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Abstract The stochastic exponential Zt = exp{Mt − M0 − (1/2)〈M, M〉t } of a
continuous local martingale M is itself a continuous local martingale. We give a nec-
essary and sufficient condition for the process Z to be a true martingale in the case
where Mt = ∫ t

0 b(Yu) dWu and Y is a one-dimensional diffusion driven by a Brownian
motion W . Furthermore, we provide a necessary and sufficient condition for Z to be a
uniformly integrable martingale in the same setting. These conditions are determinis-
tic and expressed only in terms of the function b and the drift and diffusion coefficients
of Y . As an application we provide a deterministic criterion for the absence of bubbles
in a one-dimensional setting.
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2 A. Mijatović, M. Urusov

1 Introduction

A random process that is a local martingale but does not satisfy the martingale property
is known as a strict local martingale (this terminology was introduced by Elworthy
et al. [14]). The question of whether a local martingale is a strict local martingale or
a true martingale is of a particular interest for the stochastic exponential

Zt := E(M)t = exp

{

Mt − M0 − 1

2
〈M, M〉t

}

(1)

of a continuous local martingale M because such a process Z is often used as a density
process for a (locally) absolutely continuous measure change. One can perform the
measure change only if Z is a martingale. The problem of finding convenient sufficient
conditions on M for Z to be a martingale has attracted significant interest in the lit-
erature. The criteria of Novikov and Kazamaki are particularly well-known. Novikov
[35] proved that the condition

E exp

{
1

2
〈M, M〉t

}

< ∞ ∀t ∈ [0,∞) (2)

guarantees that Z is a martingale. Kazamaki [27] showed that Z is a martingale pro-
vided

exp

{
1

2
M

}

is a submartingale. (3)

Let us note that (3) is equivalent to the condition E exp{(1/2)Mt } < ∞ for all t ∈
[0,∞) if M is a true martingale (not just a continuous local martingale as assumed
above). Novikov’s criterion is of narrower scope but often easier to apply. For improve-
ments on the criteria of Novikov and Kazamaki in the setting of Brownian motion see
e.g. Kramkov and Shiryaev [29], Cherny and Shiryaev [6] and the references therein. A
similar question in the exponential semimartingale framework, in particluar, for affine
processes, has also attracted attention in the literature (see e.g. Kallsen and Shiryaev
[25], Kallsen and Muhle-Karbe [24], Mayerhofer et al. [33] and the references therein).
For treatments of related questions of (local) absolute continuity of measures on fil-
tered spaces see e.g. Jacod and Shiryaev [21, Ch. III and IV] and Cheridito, Filipović,
and Yor [4]. While (2) and (3) are only sufficient conditions, Engelbert and Senf [18]
and, recently, Blei and Engelbert [2] provided necessary and sufficient conditions for
Z to be a martingale. In [18] the case of a general continuous local martingale M is
considered and the condition is given in terms of the time-change that turns M into a
(possibly stopped) Brownian motion. In [2] the case of a strong Markov continuous
local martingale M is studied and the deterministic criterion is expressed in terms of
the speed measure of M . In the recent papers of Kotani [28] and Hulley and Platen
[20] a related question is studied. These authors obtain necessary and sufficient con-
ditions for a one-dimensional regular strong Markov continuous local martingale to
be a martingale. For further literature review see e.g. the bibliographical notes in the
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On the martingale property 3

monographs Karatzas and Shreve [26, Ch. 3], Liptser and Shiryaev [31, Ch. 6], Protter
[37, Ch. III], and Revuz and Yor [38, Ch. VIII].

In the present paper we consider local martingales M of the form Mt=
∫ t

0 b(Yu)dWu ,
where Y is a one-dimensional diffusion driven by a Brownian motion W . Our main
results are necessary and sufficient conditions for Z to be a true martingale (The-
orem 2.1) and for Z to be a uniformly integrable martingale (Theorem 2.3). The
conditions are deterministic and expressed only in terms of the function b and the drift
and diffusion coefficients of Y .

Compared with the aforementioned result of [18], our criterion is of narrower
scope (Engelbert and Senf consider an arbitrary continuous local martingale M), but
our results are easier to apply when Mt = ∫ t

0 b(Yu) dWu , as the condition of Eng-
elbert and Senf is given in terms of the Dambis–Dubins–Schwarz Brownian motion
of M and the related time-change. The setting of the present paper differs from that
of [2,20,28] in that in our case the process Y possesses the strong Markov property
but both M = ∫ ·

0 b(Yu) dWu and Z = E(M) can well be non-Markov. As a simple
example, consider Y ≡ W and b(x) = I (x > 0). Then both M and Z have intervals
of constancy and therefore the knowledge of the trajectory’s past helps to predict the
future in the following way. Let us fix a time t and a position Mt (resp. Zt ). If M (resp.
Z ) is constant immediately before t , W has a negative excursion at time t , hence M
(resp. Z ) will be constant also immediately after t . Similarly, if M or Z is oscillating
immediately before t , then it will be oscillating also immediately after t . This implies
that M and Z are non-Markov.

We discuss the applications of Theorems 2.1 and 2.3 in specific situations by study-
ing several examples. There is evidence in the literature that in some settings the loss
of the martingale property of the stochastic exponential Z is related to some auxiliary
diffusion exiting its state space (see Karatzas and Shreve [26, Ch. 5, Ex. 5.38], Revuz
and Yor [38, Ch. IX, Ex. (2.10)], Sin [39], Carr et al. [3]). Such a statement turns out
to be true in the case where the diffusion Y does not exit its state space (see Corol-
lary 2.2) but fails in general (see Example 3.1). The loss of the martingale property
of Z is in our setting related only to the auxiliary diffusion exiting its state space at
a bad endpoint (this notion is defined in the next section). As another application of
Theorems 2.1 and 2.3, we obtain a deterministic necessary and sufficient condition
for the absence of bubbles in diffusion-based models.

The paper is structured as follows. In Sect. 2 we describe the setting and formulate
the main results, which are proved in Sect. 6. In Sect. 3 we illustrate the main results
by a complete study of two examples. Applications to financial bubbles are given in
Sect. 4. In Sect. 5 we recall the definition of separating time (see [7]) and formulate
the results about separating times that are used in the proofs in Sect. 6. Finally, in
the appendices we describe some facts about local times and behaviour of solutions
of SDEs with the coefficients satisfying the Engelbert–Schmidt conditions, which are
used in the paper.

2 Main results

We consider the state space J = (l, r), −∞ ≤ l < r ≤ ∞ and a J -valued diffusion
Y = (Yt )t∈[0,∞) on some filtered probability space (�,F , (Ft )t∈[0,∞), P) governed
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4 A. Mijatović, M. Urusov

by the SDE

dYt = μ(Yt ) dt + σ(Yt ) dWt , Y0 = x0 ∈ J, (4)

where W is an (Ft )-Brownian motion and μ, σ : J → R are Borel functions satisfying
the Engelbert–Schmidt conditions

σ(x) 
= 0 ∀x ∈ J, (5)
1

σ 2 ,
μ

σ 2 ∈ L1
loc(J ). (6)

L1
loc(J ) denotes the class of locally integrable functions, i.e. the functions J → R

that are integrable on compact subsets of J . Under conditions (5) and (6) SDE (4)
has a unique in law weak solution that possibly exits its state space J (see [16,17],
or [26, Ch. 5, Th. 5.15]). We denote the exit time of Y by ζ . In the case Y does exit
its state space, i.e. P(ζ < ∞) > 0, we need to specify the behaviour of Y after ζ . In
what follows we assume that the solution Y on the set {ζ < ∞} stays after ζ at the
boundary point of J at which it exits, i.e. l and r become absorbing boundaries. We
will use the following terminology:

Y exits (the state space J ) at r means P(ζ < ∞, lim
t↑ζ

Yt = r) > 0;
Y exits (the state space J ) at l is understood in an analogous way.

The Engelbert–Schmidt conditions are reasonable weak assumptions. For instance,
they are satisfied if μ is locally bounded on J and σ is locally bounded away from
zero on J . Finally, let us note that we assume neither that (Ft ) is generated by W nor
that (Ft ) is generated by Y .

In this section we consider the stochastic exponential

Zt = exp

⎧
⎨

⎩

t∧ζ∫

0

b(Yu) dWu − 1

2

t∧ζ∫

0

b2(Yu) du

⎫
⎬

⎭
, t ∈ [0,∞), (7)

where we set Zt := 0 for t ≥ ζ on {ζ < ∞,
∫ ζ

0 b2(Yu) du = ∞}. In what follows we
assume that b is a Borel function J → R satisfying

b2

σ 2 ∈ L1
loc(J ). (8)

Below we show that condition (8) is equivalent to

t∫

0

b2(Yu) du < ∞ P-a.s. on {t < ζ }, t ∈ [0,∞). (9)
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On the martingale property 5

Condition (9) ensures that the stochastic integral
∫ t

0 b(Yu) dWu is well-defined on
{t < ζ } and, as mentioned above, is equivalent to imposing (8) on the function b.
Thus the process Z = (Zt )t∈[0,∞) defined in (7) is a nonnegative continuous local

martingale (continuity at time ζ on the set {ζ < ∞,
∫ ζ

0 b2(Yu) du = ∞} follows from
the Dambis–Dubins–Schwarz theorem; see [38, Ch. V, Th. 1.6]).

Discussion Since Z is a nonnegative local martingale, it is a supermartingale (by
Fatou’s lemma). Hence, for a fixed T ∈ (0,∞), Z is a martingale on the time interval
[0, T ] if and only if

EZT = 1. (10)

As a nonnegative supermartingale, Z has a (P-a.s.) limit Z∞ := limt↑∞ Zt and is
closed by Z∞, i.e. the process (Zt )t∈[0,∞] (with time ∞ included) is a supermar-
tingale. Hence, Z is a uniformly integrable martingale if and only if (10) holds for
T = ∞. In Theorem 2.1 below (see also the remark following the theorem) we pres-
ent a deterministic criterion in terms of μ, σ , and b for (10) with T ∈ (0,∞). In
Theorem 2.3 we give a deterministic necessary and sufficient condition for (10) with
T = ∞.

Before we formulate the results let us show that (8) is equivalent to (9). Since the
diffusion Y is a continuous semimartingale on the stochastic interval [0, ζ ), by the
occupation times formula we have

t∫

0

b2(Yu) du =
t∫

0

b2

σ 2 (Yu) d〈Y, Y 〉u (11)

=
∫

J

b2

σ 2 (y)L y
t (Y ) dy, t ∈ [0, ζ ).

The map (y, t) �→ L y
t (Y ), defined on J ×[0, ζ ), denotes a jointly continuous version

of local time given in Proposition A.1. For the definition and properties of the contin-
uous semimartingale local time see e.g. [38, Ch. VI, § 1]. Now (9) follows from (8)
and the fact that on {t < ζ } the function y �→ L y

t (Y ) is continuous and hence bounded
with a compact support in J . Conversely, suppose that (8) is not satisfied. Then there
exists a point α ∈ J such that we either have

α+ε∫

α

b2

σ 2 (y) dy = ∞ for any ε > 0 (12)

or

α∫

α−ε

b2

σ 2 (y) dy = ∞ for any ε > 0. (13)
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6 A. Mijatović, M. Urusov

Below we assume (12) and α < x0 (recall that x0 is the starting point for Y ). Let us
consider the stopping time

τα = inf{t ∈ [0,∞) : Yt = α} (14)

with the usual convention inf ∅ := ∞. By Proposition B.1, P(τα < ζ) > 0. Hence,
there exists t ∈ (0,∞) such that P(τα < t < ζ) > 0. By Proposition A.2, we have
L y

t (Y ) > 0 P-a.s. on the event {τα < t < ζ } for any y ∈ [α, x0]. Since the mapping
y �→ L y

t (Y ) is continuous P-a.s. on {t < ζ } (see Proposition A.1), it is bounded away
from zero on [α, x0] P-a.s. on {τα < t < ζ }. Now it follows from (11) and (12) that∫ t

0 b2(Yu) du = ∞ P-a.s. on {τα < t < ζ }, which implies that (9) is not satisfied.
Other possibilities [(12) and α ≥ x0, (13) and α < x0, (13) and α ≥ x0] can be dealt
with in a similar way.

Let us now consider an auxiliary J -valued diffusion Ỹ governed by the SDE

dỸt = (μ + bσ)(Ỹt ) dt + σ(Ỹt ) dW̃t , Ỹ0 = x0, (15)

on some probability space (�̃, F̃ , (F̃t )t∈[0,∞), P̃). SDE (15) has a unique in law weak
solution that possibly exits its state space, because the Engelbert–Schmidt conditions
(5) and (6) are satisfied for the coefficients μ + bσ and σ [note that b/σ ∈ L1

loc(J )

due to (8)]. Similarly to the case of the solution of SDE (4) we denote the exit time of
Ỹ by ζ̃ and apply the following convention: on the set {̃ζ < ∞} the solution Ỹ stays
after ζ̃ at the boundary point at which it exits.

Let J := [l, r ]. Let us fix an arbitrary c ∈ J and set

ρ(x) := exp

⎧
⎨

⎩
−

x∫

c

2μ

σ 2 (y) dy

⎫
⎬

⎭
, x ∈ J, (16)

ρ̃(x) := ρ(x) exp

⎧
⎨

⎩
−

x∫

c

2b

σ
(y) dy

⎫
⎬

⎭
, x ∈ J, (17)

s(x) :=
x∫

c

ρ(y) dy, x ∈ J , (18)

s̃(x) :=
x∫

c

ρ̃(y) dy, x ∈ J . (19)

Note that s (resp. s̃) is the scale function of diffusion (4) [resp. (15)]. Further, we set

ṽ(x) :=
x∫

c

s̃(x) − s̃(y)

ρ̃(y)σ 2(y)
dy and v(x) :=

x∫

c

s(x) − s(y)

ρ(y)σ 2(y)
dy, x ∈ J.
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On the martingale property 7

Note that the functions ṽ and v are decreasing on (l, c) and increasing on (c, r).
Therefore the quantities

ṽ(r) := lim
x↑r

ṽ(x), v(r) := lim
x↑r

v(x), ṽ(l) := lim
x↓l

ṽ(x), v(l) := lim
x↓l

v(x)

are well-defined. By L1
loc(r−) we denote the class of Borel functions f : J → R such

that
∫ r

x | f (y)| dy < ∞ for some x ∈ J . Similarly we introduce the notation L1
loc(l+).

Let us recall that the process Ỹ (resp. Y ) exits its state space at the boundary point
r if and only if

ṽ(r) < ∞ (resp. v(r) < ∞). (20)

This is Feller’s test for explosions (see [26, Ch. 5, Th. 5.29]). Sometimes it can be
easier to check the following condition

s̃(r)<∞ and
s̃(r) − s̃

ρ̃σ 2 ∈ L1
loc(r−)

(

resp. s(r)<∞ and
s(r)−s

ρσ 2 ∈ L1
loc(r−)

)

,

(21)

equivalent to (20) (see [5, Sec. 4.1]). Similarly, Ỹ (resp. Y ) exits its state space at the
boundary point l if and only if

ṽ(l) < ∞ (resp. v(l) < ∞). (22)

Sometimes it can be easier to check the equivalent condition

s̃(l)>−∞ and
s̃−s̃(l)

ρ̃σ 2 ∈ L1
loc(l+)

(

resp. s(l)>−∞ and
s−s(l)

ρσ 2 ∈ L1
loc(l+)

)

.

(23)

We say that the endpoint r of J is good if

s(r) < ∞ and
(s(r) − s)b2

ρσ 2 ∈ L1
loc(r−). (24)

Sometimes it can be easier to check the equivalent condition

s̃(r) < ∞ and
(̃s(r) − s̃)b2

ρ̃σ 2 ∈ L1
loc(r−). (25)

We say that the endpoint l of J is good if

s(l) > −∞ and
(s − s(l))b2

ρσ 2 ∈ L1
loc(l+). (26)
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8 A. Mijatović, M. Urusov

Sometimes it can be easier to check the equivalent condition

s̃(l) > −∞ and
(̃s − s̃(l))b2

ρ̃σ 2 ∈ L1
loc(l+). (27)

The equivalence between (24) and (25) as well as between (26) and (27) will follow
from remark (iii) after Theorem 5.5. If l or r is not good, we call it bad.

Remark Even though conditions (24) and (25) are equivalent, the inequalities
s(r)<∞ and s̃(r)<∞ are not equivalent. The same holds for conditions (26) and (27).

Important remark The notions of good and bad endpoints of J are central to the the-
orems below. To apply these theorems we need to check whether the endpoints are
good in concrete situations. In Sect. 5 [see remark (iv) following Theorem 5.5] we
show that the endpoint r is bad whenever one of the processes Y and Ỹ exits at r and
the other does not. This is helpful because one can sometimes immediately see that,
for example, Y does not exit at r while Ỹ does. In such a case one can conclude that r
is bad without having to check either (24) or (25). The same holds for the endpoint l.

Theorem 2.1 Let the functions μ, σ , and b satisfy conditions (5), (6) and (8), and
Y be a solution of SDE (4) that possibly exits the state space J = (l, r). Then the
process Z given by (7) is a martingale if and only if at least one of the conditions
(a)–(b) below is satisfied AND at least one of the conditions (c)–(d) below is satisfied:

(a) Ỹ does not exit J at r , i.e. (20) [equivalently, (21)] is not satisfied;
(b) r is good, i.e. (24) [equivalently, (25)] is satisfied;
(c) Ỹ does not exit J at l, i.e. (22) [equivalently, (23)] is not satisfied;
(d) l is good, i.e. (26) [equivalently, (27)] is satisfied.

Remark The same condition is necessary and sufficient for Z to be a martingale on
the time interval [0, T ] for any fixed T ∈ (0,∞) (see the proof of Theorem 2.1 in
Sect. 6).

The case of the diffusion Y , which does not exit its state space, is of particular
interest. In this case Theorem 2.1 takes a simpler form.

Corollary 2.2 Assume that Y does not exit its state space and let the assumptions of
Theorem 2.1 be satisfied. Then Z is a martingale if and only if Ỹ does not exit its state
space.

This corollary follows immediately from Theorem 2.1 and the important remark
preceding it.

Theorem 2.3 Under the assumptions of Theorem 2.1 the process Z is a uniformly
integrable martingale if and only if at least one of the conditions (A)–(D) below is
satisfied:

(A) b = 0 a.e. on J with respect to the Lebesgue measure;
(B) r is good and s̃(l) = −∞;
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On the martingale property 9

(C) l is good and s̃(r) = ∞;
(D) l and r are good.

Remark Condition (A) in Theorem 2.3 cannot be omitted. Indeed, if J = R, b ≡ 0
and Y := W is a Brownian motion, then Z ≡ 1 is a uniformly integrable martingale
but none of the conditions (B), (C), (D) hold because s(−∞) = −∞ and s(∞) = ∞
(and hence neither endpoint is good).

3 Examples

Example 3.1 Let us fix α > −1 and consider the state space J = (−∞,∞) and a
diffusion Y governed by the SDE

dYt = |Yt |α dt + dWt , Y0 = x0. (28)

For each α > −1, the coefficients of (28) satisfy the Engelbert–Schmidt conditions
[see (5)–(6)]. Hence, SDE (28) has a unique in law weak solution that possibly exits
its state space. We are interested in the stochastic exponential

Zt = exp

⎧
⎨

⎩

t∧ζ∫

0

Yu dWu − 1

2

t∧ζ∫

0

Y 2
u du

⎫
⎬

⎭
, t ∈ [0,∞),

where we set Zt := 0 for t ≥ ζ on {ζ < ∞,
∫ ζ

0 Y 2
u du = ∞} (like in Sect. 2, ζ denotes

the exit time of Y ).
Let us now apply the results of Sect. 2 to study the martingale property of Z (i.e.

we have μ(x) = |x |α , σ(x) ≡ 1, and b(x) = x). We get the following classification:

(1) If −1 < α ≤ 1, then Z is a martingale (but not uniformly integrable);
(2) If 1 < α ≤ 3, then Z is a strict local martingale;
(3) If α > 3, then Z is a uniformly integrable martingale.

Let us now outline some key steps in getting these results (computations are omit-
ted). The auxiliary diffusion Ỹ is in our case given by the SDE

dỸt = (|Ỹt |α + Ỹt ) dt + dW̃t , Ỹ0 = x0.

We have:

(1) Ỹ does not exit at −∞ (for each α > −1);
(2) If −1 < α ≤ 1, then Ỹ does not exit at ∞;
(3) If α > 1, then Ỹ exits at ∞;
(4) s(−∞) = −∞, hence, the endpoint −∞ is bad (for each α > −1);
(5) The endpoint ∞ is good if and only if α > 3;
(6) If α > 3, then s̃(−∞) = −∞.1

1 In fact we have s̃(−∞) = −∞ if and only if α ≥ 1.
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10 A. Mijatović, M. Urusov

This is sufficient for the application of the results in Sect. 2, which yield the classifi-
cation above.

Remarks (i) It is not surprising to see a qualitative change in the properties of Z
as α passes level 1 because a qualitative change in the properties of Y occurs (Y
is does not exit its state space for α ≤ 1 and exits at ∞ for α > 1). However, it
is much more surprising to see a qualitative change in the properties of Z as α

passes level 3, while Y undergoes no qualitative change.
One can understand what happens for α > 3 as follows. Let us recall that Z is a
martingale if and only if it does not lose mass at finite times, and is a uniformly
integrable martingale if and only if it does not lose mass at time infinity [see
(10)]. Informally, when α > 3, the process Y exits its state space “so quickly”
that Z does not lose mass.

(ii) There is some evidence in the literature (see Karatzas and Shreve [26, Ch. 5,
Ex. 5.38], Revuz and Yor [38, Ch. IX, Ex. (2.10)], Sin [39], Carr et al. [3]) that
the loss of the martingale property of Z in some settings is related to the exit
of the auxiliary diffusion Ỹ from its state space. The example studied above
shows that this is no longer true in our setting. In the case α > 3 the auxiliary
diffusion Ỹ exits the state space, while Z is a uniformly integrable martingale.
As we can see, the loss of the martingale property of Z is related only to the
exit of Ỹ from its state space at a bad endpoint.

(iii) Wong and Heyde [41] consider processes X on a filtration generated by a Brown-
ian motion B that are progressively measurable functionals of B and study the
martingale property of stochastic exponentials of

∫ .

0 Xu d Bu . Let us note that
the process b(Y ) in our setting is a progressively measurable functional of W
whenever Y is a strong solution of (4); however, this may be not the case when
Y is a weak solution of (4) (see [38, Ch. IX, Def. (1.5)] for the employed ter-
minology). We remark that the process Y in the present example is a (possibly
explosive) strong solution of (28) for α ≥ 1 because the coefficients of (28)
are locally Lipschitz (see [38, Ch. IX, Th. (2.1) and Ex. (2.10)]). Hence, the
stochastic exponential Z in the present example for α ≥ 1 fits exactly into the
setting of Corollary 2 in [41], which deals with the processes that are (possibly
explosive) solutions of SDEs. Corollary 2 in [41] appears to imply that Z is
a strict local martingale if and only if the auxiliary diffusion Ỹ exits its state
space. Since for α > 3 we know that Z is a uniformly integrable martingale,
additional assumptions are required in Corollary 2 of [41] for the result to hold
as stated.

The origin of this mistake in [41] is their Proposition 1 (see [41, p. 657]). Namely,
the formulation of Proposition 1 in [41] is ambiguous and its proof fails after the words
“which demonstrates the existence…” (see [41, p. 658, line 3]).

Example 3.2 (Measure transformation in a generalised CEV process) We now turn to
a generalised constant elasticity of variance (CEV) process that satisfies the SDE

dYt =μ0Y α
t dt + σ0Y β

t dWt , Y0 = x0 ∈ J := (0,∞),

α, β ∈ R, μ0 ∈ R \ {0}, σ0 > 0 (29)
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On the martingale property 11

under a probability measure P. Note that for the chosen domain J and the specified
parameter ranges the coefficients in (29) are locally Lipschitz, and therefore equa-
tion (29) has a pathwise unique strong solution up to exit time ζ (see [38, Ch. IX,
Ex. (2.10)]). We are interested in the stochastic exponential

Zt = exp

⎧
⎨

⎩
−μ0

σ0

t∧ζ∫

0

Y α−β
u dWu − 1

2

μ2
0

σ 2
0

t∧ζ∫

0

Y 2α−2β
u du

⎫
⎬

⎭
, t ∈ [0,∞), (30)

where we set Zt := 0 for t ≥ ζ on {ζ < ∞,
∫ ζ

0 Y 2α−2β
u du = ∞}. If Z is a martingale

(resp. uniformly integrable martingale), then we can perform a locally (resp. globally)
absolutely continuous measure change using Z as the density process, and under the
new measure Q the process Y will satisfy the driftless equation dYt = σ0Y β

t d Bt (with
a Q-Brownian motion B), i.e. Y will be a classical CEV process under Q.

Below we apply the results of Sect. 2 to study the martingale property of Z . We
have μ(x) = μ0xα , σ(x) = σ0xβ , and b(x) = −μ0xα−β/σ0. Let us note that the
case μ0 = 0 is trivial and therefore excluded in (29). The auxiliary diffusion Ỹ of
(15) satisfies the driftless SDE dỸt = σ0Ỹ β

t dW̃t . Then it follows that ρ̃(x) = 1 and
s̃(x) = x for all x ∈ J (note that conditions (20)–(27) are unaffected if we add a
constant to s̃). Since s̃(∞) = ∞ the process Ỹ does not exit at ∞ and, by (25), the
boundary point ∞ is bad. At 0 we have s̃(0) > −∞ and hence, by (23), the process
Ỹ exits at 0 if and only if β < 1. Similarly, by (27), we find that 0 is a good boundary
point if and only if 2β − α < 1.

Theorem 2.1 yields that the process Z is a strict local martingale if and only if 0 is a
bad point and the process Ỹ exits at 0. This is equivalent to the conditions 2β −α ≥ 1
and β < 1. Theorem 2.3 implies that Z is a uniformly integrable martingale if and

−2 −1 21

2

1

Strict local martingale

Uniformly integrable martingale

Martingale,   NOT uniformly integrable

Fig. 1 The local martingale Z defined in (30) is a uniformly integrable martingale for all points in the
open half-plane under the line 2β − α = 1, a strict local martingale in the half-open wedge defined by
the inequalities β < 1 and 2β − α ≥ 1, and a martingale that is not uniformly integrable in the closed
wedge defined by the inequalities β ≥ 1 and 2β − α ≥ 1. Note that, excluding the trivial case μ0 = 0,
the parameters μ0 and σ0 do not have any bearing on the martingale property of the process Z . The dot at
(1, 1) corresponds to geometric Brownian motion and the dashed line to the models with α = β
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12 A. Mijatović, M. Urusov

only if 0 is a good boundary point, in other words when the inequality 2β − α < 1
holds. This analysis is graphically depicted in Fig. 1.

In the case α = β the stochastic exponential Z defined in (30) is a geometric
Brownian motion stopped at the exit time ζ of the diffusion Y . As we can see in Fig. 1,
Z is a uniformly integrable martingale for α = β < 1 and a martingale that is not
uniformly integrable for α = β ≥ 1. In particular the case α = β = 0 implies that the
law of Brownian motion with drift stopped at 0 is absolutely continuous with respect
to the law of Brownian motion stopped at 0, which is not the case if both processes
are allowed to diffuse on the entire real line.

4 Financial bubbles

Bubbles have recently attracted attention in the mathematical finance literature; see
e.g. Cox and Hobson [9], Ekström and Tysk [13], Heston et al. [19], Jarrow et al.
[22], Madan and Yor [32], Pal and Protter [36]. The reason is that option pricing in
models with bubbles is a very delicate task. Therefore it is important to have tools for
ascertaining the existence or absence of bubbles in financial models. The problem of
finding conditions that guarantee the absence of bubbles in certain stochastic volatility
models was studied in Sin [39], Jourdain [23], Andersen and Piterbarg [1]; see also the
discussion in Lewis [30, Ch. 9]. In this section we show how to apply Theorems 2.1
and 2.3 to get deterministic criteria for the absence of bubbles in time-homogeneous
local volatility models.

Let the discounted price of an asset be modelled by a nonnegative process S. Under
a risk-neutral measure P the discounted price is a local martingale. In the terminology
of [22] there is a type 3 bubble (resp. type 2 bubble) in the model if S is a strict local
martingale (resp. a martingale but not a uniformly integrable martingale) under P.

The setting in this section is as follows. Let J = (0,∞) and Y be a J -valued
diffusion governed under a measure P by the SDE

dYt = μ0Yt dt + σ(Yt ) dWt , Y0 = x0 > 0, (31)

with μ0 ∈ R and a Borel function σ : J → R satisfying the Engelbert–Schmidt con-
ditions (as earlier Y is stopped at the exit time ζ ). We interpret Y as a non-discounted
asset price with evolution (31) under a risk-neutral measure. Then μ0 is the risk-free
interest rate (only the case μ0 ≥ 0 has a financial meaning, but the results below hold
for any μ0 ∈ R), and the discounted price is St = e−μ0t Yt . Note that we also have
St = e−μ0(t∧ζ )Yt because J = (0,∞).

Since Y is a price process, it is quite natural to assume that Y does not exit at ∞.
But this holds automatically for (31) as shown in the following lemma. (This result is
well-known for σ having linear growth, but it holds also in general. Surprisingly, we
could not find this result in standard textbooks. Let us also note that it is not at all easy
to get this from Feller’s test for explosions.)

Lemma 4.1 Y does not exit the state space J = (0,∞) at ∞.
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On the martingale property 13

Proof Until the exit time ζ we get by Itô’s formula

e−μ0t Yt = x0 +
t∫

0

e−μ0sσ(Ys) dWs, t ∈ [0, ζ ).

By the Dambis–Dubins–Schwarz theorem for continuous local martingales on a sto-
chastic interval (see [38, Ch. V, Ex. (1.18)]), the continuous local martingale
(e−μ0t Yt )t∈[0,ζ ) is a time-changed Brownian motion, hence P(ζ < ∞, limt↑ζ e−μ0t

Yt = ∞) = 0. This concludes the proof. ��
Note however that the process Y may exit the interval J = (0,∞) at 0.

Proposition 4.2 The discounted price process S introduced above coincides with the
process x0 Z, where Z is given by (7) with b(x) = σ(x)/x.

The desired criteria for the absence of type 2 and type 3 bubbles now follow imme-
diately from Proposition 4.2 and Theorems 2.1 and 2.3. We omit the formulations.

Remark Note that in this setting formula (17) simplifies to ρ̃(x) = ρ(x)/x2, x ∈ J ,
since conditions (20)–(27) are not affected if ρ̃ is multiplied by a positive constant.

Proof Until the exit time ζ we set

Vt :=
t∫

0

d Su

Su
=

t∫

0

σ(Yu)

Yu
dWu, t ∈ [0, ζ ).

The stochastic integral is well-defined because Y is strictly positive on [0, ζ ). Then
we have

St = x0E(V )t = x0 Zt , t ∈ [0, ζ ).

Both S and Z have a limit as t ↑ ζ and are stopped at ζ . This completes the proof. ��
In the important case of zero interest rate (μ0 = 0) the problem under consider-

ation amounts to the question of whether the solution of the now driftless SDE in (31)
is a true martingale or a strict local martingale. This problem is of interest in itself,
and the answer looks particularly simple. In what follows we will use, for a function
f : J → R and a class of functions M, the notation f (x) ∈ M as a synonym for
f ∈ M.

Corollary 4.3 Let Y = (Yt )t∈[0,∞) be a solution of the SDE dYt = σ(Yt ) dWt ,
Y0 = x0 > 0, where σ : (0,∞) → R is a Borel function satisfying the Engelbert–
Schmidt conditions (Y is stopped at its hitting time of zero).

(i) If x/σ 2(x) ∈ L1
loc(∞−), then Y is a strict local martingale.

(ii) If x/σ 2(x) /∈ L1
loc(∞−), then Y is a martingale but is not uniformly integrable.
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14 A. Mijatović, M. Urusov

Remark Moreover, if x/σ 2(x) ∈ L1
loc(∞−), then Y is a strict local martingale on

each time interval [0, T ], T ∈ (0,∞).

Proof We can take ρ ≡ 1, s(x) = x , ρ̃(x) = 1
x2 , s̃(x) = − 1

x . Since s(∞) = ∞
and s̃(0) = −∞, neither 0 nor ∞ are good [see (24) and (27)], the process Y does
not exit at ∞ and the diffusion Ỹ does not exit at 0 [see (21) and (23)]. Theorem 2.3
combined with Proposition 4.2 yields that Y cannot be a uniformly integrable martin-
gale. Theorem 2.1 implies that Y is a martingale if and only if Ỹ does not exit at ∞.
The application of (21) completes the proof. Finally, the remark after Corollary 4.3
follows from the remark after Theorem 2.1. ��

The result established in Corollary 4.3 was first proved in Delbaen and Shirakawa
[12] under the stronger assumption that the functions σ and 1/σ are locally bounded
on (0,∞). Later it was proved by a different method in Carr et al. [3] without this
assumption. Furthermore, Corollary 4.3 can be obtained as a consequence of Theo-
rem 1 in Kotani [28] and of Theorem 3.20 in Hulley and Platen [20]. Let us note that
the method of this paper differs from all these approaches.

Let us further mention that it is only the possibility of bubbles in local volatility
models that prevents the main theorem in Mijatović [34] from being applied for the
pricing of time-dependent barrier options. In particular, the above results could be
used to characterise the class of local volatility models within which time-dependent
barrier options can be priced by solving a related system of Volterra integral equations
(see Section 2 in [34]).

Remarks (i) Let us discuss the question of whether all of the following possibilities
can be realised for the process St = e−μ0t Yt , where Y is given by (31):
(1) S is a strict local martingale;
(2) S is a martingale but is not uniformly integrable;
(3) S is a uniformly integrable martingale.
Corollary 4.3 implies that the answer is affirmative for (1) and (2) even within
the subclass μ0 = 0. Possibility (3) can also be realised: one can take, for
example, σ(x) = √

x and any μ0 > 0 (computations are omitted).
(ii) We now generalise Proposition 4.2 to the case of a stochastic risk-free interest

rate. In the setting of Sect. 2 let us assume that J = (l, r) with 0 ≤ l < r ≤ ∞,
so that the process Y governed by (4) is nonnegative. Define the discounted
price process until the exit time ζ by the formula

St = exp

⎧
⎨

⎩
−

t∫

0

μ(Yu)

Yu
du

⎫
⎬

⎭
Yt , t ∈ [0, ζ ).

By Itô’s formula, (St )t∈[0,ζ ) is a nonnegative local martingale on the stochastic inter-
val [0, ζ ), hence the limit Sζ := limt↑ζ St exists and is finite P-a.s. (even if r = ∞
and Y exits at ∞). Now we define a nonnegative local martingale S = (St )t∈[0,∞) by
stopping (St )t∈[0,ζ ) at ζ and interpret it as a discounted price process. In the case of a
constant interest rate μ0 (i.e. μ(x) = μ0x) and J = (0,∞) we get the setting above.
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On the martingale property 15

Proposition 4.2 holds without any change in this more general setting and is proved
in the same way.

Example 4.4 (Bubbles in the CEV Model) In the setting of this section let σ(x) =
σ0xα , σ0 > 0, α ∈ R. Then the process Y given by (31) is called the constant elasticity
of variance (CEV) process (with drift μ0). This model was first proposed by Cox [10]
for α ≤ 1 and Emanuel and MacBeth [15] for α > 1 (see also Davydov and Linetsky
[11] and the references therein). It is known that St = e−μ0t Yt is a true martingale for
α ≤ 1 and a strict local martingale for α > 1. This was first proved in [15] by testing
the equality ESt = x0 (the marginal densities of Y are known explicitly in this case).
Below we prove this by our method and further investigate when S is a uniformly
integrable martingale.

Let us prove the following claims.

(i) S is a martingale if and only if α ≤ 1;
(ii) S is a uniformly integrable martingale if and only if α < 1 and μ0 > 0.

The case α = 1 is clear. We can therefore assume without loss of generality that
α 
= 1.

By Proposition 4.2 we need to study the martingale property of the process Z
defined in (7) with b(x) := σ0xα−1, x ∈ J := (0,∞). The auxiliary diffusion in (15)
takes the form

dỸt = (μ0Ỹt + σ 2
0 Ỹ 2α−1

t ) dt + σ0Ỹ α
t dW̃t , Ỹt = x0.

By Feller’s test, Ỹ exits at ∞ if and only if α > 1. It follows from the important remark
preceding Theorem 2.1 that the endpoint ∞ is bad whenever Ỹ exits at ∞ (recall that
Y does not exit at ∞). By Theorem 2.1, S is a strict local martingale for α > 1.

It remains to consider the case α < 1. As was noted above, Ỹ does not exit at ∞ in
this case. A direct computation shows that s̃(0) = −∞. In particular, Ỹ does not exit
at 0. By Theorem 2.1 S is a true martingale for α < 1. Further, by Theorem 2.3, S is a
uniformly integrable martingale if and only if ∞ is good. Verifying (24) (in the case
α < 1) we get that ∞ is good if and only if μ0 > 0. This completes the proof of the
claims (i) and (ii).

It is interesting to note that the value of μ0 plays a role in the classification (i)–(ii)
above. Contrary to the case where μ0 = 0 (the CEV model without drift), the possi-
bility that S is a uniformly integrable martingale can be realised with positive interest
rates. In other words, taking μ0 > 0 may remove a type 2 bubble in this model, but
has no effect on the existence of a type 3 bubble.

5 Separating times

In order to present the proofs of our main results we need the concept of a separating
time for a pair of measures on a filtered space, which was introduced in Cherny and
Urusov [7]. In this section we recall the definition of separating times and describe
the explicit form of separating times for distributions of solutions of SDEs. All results
stated in this section are taken from Cherny and Urusov [8] (see also [7]).
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16 A. Mijatović, M. Urusov

5.1 Definition of separating times

Let (�,F) be a measurable space endowed with a right-continuous filtration
(Ft )t∈[0,∞). We recall that the σ -field Fτ , for any (Ft )-stopping time τ , is defined by

Fτ = {A ∈ F : A ∩ {τ ≤ t} ∈ Ft for all t ∈ [0,∞)}. (32)

In particular, F∞ = F by this definition. Note that we do not assume here that
F = ∨

t∈[0,∞) Ft . Definition (32) is used for example in Jacod and Shiryaev [21] (we
draw the reader’s attention to the fact that there is also an alternative definition of Fτ

in the literature, see e.g. Revuz and Yor [38], which is obtained by intersecting the
σ -field in (32) with the σ -field

∨
t∈[0,∞) Ft ).

Let P and P̃ be probability measures on (�,F). As usual, Pτ (resp. P̃τ ) denotes
the restriction of P (resp. P̃) to (�,Fτ ). In what follows, it will be convenient for us
to consider the extended positive half-line [0,∞]∪{δ}, where δ is an additional point.
We order [0,∞] ∪ {δ} in the following way: we take the usual order on [0,∞] and let
∞ < δ.

Definition 5.1 An extended stopping time is a map τ : � → [0,∞] ∪ {δ} such that
{τ ≤ t} ∈ Ft for any t ∈ [0,∞].

In order to introduce the notion of a separating time, we need to formulate the
following result.

Proposition 5.2 (i) There exists an extended stopping time S such that, for any
stopping time τ ,

P̃τ ∼ Pτ on the set {τ < S} , (33)

P̃τ ⊥ Pτ on the set {τ ≥ S}. (34)

(ii) If S′ is another extended stopping time with these properties, then S′ = S P,

P̃-a.s.

Definition 5.3 A separating time for P and P̃ (or, more precisely, for (�,F , (Ft ),

P, P̃)) is an extended stopping time S that satisfies (33) and (34) for all stopping times τ .

Remark We stress that the separating time for P and P̃ is determined P, P̃-a.s. uniquely.

Informally, Proposition 5.2 states that two measures P and P̃ are equivalent up to
a random time S and become singular after that. The equality S = δ means that P
and P̃ never become singular, i.e. they are equivalent at time infinity. On the contrary,
S = ∞ means that P and P̃ are equivalent at finite times and become singular at time
infinity.

Let us now provide a statistical interpretation of separating times, which yields
an intuitive understanding of the notion. Suppose that we deal with the problem of
sequentially distinguishing between two statistical hypotheses P and P̃, where the
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On the martingale property 17

information available to us at time t is described by the σ -field Ft . (In particular, if
the filtration (Ft )t∈[0,∞) is the natural filtration of some process X = (Xt )t∈[0,∞),
we observe sequentially a path of X .) Then, before the separating time S occurs, we
cannot know with certainty what the true hypothesis is; and as soon as S occurs we
can determine the true hypothesis with certainty.

In fact, the knowledge of the separating time for P and P̃ yields the knowledge of
the mutual arrangement of P and P̃ from the viewpoint of their absolute continuity

and singularity. This is illustrated by the following result. As usual, P̃
loc� P (resp.

P̃
loc∼ P) means that P̃t � Pt (resp. P̃t ∼ Pt ) for all t ∈ [0,∞).

Lemma 5.4 Let S be a separating time for P and P̃. Then

(i) P̃ ∼ P ⇐⇒ S = δ P, P̃-a.s.;
(ii) P̃ � P ⇐⇒ S = δ P̃-a.s.;

(iii) P̃
loc∼ P ⇐⇒ S ≥ ∞ P, P̃-a.s.;

(iv) P̃
loc� P ⇐⇒ S ≥ ∞ P̃-a.s.;

(v) P̃ ⊥ P ⇐⇒ S ≤ ∞ P, P̃-a.s. ⇐⇒ S ≤ ∞ P-a.s.
(vi) P̃0 ⊥P0 ⇐⇒ S = 0 P, P̃-a.s. ⇐⇒ S = 0 P-a.s.

Remark Other types of the mutual arrangement of P and P̃ are also easily expressed
in terms of the separating time. For example, we have

P̃t � Pt ⇐⇒ S > t P̃-a.s.,

P̃t ⊥ Pt ⇐⇒ S ≤ t P, P̃-a.s. ⇐⇒ S ≤ t P-a.s.

for any t ∈ [0,∞].
The proof of Lemma 5.4 and the remark after it is straightforward.

5.2 Separating times for SDEs

Let us consider the state space J = (l, r), −∞ ≤ l < r ≤ ∞, and set J = [l, r ]. In
this subsection we use the notation (�,F , (Ft )t∈[0,∞)) for a certain canonical filtered
space and P and P̃ will be measures on this space, namely, distributions of solutions
of SDEs. More precisely, let � := C([0,∞), J ) be the space of continuous functions
ω : [0,∞) → J that start inside J and can exit, i.e. there exists ζ(ω) ∈ (0,∞] such
that ω(t) ∈ J for t < ζ(ω) and in the case ζ(ω) < ∞ we have either ω(t) = r for
t ≥ ζ(ω) (hence, also limt↑ζ(ω) ω(t) = r ) or ω(t) = l for t ≥ ζ(ω) (hence, also
limt↑ζ(ω) ω(t) = l). We denote the coordinate process on � by X and consider the
right-continuous canonical filtration Ft = ⋂

ε>0 σ(Xs : s ∈ [0, t +ε]) and the σ -field
F = ∨

t∈[0,∞) Ft . Note that the random variable ζ described above is the exit time

of X . Let the measures P and P̃ on (�,F) be the distributions of (unique in law)
solutions of the SDEs

dYt = μ(Yt ) dt + σ(Yt ) dWt , Y0 = x0, (35)

dỸt = μ̃(Ỹt ) dt + σ̃ (Ỹt ) dW̃t , Ỹ0 = x0, (36)
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18 A. Mijatović, M. Urusov

where the coefficients μ, σ as well as μ̃, σ̃ are Borel functions J → R satisfying the
Engelbert–Schmidt conditions (5)–(6).

To summarize the setting, our input consists of the functions μ, σ , μ̃, and σ̃ . Given
these functions we get the measures P and P̃ on our canonical space. As an output we
will present an explicit expression for the separating time S for (�,F , (Ft ), P, P̃).

Let s denote the scale function of diffusion (35) and ρ the derivative of s [see (16)
and (18)]. Similarly, let s̃ be the scale function of (36) and ρ̃ its derivative. By L1

loc(x)

with x ∈ J we denote the set of Borel functions that are integrable in a sufficiently
small neighbourhood of x . Similarly we introduce the notation L1

loc(r−) and L1
loc(l+).

Let νL denote the Lebesgue measure on J .
We say that a point x ∈ J is non-separating if σ 2 = σ̃ 2 νL -a.e. in a sufficiently

small neighbourhood of x and (μ− μ̃)2/σ 4 ∈ L1
loc(x). We say that the right endpoint

r of J is non-separating if all the points from [x0, r) are non-separating as well as

s(r) < ∞ and (s(r) − s)
(μ − μ̃)2

ρσ 4 ∈ L1
loc(r−). (37)

We say that the left endpoint l of J is non-separating if all the points from (l, x0] are
non-separating as well as

s(l) > −∞ and (s − s(l))
(μ − μ̃)2

ρσ 4 ∈ L1
loc(l+). (38)

A point in J that is not non-separating is called separating. Let D denote the set of
separating points in J . Clearly, D is closed in J . Let us define

Dε = {x ∈ J : ρ(x, D) < ε}

with the convention ∅ε := ∅, where ρ(x, y) = | arctan x − arctan y|, x, y ∈ J (the
metric ρ induces the standard topology on J ; we could not use here the standard
Euclidean metric |x − y|, as J can contain ∞ or −∞).

Theorem 5.5 Let the functions μ, σ and μ̃, σ̃ satisfy conditions (5)–(6). Let the mea-
sures P and P̃ on the canonical space (�,F) be the distributions of solutions of SDEs
(35) and (36). Then the separating time S for (�,F , (Ft ), P, P̃) has the following
form.

(i) If P = P̃, then S = δ P, P̃-a.s.
(ii) If P 
= P̃, then

S = sup
n

inf{t ∈ [0,∞) : Xt ∈ D1/n} P, P̃-a.s.,

where “ inf” is the same as “ inf” except that inf ∅ := δ.

Remarks (i) Theorem 5.5 is proved in [8] in the particular case where J =
(−∞,∞) (see Theorem 5.7 in [8]). The case of general J = (l, r) can be
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On the martingale property 19

reduced to the case J = (−∞,∞) by considering a diffeomorphism (l, r) →
(−∞,∞). We omit the tedious but straightforward computations.

(ii) Let us explain the structure of S in the case P 
= P̃. Denote by α the “separating
point that is closest to x0 from the left-hand side”, i.e.

α =
{

sup{x : x ∈ [l, x0] ∩ D} if [l, x0] ∩ D 
= ∅,

 if [l, x0] ∩ D = ∅,

where  is an additional point ( /∈ J ). Let us consider the “hitting time of α”:

U =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δ if α = ,

δ if α = l and lim inf t↑ζ Xt > l,

ζ if α = l and lim inf t↑ζ Xt = l,

τα if α > l,

where τα = inf{t ∈ [0,∞) : Xt = α}. Similarly, let us denote by β the “sepa-
rating point that is closest to x0 from the right-hand side” and by V the “hitting
time of β”. Then S = U ∧ V P, P̃-a.s. This follows from Proposition B.2.

(iii) We need the following statements proved in remark (ii) after Theorem 5.7 in
[8]. If [x0, r) ⊆ J \ D, then condition (37) is equivalent to

s̃(r) < ∞ and (̃s(r) − s̃)
(μ − μ̃)2

ρ̃σ̃ 4 ∈ L1
loc(r−). (39)

If (l, x0] ⊆ J \ D, then condition (38) is equivalent to

s̃(l) > −∞ and (̃s − s̃(l))
(μ − μ̃)2

ρ̃σ̃ 4 ∈ L1
loc(l+). (40)

In the context of Sect. 2 SDE (36) has a particular form (15), i.e. we have σ̃ = σ

and μ̃ = μ + bσ . Condition (8) ensures that J ⊆ J \ D. Conditions (37), (39),
(38), and (40) reduce respectively to conditions (24), (25), (26), and (27). We
get the equivalence between (24) and (25) as well as between (26) and (27).

(iv) Let us show that the endpoint r (resp. l) is separating whenever one of the dif-
fusions (35) and (36) exits at r (resp. at l) and the other does not. Suppose that
r is non-separating. Since the set of non-separating points is open in J , there
exists a < x0 such that all the points in (a, r ] are non-separating. Set

E =
{

lim
t↑ζ

Xt = r, Xt > a ∀t ∈ [0, ζ )

}

and note that P(E) > 0 by Proposition B.3. By Theorem 5.5, we have S = δ

on E , hence P̃ ∼ P on E . If X exits at r under P, then, by Proposition B.3,
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20 A. Mijatović, M. Urusov

P(E∩{ζ < ∞}) > 0, hence P̃(E∩{ζ < ∞}) > 0, i.e. X exits at r also under P̃.
Similarly, if X does not exit at r under P, then it does not exit at r also under P̃.

In the context of Sect. 2 (i.e. when σ̃ = σ and μ̃ = μ + bσ ) we have that the
endpoint r is good (see (24)) if and only if it is non-separating [see (37) and note
that all points in J are non-separating due to (8)]. Thus, r is bad whenever one of the
diffusions (4) and (15) exits at r and the other does not. This proves the important
remark preceding Theorem 2.1.

6 Proofs of Theorems 2.1 and 2.3

In this section we prove the results formulated in Sect. 2. We fix some number
T ∈ (0,∞) and consider the following questions for the process Z defined in (7):

(i) Is the process (Zt )t∈[0,T ] a martingale?
(ii) Is the process (Zt )t∈[0,∞) a uniformly integrable martingale?

The initial step is to translate these questions for the process Z of (7) defined on an arbi-
trary filtered probability space into the related questions on the canonical filtered space.
In contrast to Sect. 2, we use throughout this section the notation (�,F , (Ft )t∈[0,∞))

for the canonical filtered space defined in Sect. 5.2. By X we denote the coordinate
process on � and by ζ the exit time of X . Let the probability P on (�,F) be the
distribution of a (unique in law) solution of SDE (4).

Let us define a process (Wt )t∈[0,ζ ) on the stochastic interval [0, ζ ) by the formula

Wt =
t∫

0

1

σ(Xu)
(d Xu − μ(Xu) du), t < ζ.

Then it is a continuous (Ft , P)-local martingale on the stochastic interval [0, ζ ) with
〈W, W 〉t = t , t < ζ . Hence, (Wt )t∈[0,ζ ) can be extended to a Brownian motion on the
time interval [0,∞) on an enlargement of the probability space (see [38, Ch. V, § 1]).
Consequently, the process (Wt )t∈[0,ζ ) has a finite limit P-a.s. on {ζ < ∞} as t ↑ ζ , and
we define the process W = (Wt )t∈[0,∞) by stopping (Wt )t∈[0,ζ ) at ζ (and therefore do
not enlarge the canonical probability space). Thus, W is a Brownian motion stopped
at ζ . Finally, we set

Zt = exp

⎧
⎨

⎩

t∧ζ∫

0

b(Xu) dWu − 1

2

t∧ζ∫

0

b2(Xu) du

⎫
⎬

⎭
, t ∈ [0,∞) (41)

(Zt := 0 for t ≥ ζ on {ζ < ∞,
∫ ζ

0 b2(Xu) du = ∞}). Thus the process Z defined on
(�,F , (Ft ), P) is a nonnegative (Ft , P)-local martingale.

The key observation, which reduces the initial problem to the canonical setting, is
as follows: the answer to the question (i) [resp. (ii)] for the process in (7) is positive if
and only if the answer to the question (i) [resp. (ii)] for Z of (41) is positive. This may
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be difficult to believe at first sight since the filtration in Sect. 2 need not be generated
by Y , while the canonical filtration (Ft ) in this section is the right-continuous filtration
generated by X . However, this equivalence holds because both in the case of (7) and
in the case of (41) the property that (Zt )t∈[0,T ] is a martingale (resp. (Zt )t∈[0,∞) is a
uniformly integrable martingale) is equivalent to the filtration-independent property
EZT = 1 (resp. EZ∞ = 1). Thus, below we will consider the questions (i)–(ii) for
the process Z of (41).

Let (an)n∈N and (cn)n∈N be strictly monotone sequences such that a1 < x0 < c1,
an ↓ l, and cn ↑ r . We set

τn = inf{t ∈ [0,∞) : Xt /∈ (an, cn)}

with inf ∅ := ∞ and note that τn ↑ ζ for all ω ∈ � and τn < ζ on the set {ζ < ∞}.
As in Sect. 5 we denote by Fτ , for any (Ft )-stopping time τ , the σ -field defined in
(32). Now we need to prove several lemmas.

Lemma 6.1 For any t ∈ [0,∞] we have
∨

n∈N
Ft∧τn = Ft .

Even though the statement in Lemma 6.1 appears to be classical, the fact that τn ↑ ζ

may lead one to believe that it may fail to hold on the event {ζ < t}. The intuitive
reason why the lemma holds is that the trajectory of the coordinate process X up to ζ

contains in itself (by the definition of �) the information about the whole trajectory
of X . The following proof formalises this intuitive idea.

Proof We start by proving that

∨

n∈N

Ft∧τn = F on the set {ζ ≤ t} (42)

for any t ∈ [0,∞]. Indeed, this holds because F = σ(Xs : s ∈ [0,∞)) and for any
s ∈ [0,∞) we have

Xs = lim
n→∞ Xt∧τn∧s on {ζ ≤ t}.

The latter holds because X stays after the exit time ζ at that endpoint of J at which it
exits (in particular, Xs = Xs∧ζ ).

The inclusion
∨

n∈N
Ft∧τn ⊆ Ft is clear. For the reverse inclusion take an arbitrary

set A ∈ Ft and express it as

A =
[
⋃

n∈N

(A ∩ {t < τn})
]

∪ [A ∩ {ζ ≤ t}].

The set A ∩ {t < τn} belongs both to Ft and to Fτn , hence to Ft ∩ Fτn = Ft∧τn .
Finally, by (42), A ∩ {ζ ≤ t} ∈ ∨n∈N

Ft∧τn . ��
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Lemma 6.2 For any n ∈ N we have
∨

t∈[0,∞) Ft∧τn = Fτn .

The proof is similar to that of Lemma 6.1.
In what follows the probability measure P̃ on (�,F) is the distribution of a (unique

in law) solution of (15). As in Sect. 5, for any (Ft )-stopping time τ , Pτ (resp. P̃τ )
denotes the restriction of P (resp. P̃) to the σ -field Fτ . By S we denote the separating
time for (�,F , (Ft ), P, P̃) (see Definition 5.3).

Lemma 6.3 For any n ∈ N we have P̃τn ∼ Pτn and

dP̃t∧τn

dPt∧τn

= Zt∧τn P-a.s., t ∈ [0,∞]. (43)

Proof Let us fix n ∈ N. We want to apply Theorem 5.5 to our measures P and P̃. In
our case all points inside J are non-separating due to (8). Hence,

S ≥ ζ > τn P, P̃-a.s.,

where the first inequality follows from remark (ii) after Theorem 5.5 and the second
one from Proposition B.2. By the definition of a separating time, we get P̃τn ∼ Pτn .
It remains to prove (43).

We consider a càdlàg version of the density process D(n)
t := dP̃t∧τn

dPt∧τn
, t ∈ [0,∞),

which is an (Ft∧τn , P)-martingale closed by the P-a.s. strictly positive random variable
dP̃τn
dPτn

. Then the processes D(n) and D(n)
− are P-a.s. strictly positive (see [21, Ch. III,

Lem. 3.6]). Since dP̃τn
dPτn

is Fτn -measurable, we have

D(n)
t = EP

(
dP̃τn

dPτn

∣
∣Ft∧τn

)

= EP

(
dP̃τn

dPτn

∣
∣Ft

)

P-a.s., t ∈ [0,∞).

Hence, D(n) is also an (Ft , P)-martingale. We obtain that the stochastic logarithm

L(n)
t :=

t∫

0

d D(n)
u

D(n)
u−

, t ∈ [0,∞), (44)

is a well-defined (Ft , P)-local martingale stopped at τn (as D(n) is stopped at τn). Let
us prove that

L(n)
t =

t∧τn∫

0

b(Xu) dWu P-a.s., t ∈ [0,∞). (45)
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To prove (45) we first need to argue that there exists a predictable process H (n)

integrable with respect to the (Ft , P)-local martingale

M (n)
t := Xt∧τn −

t∧τn∫

0

μ(Xu) du, t ∈ [0,∞),

such that

L(n)
t =

t∫

0

H (n)
u d M (n)

u P-a.s., t ∈ [0,∞). (46)

Note that existence of such a process H (n) will imply that both L(n) and D(n) are
P-a.s. continuous processes (as D(n) is the stochastic exponential of L(n)). The idea is
to use the Fundamental Representation Theorem (see [21, Ch. III, Th. 4.29]) in order
to prove the existence of H (n). However, we cannot apply the Fundamental Represen-
tation Theorem directly because the process X may exit the state space J under P and
thus may not be a semimartingale.

In order to avoid this problem we consider a probability measure P′ on the canonical
filtered space, which is the distribution of a (unique in law) solution of the SDE

dYt = μ′(Yt ) dt + σ ′(Yt ) d Bt , Y0 = x0, (47)

where B denotes some Brownian motion. The Borel functions μ′, σ ′ : J → R are
given by μ′ = μ and σ ′ = σ on [an+1, cn+1]. On the complement J \ [an+1, cn+1]
they are chosen so that the Engelbert–Schmidt conditions (5) and (6) are satisfied and
so that the coordinate process X does not exit the state space J under P′. Then by [5,
Th. 2.11] we obtain the equality Pτn = P′

τn
. Since the process L(n) is stopped at τn , it

is Fτn -measurable. Let ηm ↑ ∞ P-a.s. be a localizing sequence for L(n), i.e. (L(n))ηm

are (Ft , P)-martingales. If we define η′
m := ηm ∧ τn and use the fact Pτn = P′

τn
,

we find that η′
m ↑ τn P′-a.s. as m ↑ ∞ and that (L(n))η

′
m is an (Ft , P′)-martingale.

Therefore, L(n) is an (Ft , P′)-local martingale on the stochastic interval [0, τn) (we
cannot guarantee more knowing only Pτn = P′

τn
; for instance, we cannot guarantee

that ηm ↑ ∞ P′-a.s. because P′ need not be locally absolutely continuous with respect
to P). Now the Fundamental Representation Theorem applied to all (L(n))η

′
m , m ∈ N,

implies the existence of a predictable process H ′ on the filtered probability space
(�,F , (Ft )t∈[0,∞), P′) such that

L(n)
t =

t∫

0

H ′
u (d Xu − μ′(Xu) du) P′-a.s., t ∈ [0, τn), (48)

since uniqueness in law holds for SDE (47). We now obtain (46) by setting H (n)
u :=

H ′
u I (u ≤ τn), stopping the integrator in (48) at τn , and using the equality Pτn = P′

τn
.
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We get from (44) that

dP̃t∧τn

dPt∧τn

= E(L(n))t P-a.s., t ∈ [0,∞). (49)

The process M (n) is a continuous (Ft , P)-local martingale stopped at τn and is there-
fore also an (Ft∧τn , P)-local martingale. By Girsanov’s theorem for local martingales
(see [21, Ch. III, Th. 3.11]) applied on the filtration (Ft∧τn )t∈[0,∞) and by formulas
(49) and (46), the process

M (n)
t − 〈M (n), L(n)〉t = Xt∧τn −

t∧τn∫

0

(μ(Xu) + H (n)
u σ 2(Xu)) du, t ∈ [0,∞),

is an (Ft∧τn , P̃)-local martingale. Since P̃ is the distribution of a solution of SDE (15),
the process

Xt∧τn −
t∧τn∫

0

(μ + bσ)(Xu) du, t ∈ [0,∞),

is an (Ft , P̃)-local martingale and therefore also an (Ft∧τn , P̃)-local martingale. The
process obtained as a difference of these two (Ft∧τn , P̃)-local martingales

t∧τn∫

0

(b(Xu)σ (Xu) − H (n)
u σ 2(Xu)) du, t ∈ [0,∞),

is a continuous (Ft∧τn , P̃)-local martingale of finite variation starting from zero.
Hence, it is identically zero. Consequently, P̃-a.s. we have

H (n)
u = b

σ
(Xu) for νL -a.e. u ∈ [0, τn], (50)

where νL denotes the Lebesgue measure. Since P̃τn ∼ Pτn , equality (50) holds also
P-a.s., and (45) follows from (46). Now (43) for t ∈ [0,∞) follows from (49) and
(45), and it remains only to prove (43) for t = ∞.

By Levy’s theorem and Lemma 6.2,

dP̃t∧τn

dPt∧τn

−−→
t↑∞ EP

⎛

⎝ dP̃τn

dPτn

∣
∣
∣
∨

t∈[0,∞)

Ft∧τn

⎞

⎠ = dP̃τn

dPτn

P-a.s.

Thus, (43) for t ∈ [0,∞) implies (43) also for t = ∞. This concludes the proof. ��
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For any t ∈ [0,∞] let Q̃t denote the absolutely continuous part of the measure P̃t

with respect to Pt . Let us note that Q̃t (�) = 1 ⇐⇒ P̃t � Pt .

Lemma 6.4 We have

dQ̃t

dPt
= Zt P-a.s., t ∈ [0,∞].

Proof Let us fix t ∈ [0,∞]. By Lemma 6.1 and Jessen’s theorem (see [40, Th. 5.2.26]),

dP̃t∧τn

dPt∧τn

−−−→
n↑∞

dQ̃t

dPt
P-a.s.

Since the process Z is stopped at ζ , we have Zt∧τn → Zt P-a.s. as n ↑ ∞. Now the
statement follows from Lemma 6.3. ��
Proof of Theorem 2.1 We prove the remark after Theorem 2.1 (from this remark
Theorem 2.1 follows). By Lemma 6.4 we have

(Zt )t∈[0,T ] is a P-martingale ⇐⇒ EP
dQ̃T

dPT
=1 ⇐⇒ P̃T � PT ⇐⇒ S > T P̃-a.s.,

where the last equivalence follows from the remark after Lemma 5.4. Assume first
that P 
= P̃ which is, by the occupation times formula, equivalent to νL(b 
= 0) > 0.
Let us recall that all points in J are non-separating in our case and that an endpoint
of J is non-separating if and only if it is good in the sense of (24) and (26). Applying
now remark (ii) following Theorem 5.5 we get that S > T P̃-a.s. if and only if the
coordinate process X does not exit J at a bad endpoint under P̃. This gives the criterion
in Theorem 2.1.

Finally, let us assume that νL(b 
= 0) = 0 (i.e. P = P̃). Then, clearly, if l (resp. r )
is bad, then s̃(l) = −∞ (resp. s̃(r) = ∞), hence X does not exit at l (resp. at r ) under
P̃. This means that the criterion in Theorem 2.1 works also in the case P = P̃. This
proves the theorem. ��
Proof of Theorem 2.3 By Lemma 6.4 we have

(Zt )t∈[0,∞) is a u.i. P-martingale ⇐⇒ EP
dQ̃∞
dP∞

=1⇐⇒ P̃ � P⇐⇒ S = δ P̃-a.s.,

where “u.i.” stands for “uniformly integrable” and the last equivalence follows from
Lemma 5.4. We can now apply Theorem 5.5 and remark (ii) after it, in much the same
way as in the proof of Theorem 2.1, to express the condition S = δ P̃-a.s. in terms
of the functions μ, σ , and b. In the case P 
= P̃ (i.e. νL(b 
= 0) > 0), we find that
S = δ P̃-a.s. if and only if either both endpoints of J are good or P̃-almost all paths
of X converge to a good endpoint of J as t ↑ ζ . In the latter possibility the other
endpoint of J may be (and, actually, will be) bad. The former possibility is condi-
tion (D) in Theorem 2.3. It follows from Proposition B.3 that the latter possibility is
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described by conditions (B) and (C). Finally, condition (A) constitutes the remaining
case νL(b 
= 0) = 0. This concludes the proof. ��

A Local time of one-dimensional diffusions

In this appendix we describe some properties of the local time of solutions of one-
dimensional SDEs with the coefficients satisfying the Engelbert–Schmidt conditions.
These properties are used in Sect. 2. Consider a J -valued diffusion Y = (Yt )t∈[0,∞),
where J = (l, r), −∞ ≤ l < r ≤ ∞, governed by SDE (4) on some filtered probabil-
ity space (�,F , (Ft )t∈[0,∞), P), where the coefficients μ and σ are Borel functions
J → R satisfying (5)–(6). Since Y is a continuous semimartingale up to the exit time
ζ , one can define local time {L y

t (Y ) : y ∈ J, t ∈ [0, ζ )} on the stochastic interval [0, ζ )

for any y ∈ J in the usual way (e.g. via the obvious generalisation of [38, Ch. VI,
Th. 1.2]).

It follows from Theorem VI.1.7 in [38] that the random field {L y
t (Y ) : y ∈ J, t ∈

[0, ζ )} admits a modification such that the map (y, t) �→ L y
t (Y ) is a.s. continuous in t

and càdlàg in y. As usual we always work with this modification. First, and this is also
of interest in itself, we show that for solutions of SDEs with the coefficients satisfying
the Engelbert–Schmidt conditions, the local time is moreover jointly continuous in t
and y. (Let us note that joint continuity is a stronger property than continuity in t for
any y and continuity in y for any t .)

Proposition A.1 The random field {L y
t (Y ) : y ∈ J, t ∈ [0, ζ )} has a modification

such that the map

J × [0, ζ ) � (y, t) �→ L y
t (Y ) ∈ R+

is a.s. jointly continuous in (t, y). Furthermore, any modification of the local time that
is a.s. continuous in t and càdlàg in y is, in fact, a.s. jointly continuous in (t, y).

Proof Tanaka’s formula [38, Ch. VI, Th. 1.2] implies for any y ∈ J that

L y
t (Y )=2

⎡

⎣(Yt−y)+−(Y0−y)+−
t∫

0

I{Ys>y}σ(Ys)dWs−
t∫

0

I{Ys>y}μ(Ys)ds

⎤

⎦ (51)

a.s. on {t < ζ }, where I denotes the indicator function. Thus, we need to prove that
the right-hand side of (51) admits an a.s. jointly continuous in t and y modification.
This is clear for the first two terms there. It is shown in the proof of Theorem VI.1.7
of [38] that Kolmogorov’s criterion for the existence of continuous modifications of
random fields (see [38, Ch. II, Th. 2.1]) applies to the integral with respect to W in the
right-hand side of (51). It remains to deal with the term

∫ t
0 I{Ys>y}μ(Ys) ds, which, by

(5) and the occupation times formula, is equal to

F(y, t) :=
r∫

y

μ

σ 2 (x)Lx
t (Y ) dx
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a.s. on {t < ζ }. Note that the latter expression is finite due to (6) and the fact that
the map x �→ Lx

t (Y ) has a.s. on {t < ζ } a compact support in J (see [38, Ch. VI,
Prop. (1.3)]) and is càdlàg, hence bounded. It suffices now to show that for any ε > 0,
F is jointly continuous a.s. on {t + ε < ζ }. Let us take a small δ > 0. Then for
(y′, t ′) ∈ J × [0, ζ ) such that |y − y′| < δ and |t − t ′| < ε, we have

|F(y, t) − F(y′, t ′)| ≤ |F(y, t) − F(y′, t)| + |F(y′, t) − F(y′, t ′)|

≤
y+δ∫

y−δ

|μ|
σ 2 (x)Lx

t (Y )dx +
r∫

l

|μ|
σ 2 (x)|Lx

t (Y ) − Lx
t ′(Y )|dx .

Again, due to (6) and boundedness of the mapping x �→ Lx
t (Y ), the first integral is arbi-

trarily small provided δ is small enough. The second integral tends to 0 as t ′ → t by the
dominated convergence theorem (as above we have

∫ r
l (|μ|/σ 2)(x)Lx

t+ε(Y ) dx < ∞
a.s. on {t + ε < ζ }). We proved that the local time has an a.s. jointly continuous
modification.

To prove the last statement let us take a version {L y
t (Y ) : y ∈ J, t ∈ [0, ζ )} of the

local time, which is a.s. continuous in t and càdlàg in y, and consider its modification
{L̃ y

t (Y ) : y ∈ J, t ∈ [0, ζ )}, which a.s. is jointly continuous in (t, y). Then a.s. we
have

L y
t (Y ) = L̃ y

t (Y ) for all y ∈ J ∩ Q, t ∈ Q+, t < ζ. (52)

Since both (L y
t (Y )) and (L̃ y

t (Y )) are continuous in t and càdlàg in y, (52) implies
that they are indistinguishable. Hence, (L y

t (Y )) is, in fact, a.s. jointly continuous
in t and y. ��

The next result is a consequence of Theorem 2.7 in [5].

Proposition A.2 Let α ∈ J and set

τα := inf{t ∈ [0,∞) : Yt = α}

(with inf ∅ := ∞). Then Lα
t (Y ) > 0 a.s. on {τα < t < ζ }.

Remark By Proposition B.1, P(τα < ζ) > 0. Hence, there exists t ∈ (0,∞) such
that P(τα < t < ζ) > 0.

Let us note that the result of Proposition A.2 no longer holds if the coefficients μ

and σ of (4) fail to satisfy the Engelbert–Schmidt conditions (see Theorem 2.6 in [5]).

B Behaviour of one-dimensional diffusions

Here we state some well-known results about the behaviour of solutions of one-dimen-
sional SDEs with the coefficients satisfying the Engelbert–Schmidt conditions (see
e.g. [5, Sec. 4.1]) that are extensively used in Sects. 5.2 and 6.
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Let (�,F , (Ft )t∈[0,∞)) be the canonical filtered space described in Sect. 5.2, X
the coordinate process on �, and ζ the exit time of X . Let the measure P on (�,F) be
the distribution of a (unique in law) solution of SDE (4), where the coefficients μ, σ

are Borel functions J → R satisfying conditions (5)–(6).
Consider the sets

A =
{

ζ = ∞, lim sup
t→∞

Xt = r, lim inf
t→∞ Xt = l

}

,

Br =
{

ζ = ∞, lim
t→∞ Xt = r

}
,

Cr =
{

ζ < ∞, lim
t↑ζ

Xt = r

}

,

Bl =
{

ζ = ∞, lim
t→∞ Xt = l

}
,

Cl =
{

ζ < ∞, lim
t↑ζ

Xt = l

}

.

For a ∈ J define the stopping time

τa = inf{t ∈ [0,∞) : Xt = a} (inf ∅ := ∞).

Proposition B.1 For any a ∈ J we have P(τa < ∞) > 0.

Proposition B.2 Either P(A) = 1 or P(Br ∪ Bl ∪ Cr ∪ Cl) = 1.

Let s denote the scale function of diffusion (4) and ρ the derivative of s [see (16)
and (18)].

Proposition B.3 (i) If s(r) = ∞, then P(Br ∪ Cr ) = 0.
(ii) Assume that s(r) < ∞. Then either P(Br ) > 0, P(Cr ) = 0 or P(Br ) = 0,

P(Cr ) > 0. Moreover, we have

P
(

lim
t↑ζ

Xt = r, Xt > a ∀t ∈ [0, ζ )

)

> 0

for any a < x0.

Condition (21) is necessary and sufficient for P(Br ) = 0, P(Cr ) > 0. Proposi-
tion B.3 therefore implies that a necessary and sufficient condition for P(Br ) > 0,
P(Cr ) = 0 consists of s(r) < ∞ and s(r)−s

ρσ 2 /∈ L1
loc(r−).

Proposition B.3 concerns the behaviour of the solution of SDE (4) at the endpoint r .
Clearly, it has its analogue for the behaviour at l.
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