assume that the driving processξt =
X̃t is an Rd1-valued i.i.d. sequence with smooth densityw and Yt is defined
by (1) with m = 1. Taking� = {(y0, (xi)i∈N); y0 ∈ Rd2, xi ∈ Rd1} and
B[j−1,j ] = σ [Yj−1, X̃j ](= σ [Yj−1, Yj , X̃j ]), the j-th Malliavin operatorLj over
(�,B[j−1,j ], P ) is defined by

D(Lj ) = {f = f (Yj−1(y0, x1, . . . , xj−1), xj ); f ∈ C2
↑(R

d1+d2)}

and

Ljf = 1

2
ρ(xj )1xj f + 1

2
w(xj )

−1∇xj (ρw) · ∇xj f
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for f ∈ D(Lj ).ρ is an auxiliary smooth positive function. We may use consecutive
noises forxj , if necessary. As an example, let us consider an ARMA(p,q) process
{Ỹt } which is defined by the equation

φ(B)Ỹt = θ(B)X̃t , t ∈ Z+ ,

whereφ andθ are polynomials :

φ(z) = 1 − φ1z− · · · − φpz
p

and

θ(z) = 1 + θ1z+ · · · + θqz
q ,

andB is the backward shift operator:BỸt = Ỹt−1. It is known thatỸt has a state-
space representation as follows (cf. Brockwell and Davis [3], Chapter 12). Let
r = max{p, q + 1} andYt = (yt−r+1, yt−r+2, . . . , yt )

′, and defineYt so thatYt
satisfies

Yt =
[

0 Ir−1
φr φr−1 · · ·φ1

]
Yt−1 +

[
0r−1

1

]
X̃t ,

and

Ỹt = [
θr−1 θr−2 · · · θ0

]
Yt ,

whereφj = 0 for j > p, θ0 = 1 andθj = 0 for j > q. The driving process
Xt may in this case be taken asXt = ∑[t ]

j=1 X̃j . A typical form ofZt in statisti-

cal applications isZt−1
t = ft (Yt , X̃t ), which is within the present scope. In this

example,Ỹ itself is notε-Markov but its functional can be dealt with in our context.

Example 2′. (Continuation of Example 2) The j-th Malliavin operator is defined as
follows. Let 1j = 1[u(j),v(j)] ×E . The domainRj = D(Lj ) is the set of functionals
8 of the form

8 = F(Yu(j), wt1 − wt0, . . . , wtN − wtN−1, (1jµ)(f1), . . . , (1jµ)(fn)) (5)

whereu(j) = t0 ≤ t1 ≤ · · · tN ≤ v(j), fi ∈ C2
K,v(R+ × E) (continuous

functions with compact support, and of classC2 in the v ∈ E-direction), and
F ∈ C2

↑(R
d2+Nm+n). Clearly,Rj generatesB[u(j),v(j)] . With an auxiliary function

α : E → R+, we defineLj by

Lj8 = L
(1)
j 8+ L

(2)
j 8 ,

where

L
(1)
j 8 = 1

2

N∑
i=1

trace
∂2F

∂x2
i

(ti − ti−1)− 1

2

N∑
i=1

∂F

∂xi
· (wti − wti−1)
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and

L
(2)
j 8 = 1

2

n∑
i=1

∂F

∂xi
(1jµ)

(
α1vfi + (∂vα) · ∂vfi

)

+1

2

n∑
i,j=1

∂2F

∂xi∂xj
(1jµ)

(
α(∂vfi) · (∂vfj )

)

for 8 ∈ Rj having the form of (5). In this case, the reference variables are given

byYj = Yv(j) andZj = (Z
u(j)

v(j) , Yv(j)).

PutX̄t = (Yt , Z
u(j)
t ), then (2) is written as

X̄t = X̄u(j) + Ā(X̄−) ∗ t + B̄(X̄−) ∗ wt + C̄(X̄−) ∗ µ̃t , t ∈ [u(j), v(j)],

X̄u(j) = (Yu(j),0) .

As IV.10 Bichteler et al. [2], let us consider a processUxt defined by a stochastic
differential equation corresponding toX̄with X̄u(j) = x like (10-4) in [2]. PutQx

t =
det(Uxt ) andt0 = v(j). Assume that there exists an open setS in Rd2+d , S ∩ {z =
0} 6= φ, on which the mappingx 7→ E[|Qx

t0
|−p] is locally bounded for anyp > 1.

ThenX̄(t0, x) is nondegenerate uniformly inS in the wide sense. Taking a truncation
functionalψj = 9(X̄u(j)) with 9 ∈ C∞

K (R
d2+d; [0,1]) satisfying supp9 ⊂ S,

andInt (supp9)∩{z = 0} 6= φ, we can apply Theorem 2 under Condition [A3′](i)–
(ii) and the conditions of moments, and hence obtain an asymptotic expansion of
P [f (ZT /

√
T )]. For details of this example, see [17].

5. Geometric mixing property of diffusion processes and asymptotic
expansion

As seen in the previous section, the geometric mixing condition is a key to obtain
asymptotic expansion for functionals of stochastic processes. For a class of sym-
metric diffusions, this property was proved by using the spectral gap of the compact
self-adjoint operator when the elements of the semigroup are of the Hilbert-Schmidt
type. See Stroock [14], also Roberts and Tweedie [11]. The aim of this section is
to prove that the geometric mixing property holds true for diffusion processes that
are not necessarily symmetric.

In this section, we consider ad-dimensional diffusion processX2 defined as
the strong solution of the following stochastic differential equation:

dX(t, x) =
r∑
i=1

Vi(X(t, x)) ◦ dwit + V0(X(t, x))dt

X(0, x) = x ,

2 We here use the letter “X” to denote a diffusion process differently from the previous
sections, whereX stood for a driving process with independent increments.
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whereVi ∈ C∞
B (R

d; Rd),V0 ∈ C∞(Rd; Rd)with ∇V0 ∈ C∞
B (R

d; Rd ⊗Rd), and
w = (wi) is anr-dimensional Wiener process. We assume that
[C1] Lie[V1, . . . , Vr ](x) = Rd for all x ∈ Rd .
Let

L = 1

2

r∑
i=1

V 2
i + V0 .

The formal adjointL∗ of L can be written as

L∗ = 1

2

r∑
i=1

V 2
i + Ṽ0 + U0 ,

whereU0 ∈ C∞
B (R

d; R) and Ṽ0 ∈ C∞(Rd; Rd) is a vector field with∇Ṽ0 ∈
C∞
B (R

d; Rd ⊗ Rd).
Moreover, we assume

[C2] there exists a functionρ ∈ C∞
B (R

d; R) such thatρ > 0,
∫

Rd ρ(x)dx = 1 and

lim sup
|x|→∞

ρ−1(x)L∗ρ(x) < 0 .

Let Pt denote the semigroup associated with the operatorL. We then have the
following theorem:

Theorem 3. Suppose that Conditions[C1] and[C2] hold. Then

(1) there exists a unique invariant probability measureµ on Rd corresponding to
Pt .

(2) µ has aC∞-density with respect to the Lebesgue measure, and

sup
x∈Rd

ρ(x)−1dµ

dx
(x) < ∞ .

(3) There exist positive constantsλ andC such that

‖Ptf −
∫

Rd
f dµ‖L1(ρdx) ≤ Ce−λt‖f ‖L1(ρdx)

for all f ∈ CB(Rd; R) .

We are now on the point of combining Theorem 3 with Theorem 2. For a diffusion
processXt satisfying

dXt =
r∑
i=1

Vi(Xt ) ◦ dwit + V0(Xt )dt , (6)
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letZt be defined by

Zt = Z0 +
r∑
i=1

∫ t

0
V ′
i (Xs) ◦ dwis +

∫ t

0
V ′

0(Xs)ds ,

whereZ0 is σ [X0]-measurable withZ0 ∈ ∩p>1L
p(P ) andE[Z0] = 0, V ′

i ∈
C∞

↑ (R
d; Rd ′

) andV ′
0 ∈ C∞

↑ (R
d; Rd ′

). Moreover, the flowZ(t,0) is defined by the
same equation corresponding toX(t, x). As in Example 2, define the extended dif-
fusion process̄X(t, x) by X̄(t, x) = (X(t, x), Z(t,0)), then it has a representation:

dX̄(t, x) =
r∑
i=1

V̄i(X̄(t, x)) ◦ dwit + V̄0(X̄(t, x))dt .

Among several possible sufficient conditions for regularity, the Hörmander con-
dition for the extended process̄X is a practical convenience. For vector fields
V0, V1, . . . , Vr , let 60 = {V1, . . . , Vr} and6n = {[Vα, V ];V ∈ 6n−1, α =
0,1, . . . , r} for n ∈ N. Moreover,Lie[V0;V1, . . . , Vr ] denotes the linear manifold
spanned by∪∞

n=06n. The next theorem uses the following condition:
[C3] There exists anx ∈ Rd such that

Lie[V̄0; V̄1, . . . , V̄r ](x,0) = Rd+d ′
.

By using the relation between the Hörmander condition and the regularity of dis-
tributions (cf. Kusuoka-Stroock [10]), we obtain the following theorem.

Theorem 4. LetXt be a stationary diffusion process satisfying the stochastic dif-
ferential equation(6). Assume Conditions[A1] withBX

I for ‘BY
I ’ (or [C1], [C2] ),

[C3] at an x in the support of the invariant measure and[A2] . Then the asymptotic
expansion given in Theorem 1 is valid ifd is replaced byd ′.

6. Expansion for functionals admitting a stochastic expansion

Estimators for unknown parameter appearing in the statistical inference are not
in general a normalized additive functional itself but have a stochastic expansion
with the principal part being a normalized additive functional and the higher parts
written as functions of the first term and other functionals. When we consider the
maximum likelihood estimator, the Bayes estimator, etc., the higher-order terms
are a polynomial of normalized additive functionals, while other estimators such as
U-statistics need another development of the asymptotic theory. Thus, by theDelta-
method if necessary, we may without loss of generality consider the expansion
corresponding to a sequence of random variablesST defined by

ST = Z̄
(0)
T +

k∑
i=1

T − i
2Qi(Z̄

(0)
T , Z̄

(1)
T ) ,

whereQi areRd(0)-valued polynomials,̄Z(j)T = T −1/2Z
(j)
T , j = 0,1, andZT :=

(Z
(0)
T , Z

(1)
T ) is a d = d(0) + d(1)-dimensional additive functional satisfying the
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measurability condition stated in Section 2 for the processesX andY . Moreover we
assume that there exists a finite regressorYj for each intervalJj = [v(j)− ε, v(j)]
as Theorem 2. The coefficients ofQi may depend onT if they are bounded.

Theorem 5. LetM,γ,K > 0. Suppose that Conditions[A1], [A2] and[A3′] hold.
Then for anyK ∈ N, there exist smooth functionsqj,k,T : Rd(0) → R such that

q0,k,T = φ(·; 0, Cov(Z̄(0)T )) and that for someb > 0 andB > 0,

|qj,k,T (y(0))| ≤ Be−b|y
(0)|2 ,

and there exist constantsδ > 0 andc > 0 such that∣∣∣∣∣∣P [f (ST )] −
∫

Rd(0)
f (y(0))

k∑
j=0

T −j/2qj,k,T (y(0))dy(0)
∣∣∣∣∣∣ ≤ cω(f, T −K)+ ε

(k)
T

for anyf ∈ E(M, γ ), whereε(k) is a sequence of constants independent off with

ε(k) = o(T − 1
2 (k+δ)∧K).

Remark 2. Sakamoto and Yoshida [12] gave expression toqj,2,T , j = 0,1,2:

q0,2,T (y
(0)) =

∫
Rq
pT,2(y)dy

(1),

q1,2,T (y
(0)) = −∂a

∫
Rq
pT,1(y)Q

a
1(y)dy

(1),

q2,2,T (y
(0)) = −∂a

∫
Rq
pT,0(y)Q

a
2(y)dy

(1)

+1

2
∂a∂b

∫
Rq
pT,0(y)Q

a
1(y)Q

b
1(y)dy

(1) . (7)

Herey = (y(0), y(1)), p = d(0), q = d(1) and functionspT,j , j = 0,1,2, are
defined, with the summation convention, by:

pT,0(z) = φ(z; 0, 6T ),

pT,1(z) = φ(z; 0, 6T )
(
1 + 1

6
λαβγ hαβγ (z;6T )

)
,

pT,2(z) = pT,1(z)+ φ(z; 0, 6T )(λαβγ δ
24

hαβγ δ(z;6T )+ λαβγ λδεσ

72
hαβγ δεσ (z;6T )

)
,

where6T = Cov(Z̄T ) and the Hermite polynomialshα1···αk (z;6T ) are defined by

hα1···αk (z;6T ) = (−1)kφ(z; 0, 6T )
−1∂α1 · · · ∂αkφ(z; 0, 6T ) ,

andλα1···αk denotes(α1 · · ·αk)-cumulant ofZ̄T . Moreover, it is possible to show
that Formulas (7) are valid even when there is a linear relation between the ancil-
lary elementsZ(1) if one interprets Formulas (7) with Schwartz distribution theory;
thus it extends Theorem 5. Such extension is necessary when we treat the maximum
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likelihood estimator in the context of the M-estimator, cf. Sakamoto and Yoshida
[13]. In [12], they also directly obtained the third order expansion formula for the
maximum likelihood estimator for a diffusion process.

Remark 3. The approach adopted in this paper is the “local approach”, which uses
the Malliavin calculus over short time intervals. Contrarily, it is also possible to take
the “global approach”, which applies the Malliavin calculus directly to functionals
defined over a global time interval. The advantage of the global approach was that
it can apply in various situations with or without mixing condition or Markovian
property; examples are in [15, 16]. However, if those conditions are assumed, the
present “local approach” provides a more effective way to the solution and reduces
conditions such as the strong contractivity condition as [16].

7. Proofs

Lemma 1. Suppose that Condition[A1] holds true. Then there exists a positive
constanta such that

[A1′] ‖PB[s−ε,s] [f ] − P [f ]‖L1(P ) ≤ a−1e−a(t−s)‖f ‖∞

for anys, t ∈ R+, s ≤ t , and anyf ∈ BB[t,∞).

Proof. SinceX has independent increments, whenε ≤ u ≤ v, PB[0,u] [C] ∈
BBY

[u−ε,u] for everyC ∈ BB[v,∞). In particular, fort ∈ [ε,∞) andC ∈ BB[t,∞),

there exists a measurableC′ ∈ BBY
[t−ε,t ] such that‖C′‖∞ ≤ ‖C‖∞ and that

C′ = PB[0,t ] [C] a.s. Letε ≤ s ≤ t − ε. Then, in the same fashion, we see
thatPB[0,s] [C

′] ∈ BBY
[s−ε,s] ; hencePB[0,s] [C

′] = PBY
[s−ε,s]

[C′] a.s., and it equals

PB[s−ε,s] [C
′]. Therefore, by using Condition [A1], we obtain∥∥PB[s−ε,s] [C] − P [C]

∥∥
L1(P )

≤ a−1eaε−a(t−s)‖C‖∞. ut
As stated in Remark3, the approach taken here is the “local approach”. To reduce
the estimate of the characteristic function ofT −1/2ZT into those over short time
intervals, we will later use the following lemma.

Lemma 2. Let(�,F, P )be a probability space, and{BI ; I ⊂ R+} an increasing
family of subσ -fields ofF, i.e.,BI ⊂ BJ if I ⊂ J .
(1) Letu ≥ ε. Suppose that

PB[0,u] [g] = PB′
[u−ε,u]

[g]

for anyg ∈ BB[u,∞), whereB′
[u−ε,u] is a subσ -field ofB[u−ε,u] . Then forf ∈

BB[0,u] andg ∈ BB[u,∞),

PB[u−ε,u] [fg] = PB[u−ε,u] [f ] · PB′
[u−ε,u]

[g] .

In particular,

PB′
[u−ε,u]

[fg] = PB′
[u−ε,u]

[f ] · PB′
[u−ε,u]

[g] .
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(2) Let ε ≤ u ≤ v − ε,and letI = [u − ε, u] andJ = [v − ε, v]. Suppose that
B′

[u−ε,u] ⊂ B[u−ε,u] andB′
[v−ε,v] ⊂ B[v−ε,v] are subσ -fields, and that

PB[0,s] [g
′] = PB′

[s−ε,s] [g
′]

for all g′ ∈ BB[s,∞), s = u, v. Then, forf ∈ BB[0,u] , g ∈ BB[u,v] and
h ∈ BB[v,∞),

a) PB′
I∨B′

J
[f ] = PB′

I
[f ] andPB′

I∨B′
J
[h] = PB′

J
[h];

b) PB′
I∨B′

J
[f h] = PB′

I∨B′
J
[f ]PB′

I∨B′
J
[h] = PB′

I
[f ]PB′

J
[h];

c) PB[0,u]∨B[v,∞)
[g] = PB[0,u]∨B[v,∞)

[
PB′

I∨B′
J

[g]
]
, or equivalentlyP [fgh] =

P [fPB′
I∨B′

J
[g]h].

Proof. (1) By assumption, one hasPB[0,u] [fg] = fPB′
[u−ε,u]

[g]. The operator
PB[u−ε,u] yields the result.

(2) For simplicity, we will usePI for PB′
I
, PJ for PB′

J
andPI∨J for PB′

I∨B′
J
,

respectively.

(a) As for the second part,PI∨J [h] = PI∨J
[
PB[0,v] [h]

] = PJ [h]. Next, for all
i ∈ BB′

I andj ∈ BB′
J , (1) implies thatPI [f ij ] = iPI [f ]PI [j ] = PI [ijPI [f ]],

and hence thatP [ijf ] = P [ijPI [f ]], and we obtained the first part.

(b) Fori, j given above,

P [ijPI∨J [f ] PI∨J [h]] = P [PI∨J [PI∨J [f ]hij ]]

= P [ijPI [f ]h]

= P [PI [f i]hj ]

= P [PI [f i]PI [hj ]]

= P [PI [f ihj ]] (by (1))

= P [ijf h] .

Consequently, we have the desired result.

(c) By assumption, we see thatPI [gh] = PI [gPB[0,v] [h]] = PI [gPJ [h]] =
PI [PI∨J [g]PJ [h]]. This together with (1) and (2b) implies that

P [fgh] = P [PI [f ]PI [gh]]

= P [PI [f ]PI∨J [g]PJ [h]]

= P [PI∨J [f h]PI∨J [g]]

= P [f hPI∨J [g]]

= P
[
f hPB[0,u]∨B[v,∞)

[PI∨J [g]]
]
,

which completes the proof. ut



472 S. Kusuoka, N. Yoshida

Proof of Theorem 1. Let F denote any functional taking the form of (4). Let
Bj = BIj ∨ BJj , and gj = PBj

[eiu·Zj ψj ]. We see that‖0Lj
(F, F )‖1 ≤

2‖F‖2‖LjF‖2 = 0 and hence|0Lj
(F, Zkj )| ≤ 0Lj

(F, F )1/20Lj
(Zkj , Z

k
j )

1/2

= 0; therefore,0Lj
(F, Zkj ) = 0. WhenS1[ψj ;Zj ] ⊂ D

Lj

2,∞−,

iukP [eiu·Zj ψjF ] = P [eiu·ZjJZj
k (ψjF )] ,

where

J
Zj
k (ψjF ) = −

d∑
k′=1

{
21−1

Zj
ψjFσ

Zj
[k,k′]LjZ

k′
j

+F0Lj

(
1−1
Zj
ψjσ

Zj
[k,k′], Z

k′
j

)}
= Gj,kF (say) .

Therefore,

|u||P [gjF ]| ≤
d∑
k=1

‖Gj,kF‖L1(�,B[u(j)−ε,v(j)] ,P );

since the family ofF ’s is dense inLp(�,Bj , P ), p > 1,

‖gj‖q ≤ |u|−1
d∑
k=1

‖Gj,k‖q

for anyq > 1.
Choose a smooth functionφ : Rd → [0,1] so thatφ(x) = 1 if |x| ≤ 1/2, and

φ(x) = 0 if |x| ≥ 1. Letβ be a positive constant withβ < 1/2. Define a functional
9j depending onT by 9j = ψjφ(Zj/T

β), and letZ∗
j = Zjφ(Zj/(2T β)) −

P [Zjφ(Zj/(2T β))]. Since∪j,T S1,j is bounded inLp(P ), p > 1, we obtain for
gj = PBj

[eiu·Zj9j ],

sup
j

P
[∣∣∣PBj

[
e
iu·Z∗

j

]∣∣∣] ≤ sup
j

P
[∣∣gj ∣∣]+ sup

j

P
[∣∣∣PBj

[
e
iu·Z∗

j
(
1 −9j

)]∣∣∣]
≤ C|u|−1 + sup

j

‖1 −9j‖1

≤ C|u|−1 + sup
j

‖1 − ψj‖1 + sup
j

P [|Zj | > T β/2]

≤ C|u|−1 + 1 − inf
j,T
P [ψj ] + CT −β ,

whereC is a constant independent ofu andT . Consequently,

sup
j=1,···,n(T )
T≥T0

P
[∣∣∣PBj

[
e
iu·Z∗

j

]∣∣∣] ≤ c (8)

for |u| ≥ b, wherec < 1, b > 0 andT0 > 0 are some constants.
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Fix e′ > 0 arbitrarily, and let 0< ν1 < e′ ∧ 1. By assumption, we can find
j1, j2, . . . , jn′ ∈ {1,2, . . . , n(T )} such that for largeT , v(jl)+ T ν1 ≤ u(jl+1) for
l = 1,2, . . . , n′, and thatn′ ≥ BT 1−ν1, whereB is a positive constant depending
only onτ , lim inf T→∞ n(T )/T andτ1 := supj,T {v(j)−u(j)}. Indeed, putj1 = 1
andji = min{j ; u(j) ≥ v(ji−1)+ T ν1} as far as it can be defined. Then one has

n′(T ν1 + 2τ1) ≥ n(T )τ ,

which yields that for someB > 0 and largeT , n′ ≥ BT 1−ν1.
Divide each one of the intervals [0, u(j1)], [v(j1), u(j2)], . . . , [v(jn′), T ] into

subintervals with lengthτ except for the last interval with length at mostτ , and call
themI0,1, . . . , I0,k0; I1,1, . . . , I1,k1; . . .; In′,1, . . . , In′,kn′ . Let

Z∗
Il,k

= ZIl,kφ(ZIl,k /(2T
β))− P [ZIl,kφ(ZIl,k /(2T

β))] ,

whereZI denotesZst for interval I = [s, t ]. Put I0,0 = [0] and defineZ∗
I0,0

similarly forZI0,0 = Z0. Line up the intervalsIl,k and [u(jl), v(jl)], and call them
T1, T2, . . . , TS from the left. Fork ∈ Z+, choose anyk numberss1, . . . , sk from
C := {1,2, . . . , S} with replacement. Let

C1 = {n ∈ C : Tn = [u(jl), v(jl)] for somejl andTn 6∈ {Ts1, . . . , Tsk }} ,
and letB′

l = B[min Tl−ε,minTl ] ∨ B[maxTl−ε,maxTl ] . We will estimate

E[Z∗(i1)
Ts1

· · ·Z∗(ik)
Tsk

eiu·Z̃
∗
T ] ,

whereZ̃∗
T = Z∗

T /
√
T , Z∗

T = ∑S
s=1Z

∗
Ts

, andi1, . . . , ik ∈ {1, . . . , d}.
ForB[min Tl−ε,maxTl ] -measurable random variablesAl , l ∈ C1 = {l1, . . . , l#C1},
with ‖Al‖∞ ≤ 1, we see from Lemma 1 that

|P [5l≤liAl ]5l≥li+1P [Al ] − P [5l≤li−1Al ]5l≥li P [Al ]|
= |P [5l≤li−1Al{PB[0,maxTli−1

] [Ali ] − P [Ali ]}]5l≥li+1P [Al ]|
≤ ‖PB[maxTli−1

−ε,maxTli−1
] [Ali ] − P [Ali ]‖1

≤ a−1e−a(T
ν1−ε)

for largeT . It follows from Lemma 2 that for somea > 0,∣∣∣P [Z∗(i1)
Ts1

· · ·Z∗(ik)
Tsk

eiu·Z̃
∗
T ]
∣∣∣ =

∣∣∣∣P [Z∗(i1)
Ts1

· · ·Z∗(ik)
Tsk

5l∈C−C1e
iu·Z̃∗

Tl

×5l∈C1PB′
l

[
e
iu·Z̃∗

Tl

]]∣∣∣∣ (Z̃∗
Tl

= Z∗
Tl
/
√
T
)

≤ 4kT kβP [5l∈C1|PB′
l
[e
iu·Z̃∗

Tl ]|]
≤ 4kT kβ

{
5l∈C1P [|PB′

l
[e
iu·Z̃∗

Tl ]|] + n′a−1e−a(T
ν1−ε)

}
≤ 4kT kβ(max{e−b0|u|2/T , c})n′−k

+4kT kβn′a−1e−a(T
ν1−ε)

≤ δ−1cT
(1−ν1)/2 + δ−1e−T

e′−ν1 + δ−1e−T
δ
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if |u| > T e
′
andT > T0, whereb0, T0 andδ are some positive values. Here, in the

third inequality, we used Petrov’s lemma (Lemma (3.2) of Götze and Hipp [7]).
PutHT (u) = P [exp(iu ·T −1/2Z∗

T )]. From the above inequality, it follows that
for every positivec1, c2, e andE, there exists a positive constantδ such that

|DαHT (u)| ≤ δ−1e−T
δ

(9)

for u ∈ Rd , c1T
e ≤ |u| ≤ c2T

E , andα ∈ Zd+, |α| ≤ k, whereDα = D
α1
1 · · ·Dαdd ,

Di = ∂/∂ui , with α = (α1, . . . , αd).
Thus the validity of the asymptotic expansion follows from a continuous ver-

sion of Theorem 2.8 of G̈otze and Hipp [7]. In fact, their Condition (2.3) can be
immediately checked, and Lemma 1 implies Condition (2.4): for anye ∈ B[0,s]
andf ∈ B[t,∞) with ‖e‖∞ ≤ 1 and‖f ‖∞ ≤ 1,

|P [ef ] − P [e]P [f ]| = ∣∣P [ePB[0,s] [f − P [f ]]
]∣∣

≤ ∥∥PB[0,s] [f − P [f ]]
∥∥
L1(P )

= ∥∥PB[s−ε,s] [f − P [f ]]
∥∥
L1(P )

(the proof of Lemma 1)

≤ a−1 exp(−a (t − s)) .

Therefore, it is possible to obtain the same estimate as Lemma (3.33) of Götze and
Hipp [7]. Instead of Conditions (2.5) and (2.6) in Götze and Hipp [7], under the
present assumptions, we have already had the estimate (9) corresponding to Lemma
(3.43) of G̈otze and Hipp [7]. We then obtain the desired result as they did so from
Lemmas (3.33) and (3.43). Jensen [9] gave a good exposition of Götze and Hipp’s
work. ut

Proof of Theorem 2.We assume thatS1[ψj ;Zj ] ⊂ D
Lj
2,∞−, in particular,1−1

Zj
ψj

∈ D
Lj
2,∞−, 1Zj

= detσZj
. The matrix(γ mnYj

) denotes the inverse matrix ofσYj
.

Let φ ∈ DLj2,∞− and assume thatφ detσ−1
Yj

∈ DLj2,∞−. Then

φ0Lj (Zj,l, F ) =
Mj∑

m,n=1

φ0Lj (Zj,l,Yj,m)γ
mn
Yj
0Lj (Yj,n, F ) (10)

for functionalsF taking the form of

F = f (Xuk −Xuk−1, Yuk : 1 ≤ k ≤ m1)g(Yj )

for f ∈ C∞
B (R

(d1+d2)m1) andg ∈ C∞
B (R

Mj ). The integration-by-parts formula
yields

∑
p

iupP [eiu·Zj σpqZj φF ] = P [eiu·Zj {−2φFLjZj,q − 0Lj (φF,Zj,q)}] .

(11)
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Since forA,B,C ∈ DLj2,∞−,

P [A0Lj (B,C)] = P [{−0Lj (A,B)− 2ALjB}C] ,

we obtain ∑
p

iupP [eiu·Zj 0Lj (Yj,k, Zj,p)γ
kl
Yj
0Lj (Yj,l , Zj,q)φF ]

= P [0Lj (Yj,k, e
iu·Zj )γ klYj

0Lj (Yj,l , Zj,q)φF ]

= P [eiu·Zj {−0Lj (Yj,k, γ
kl
Yj
0Lj (Yj,l , Zj,q)φF )

−2γ klYj
0Lj (Yj,l , Zj,q)φFLjYj,k}] . (12)

On {φ > 0}, defineσ̄Zj by

σ̄
pq
Zj

= σ
pq
Zj

−
∑
k,l

0Lj (Yj,k, Zj,p)γ
kl
Yj
0Lj (Yj,l , Zj,q) .

It follows from (11), (12) and (10) that∑
p

iupP [eiu·Zj σ̄ pqZj φF ] = P [eiu·Zj9qj (φ)F ] , (13)

where

9
q
j (φ) =

∑
k,l

0Lj (Yj,k, γ
kl
Yj
0Lj (Yj,l , Zj,q)φ)− 0Lj (φ, Zj,q)

−2φLjZj,q + 2
∑
k,l

γ klYj
0(Yj,l , Zj,q)φLjYj,k .

Since det̄σ−1
Zj

= detσYj
· detσ−1

Zj
, φ′ := (detσ̄Zj )

−1σ̄j,[q,s]ψj ∈ DLj2,∞−, where

σ̄j,[q,s] is the(q, s)-cofactor ofσ̄Zj , andφ′ detσ−1
Yj

∈ DLj2,∞−. Substitutingφ′ into
φ of (13), and summing up, we obtain

iupP [eiu·Zj ψjF ] = P [eiu·ZjGj,pF ] ,

where

Gj,p =
∑
q

9
q
j ((detσ̄Zj )

−1σ̄j,[q,p]ψj ) .

Takinggj = PBIj
∨B′

Jj

[eiu·Zj9j ] and with the help of Lemma 2, it is possible to

obtain the result in the same fashion as Theorem 1. ut
Remark 4. ForLj , define another operator(Lj ,D(Lj )) by

D(Lj ) = {F : F ∈ D(Lj ), 0Lj (F, F ) ∈ D(Lj )}
and

LjF =LjF−
Mj∑
k,l=1

1

2
0Lj

(
0Lj

(
Yj,k, F

)
γ klYj

,Yj,l

)
−
Mj∑
k,l=1

0Lj
(
Yj,k, F

)
γ klYj

LjYj,l .
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Suppose thatYj is nondegenerate andYj,l , σ
kl
Yj

∈ D(Lj ). Then(Lj ,D(Lj )) is
a Malliavin operatorif D(Lj ) generatesB[u(j)−ε,v(j)] . It is then also possible to
obtain the same result as in Theorem 1 as a corollary of it.

Proof of Theorem 3.
Step 1.Define a stochastic flowX∗(t, x) by the stochastic differential equation

dX∗(t, x) =
r∑
i=1

Vi(X
∗(t, x)) ◦ dwit + Ṽ0(X

∗(t, x))dt

X∗(0, x) = x .

Under Condition [C1],X∗(s, x) is nondegenerate uniformly in every compact set
in (0,∞) × Rd .

It follows from Condition [C1] that there existsp ∈ C∞ (
(0,∞) × Rd × Rd

)
such that

Ptf (x) =
∫

Rd
p(t, x, y)f (y)dy

for f ∈ CB(Rd; R). Put

P ∗
t f (x) = E

[
exp

(∫ t

0
U0
(
X∗ (s, x)

)
ds

)
f (X∗(t, x))

]

for f ∈ CB(Rd; R). Then, Feynman-Kac formula says that forut (x) = P ∗
t f (x),

∂ut

∂t
= L∗ut , u0 = f .

Since forf, g ∈ CK(Rd; R), with ut = P ∗
t f andvt = Ptg,∫

d

dt
(utvT−t )dx =

∫
(vT−tL∗ut − utLvT−t )dx = 0 ,

(P ∗
t f, g)L2(dx) = (f, Ptg)L2(dx), and hence we see that

P ∗
t f (x) =

∫
Rd
p(t, y, x)f (y)dy

for f ∈ CB(Rd; R).

Step 2.Let

ε =
(

−1

4
lim sup
|x|→∞

(
ρ−1L∗ρ

)
(x)

)
∧ 1

and letU1(x) = −ρ−1(x)L∗ρ(x). Then there existsR > 0 such thatU1(x) ≥ 2ε
if |x| > R, and(L∗ + U1)ρ = 0. The Feynman-Kac formula again yields

ρ(x) = E

[
exp

(∫ t

0
(U0 + U1)

(
X∗ (s, x)

)
ds

)
ρ
(
X∗ (t, x)

)]
. (14)
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Take a functionϕ ∈ C∞
K (R

d) satisfying that 0≤ ϕ ≤ 1 and thatϕ(x) = 1 if
|x| ≤ R. LetU2(x) = ϕ(x)(U1(x)− 2ε) ∈ C∞

K (R
d), then

U1(x) = 2ε + (1 − ϕ(x))(U1(x)− 2ε)+ U2(x)

≥ 2ε + U2(x) (15)

for x ∈ Rd , |x| > R. Therefore, it follows from (14) and (15) that

ρ(x) ≥ E

[
exp

(
2εt +

∫ t

0
(U0 + U2)

(
X∗ (s, x)

)
ds

)
ρ
(
X∗ (s, x)

)]
. (16)

DefineQt : CB(Rd; R) → CB(Rd; R) by

Qtf (x) = ρ(x)−1E
[
exp

(∫ t

0
(U0 + U2)

(
X∗ (s, x)

)
ds

)
(ρf )

(
X∗ (t, x)

)]
.

(17)

Then

Qt ≥ 0 and Qt1 ≤ e−2εt (18)

for t ∈ R+.
PutTs = ρ−1P ∗

s ρ, s ∈ R+. We know that

sup
s∈[s0,s1]
x∈C
y∈Rd

|∇j
x p(s, y, x)| < ∞ (19)

for any 0< s0 < s1 and compactC ⊂ Rd . [Let Gsx = exp(
∫ s

0 U0(X
∗(u, x))du).

Under [C1], for anyk ∈ N, p(s, y, x) can be expressed as

p(s, y, x) = E[Gsxδy(X
∗(s, x))]

= E[hk,y(X
∗(s, x))9k(Gsx;X∗(s, x))] ,

wherehk,y : Rd → R ∈ CkB(Rd) with uniformly (in y ∈ Rd ) bounded derivatives
up tok-th order, and9k(Gsx;X∗(s, x)) are certainLp(P )-bounded uniformly in
(s, x) over every compact set in(0,∞)× Rd . LetS = [s0, s1] × Rd × C. It is easy
to show that sup(s,y,x)∈S |y|i |∇j

y∇ l
x∂
m
s p(s, y, x)| < ∞ by using∂sp(s, y, x) =

Lyp(s, y, x). ] Consequently, for every bounded setB ⊂ CB(Rd), f ∈ Ts(B)

are equi-continuous on each compact set, and henceCs := U2ρ
−1P ∗

s ρ is compact
sinceU2ρ

−1 ∈ C∞
K (R

d). Moreover,Cs(B) is bounded inC∞
B (R

d) equipped with
seminorms‖∇j f ‖∞, and suppf ⊂ suppU2 for all f ∈ Cs(B).

Clearly,‖Ts‖op ≤ exp(s(‖U2‖∞−2ε)), and‖Cs‖op ≤ ‖U2‖∞ exp(s(‖U2‖∞−
2ε)), where‖ · ‖op is the operator norm onL(CB(Rd) → CB(Rd)). Again with
(19), we see thatC : (0,∞) → L(CB(Rd) → CB(Rd)) is continuous with respect
to ‖ · ‖op.
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LetB ′ be any bounded set inC2
B(R

d) such that suppf ⊂ suppU2 for allf ∈ B ′.
Then, forf ∈ B ′ and 0< s < t ,

‖Tsf − Ttf ‖∞ = ‖ρ−1
∫
(p(s, y, ·)− p(t, y, ·)) ρ(y)f (y)dy‖∞

= ‖ρ−1
∫ t

s

du

∫
∂p

∂u
(u, y, ·)ρ(y)f (y)dy‖∞

= ‖ρ−1
∫ t

s

du

∫
p(u, y, ·)L∗(ρf )(y)dy‖∞

≤
∫ t

s

du‖Tu(L∗(ρf )/ρ)‖∞

≤ (t − s)exp(t‖U2‖∞)‖L∗(ρf )/ρ‖∞ .

Therefore,

sup
f∈B ′

‖Tsf − Ttf ‖∞ ≤ CB ′ exp(t‖U2‖∞)(t − s) . (20)

Forn ∈ N ands0, s1, . . . , sn ∈ (0,∞), defineKn(s0, s1, . . . , sn) by

Kn(s0, s1, . . . , sn) = TsnCsn−1 · · ·Cs0 .
Then‖Kn(s0, s1, . . . , sn)‖op ≤ cn1e

(n+1)c2 max{s0,s1,...,sn} for some constantsc1, c2,
and the continuity ofCs and (20) implies thatKn : (0,∞)n+1 → L(CB(Rd) →
CB(Rd)) is continuous with respect to the operator norm‖ ·‖op. The Riemann sum
approximation shows that

K̃n(s0) :=
∫ s0

0
ds1

∫ s1

0
ds2 . . .

∫ sn−1

0
dsnKn(s0 − s1, s1 − s2, · · · , sn−1 − sn, sn)

is a compact operator fromCB(Rd) intoCB(Rd), and that

‖K̃n(t)‖op ≤ cn1e
(n+1)c2t

n!
tn .

After all,Kt := ∑∞
n=1 K̃n(t) is a compact operator fromCB(Rd) intoCB(Rd).

From the definition ofQt , we obtain

Qt = Tt +Kt .

In fact, forf ∈ CB(Rd),

Qtf (x) = Ttf (x)+ ρ−1(x)

∞∑
n=1

1

n!
E
[
exp

(∫ t

0
U0
(
X∗ (s, x)

)
ds

)
(∫ t

0
U2
(
X∗ (s, x)

)
ds

)n
(ρf )

(
X∗ (t, x)

)]

= Ttf (x)+
∞∑
n=1

∫ t

0
ds1

∫ s1

0
ds2 · · ·

∫ sn−1

0
dsn

TsnCsn−1−sn · · ·Cs1−s2Ct−s1f (x)
= Ttf (x)+Ktf (x) .
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Step 3.Hereafter, the operatorsQt , Tt , Kt are regarded as operators onX =
CB(Rd; C). Let T = T1 = Q1 − K1 = ρ−1P ∗

1 ρ, thenT is a bounded linear
operator onX and‖T +K1‖op ≤ e−2ε . In the same way as the proof of VIII 8.2,
p. 709, of Dunford-Schwartz [5], it is possible to prove

Claim 1. σ(T ) ∩ {z ∈ C; |z| ≥ e−ε} is a finite set, and the dimension of the range
R(E(z; T )) of E(z; T ) is finite if z ∈ σ(T ), |z| ≥ e−ε .

Claim 2. σ(T ) ∩ {z ∈ C; |z| ≥ 1} = {1}.
(proof) SinceT nf = ρ−1P ∗

n ρf for f ∈ CB(Rd),∫
Rd
(T nf )(x)ρ(x)dx =

∫
Rd
P ∗
n (ρf )(x)dx

=
∫

Rd
ρ(x)f (x)dx .

Let z ∈ σ(T ) ∩ {z ∈ C; |z| ≥ 1}. The subspaceXz := E(z; T )X of X is finite-
dimensional (Claim 1) andXz is invariant byT ; therefore, there exists a nonzero
vectorf ∈ Xz for whichTf = λf for someλ ∈ C. By using the Dunford-integral
representation ofE(z; T ), we see that forf = E(z; T )g,

0 = (λ− T )f = (λ− T )E(z; T )g = (λ− z)E(z; T )g = (λ− z)f ,

and henceλ = z, after all,Tf = zf . Since

T (|f |) ≥ |Tf | = |z||f | , (21)∫
Rd
T (|f |)(x)ρ(x)dx ≥ |z|

∫
Rd

|f (x)|ρ(x)dx

= |z|
∫

Rd
T (|f |)(x)ρ(x)dx ,

and hence|z| ≤ 1. If |z| = 1, thenT (|f |) = |Tf |, which implies that for some
constantc = cf ∈ C, f (x) = c|f (x)| for all x ∈ Rd since suppP ∗

1 (x, ·) = Rd .

zc|f | = zf = Tf = cT (|f |) = c|Tf | = c|f | ;
thereforez = 1. Thus we obtain

σ(T ) ∩ {z ∈ C : |z| ≥ 1} ⊂ {1} .
If σ(T )∩{z ∈ C; |z| ≥ 1} were void, because of Claim 1,σ(T ) ⊂ {z ∈ C; |z| ≤ r}
for somer < 1, and

lim sup
n→∞

‖T n‖1/n
op ≤ r .

In particular,‖T n1‖∞ → 0 asn → ∞. On the other hand,∫
Rd
(T n1)(x)ρ(x)dx =

∫
Rd
ρ(x)dx = 1 ,

which is a contradiction.
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Claim 3. The dimension ofX1 is one.
(proof) SinceX1 is finite dimensional, it follows from the equivalence of norms
that there exists a constantC such that

‖f ‖∞ ≤ C‖f ‖L1(ρdx), f ∈ X1 .

As

‖T nf ‖∞ ≤ C‖T n|f |‖L1(ρdx) = C‖|f |‖L1(ρdx)

for anyf ∈ X1 andn ∈ N. Thus we see that

lim
n→∞

1

n
‖T nf ‖∞ = 0 .

From Theorem 3, VIII. 8, Dunford-Schwartz [5] p. 711 (or the proof of it), and
Claim 2, the spectral point 1 is a simple pole. Moreover, Theorem 18, VII. 3,
Dunford-Schwartz [5] p. 573, yields that

Tf = f for all f ∈ X1 .

Clearly, for anyf ∈ X1,

‖f ‖L1(ρdx) = ‖T n|f |‖L1(ρdx) ≥ ‖T nf ‖L1(ρdx) = ‖f ‖L1(ρdx) ,

and soT n|f | = |T nf |, therefore,f = cf |f | for some constantcf ∈ C. This
implies thatdim(X1) = 1. Indeed, for anyf, g ∈ X1 and anyx, y ∈ Rd ,
(f (x) + ug(x))/(f (y) + ug(y)) must be positive for anyu ∈ R, but this means
thatf (x)g(y)− f (y)g(x) = 0.

Step 4.Now we return to the proof of Theorem 3. In view of the last part of the
proof of Claim 3, there existsu ∈ CB(Rd) such thatu > 0,

∫
Rd u(x)ρ(x)dx = 1

andT u = u. LetE1 = E(1; T ), X̃ = {x ∈ X;E1x = 0}, andT̃ = T |X̃; note that

T̃ X̃ ⊂ X̃. PutG(ζ) = ζ(1− g(ζ )), whereg(ζ ) is an analytic function nearσ(T ),
and it equals one near 1 and zero otherwise. By the spectral mapping theorem,
σ(T (1 − E1)) = G(σ(T )). SinceG(1) = 0,G(σ(T )) ⊂ {ζ ; |ζ | < r} for some
r < 1. From the fact that forf ∈ X̃, T̃ nf = T nf = (T (1 −E1))

nf , it holds that

lim sup
n→∞

‖T̃ n‖1/n
op < r .

Forf, g ∈ CB(Rd),∣∣∣∫
Rd
(Png)(x)f (x)ρ(x)dx − E1(f )

∫
Rd
g(x)ρ(x)u(x)dx

∣∣∣
=
∣∣∣∫

Rd
(T nf )(x)g(x)ρ(x)dx − E1(f )

∫
Rd
g(x)ρ(x)u(x)dx

∣∣∣
≤ ‖T n − E1‖op‖f ‖∞

∫
Rd

|g(x)ρ(x)|dx .
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Define a probability measureµ byµ(dx) = ρ(x)u(x)dx. With T n−E1 = T n(1−
E1), we obtain an estimate∣∣∣∫

Rd
(Png)(x)f (x)ρ(x)dx − E1(f )

∫
Rd
g(x)µ(dx)

∣∣∣
≤ Crn‖f ‖∞‖g‖L1(ρdx) .

In particular, substitutingg = 1 and taking limit, we have

E1(f ) =
∫

Rd
f (x)ρ(x)dx .

Hence, it follows from the duality that∥∥∥∥Png −
∫

Rd
g(x)µ(dx)

∥∥∥∥
L1(ρdx)

≤ Crn‖g‖L1(ρdx) (22)

for g ∈ CB(Rd).
For any t ∈ R+, Ttu = u. [In the same argument, for every positive irra-

tional numberα, there exists auα ∈ CB(Rd) such thatTαuα = uα. It is easy to
show thatuα = u by using (22) and a similar inequality and the continuity of the
semigroup{Tt }. Thenut = u also follows from the continuity.] In particular,u is
smooth. Finally, the semigroup propertyPt = P[t ]Pt−[t ] completes the proof of
Theorem 3. ut
Proof of Theorem 4.Condition [A3′] follows from Condition [C3] by the same ar-
gument as Example 2′; therefore, the assertion is just a corollary of Theorem 2 under
Condition [A1]. We shall verify [A1] under Conditions [C1] and [C2] together with
the stationarity. First, note that Theorem 3 (3) holds for any bounded measurable
functionf . Let f ∈ BBX

[t,∞). (The symbol ‘X’ here takes the place of ‘Y ’ in the

previous sections.) Theorem 3 (2) says thatc := supx∈Rd ρ(x)
−1dµ(x)/dx < ∞.

For BX
[t ] -measurable functionPBX

[t ]
[f ], there exists a Borel measurable function

Ht : Rd → R such thatPBX
[t ]

[f ] = Ht(Xt ) P -a.s. and‖Ht‖∞ ≤ ‖f ‖∞. By using

the stationarity ofXt and the Markov propertyPBX
[t ]

[f ] = PBX
[0,t ]

[f ] P -a.s., we

see that∥∥∥PBX
[s]

[f ] − P [f ]
∥∥∥
L1(P )

=
∥∥∥PBX

[s]
[Ht (Xt )] − P [Ht (Xt )]

∥∥∥
L1(P )

= ‖Pt−sHt (Xs)− P [Ht(Xt )]‖L1(P )

=
∫

Rd
|Pt−sHt (x)− µ[Ht ]| dµ(x)

≤ c ‖Pt−sHt − µ[Ht ]‖L1(ρdx)

≤ cCe−λ(t−s) ‖Ht‖L1(ρdx)

≤ cCe−λ(t−s) ‖f ‖∞ .

This completes the proof. ut
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For convenience of reference, we will give:

Proof of Theorem 5. For z = (z(0), z(1)), defineST (z) by

ST (z) = z(0) +
k∑
j=1

T −j/2Qj(z
(0), z(1)) .

Let MT = {z ∈ Rd ||z| < T α}. Takeα > 0 sufficiently small so that for some
constantC,

T −j/2|Q(i)
j |(T α, T α) ≤ CT −α

for j = 1, . . . , k, T > 1, where|Q(i)
j | denotes the polynomial with coefficients

of Q(i)
j replaced by their absolute values. The Bhattacharya-Ghosh map ([1]) is

defined by

y =
[
y(0)

y(1)

]
=
[
ST (z)

z(1)

]
.

Let f ∈ E(M, γ ). Applying Theorem 2 tof ◦ ST (·)1{·∈MT } and using Condition
[A2], we see that, withd9T,k(z) = pk,T dz,

P [f (ST )] =
∫
dzf (ST (z))1{z∈MT }pk,T (z)+ o(T −(k+δ)/2)

+O(ω(1MT
f ◦ ST , T −K)) , (23)

whereδ is a positive constant and the small o-term depends onE(M, γ ). By def-
inition, there exists a constantC1 such thatz ∈ MT implies |y| ≤ C1T

α. From
the non-degeneracy of the Jacobian, it is easy to see that the mappingz → y is
one-to-one onMT . Consequently, the first term on the right-hand side of (23) is
equal to

∫
dyf (y(0))1{z(y)∈MT ,|y|≤C1T

α}
∣∣∣ ∂z∂y (y)

∣∣∣pk,T (z(y)) (24)

PutAT (z) = y(z) − z, and letz∗1 = y − AT (y), z∗2 = y − AT (y − AT (y)),
z∗3 = y − AT (y − AT (y − AT (y))), . . . It is then easy to obtain

|z∗j − z(y)| ≤ T −(j+1)/2 × (a polynomial of|z(y)|)
and similar estimates for the gradients. Expanding|∂z∗k/∂y(y)|pk,T (z∗k(y)), we
have

∣∣∣∣∂z∗k∂y (y)
∣∣∣∣pk,T (z∗k(y)) = φ(y; 0, 6ZT )

(
1 +

k∑
i=1

T −i/2q∗
i,k,T (y)

)

+T −(k+1)/2Rk,T (y) ,
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where6ZT = Cov(Z̄T ), q∗
i,k,T are smooth functions of at most polynomial growth

order and

|Rk,T (y)| ≤ e−c0|y|
2 × (a polynomial of|y|)

for some positive constantc0. Since for smallc1 > 0, z(y) ∈ MT if |y| < c1T
α, it

follows from (24) that, takingδ sufficiently small if necessary,

P [f (ST )] =
∫
dyf (y(0))φ(y; 0, 6ZT )

(
1 +

k∑
i=1

T −i/2q∗
i,k,T (y)

)
+ o(T −(k+δ)/2)

+O(ω(1MT
f ◦ ST , T −K))

=
∫
dy(0)f (y(0))

k∑
i=0

T −i/2qi,k,T (y(0))+ o(T −(k+δ)/2)

+O(ω(1MT
f ◦ ST , T −K)) ,

whereqi,k,T are given by

k∑
i=0

T −i/2qi,k,T (y(0)) =
∫
dy(1)φ(y; 0, 6ZT )

(
1 +

k∑
i=1

T −i/2q∗
i,k,T (y)

)
.

This completes the proof since one can estimate the last term on the right-hand side
with ω(1MT

, T −K) andω(f, T −K), first taking a different6o if necessary. ut
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