Skip to main content
Log in

On the theory of the shear-induced isotropic-to-nematic phase transition of side chain liquid-crystalline polymers

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The shear-induced isotropic-to-nematic phase transition of side chain liquid-crystalline polymers is studied theoretically. A modification of the previous models of main-chain liquid crystals to the case of side chain liquid-crystalline polymers is proposed. Orientational and rheological properties of the model are studied in plane-shear flow. Predictions of the present model agree qualitatively with experimental results (Pujolle-Robic, Noirez in Nature 409:167, 2001).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andrews NC, McHugh AJ, Edwards BJ (1996) Ibid 40:459

    Google Scholar 

  • Berret JF, Roux DC, Porte G, Lindner P (2002) Europhys Lett 25:521

    Google Scholar 

  • Chakrabarti B, Das M, Dasgupta C, Ramaswamy S, Sood AK (2004) preprint: arXiv:cond-mat/0311101 v1

  • Chillingworth DRJ, Alonso EV, Wheeler AA (2001) J Phys A Math Gen 34:1393

    Google Scholar 

  • Ericksen JL (1961) Trans Soc Rheol 5:23

    Google Scholar 

  • Farhoudi Y, Rey AD (1993) Ibid 37:289

    Google Scholar 

  • Feng J, Chaubal CV, Leal LG (1998) J Rheol 42:1095

    Google Scholar 

  • Fielding S, Olmsted P (2004) preprint: arXiv.org/abs/cond-mat/0310658

  • Forest MG, Wang Q, Zhou R (2004) The flow-phase diagram of Doi-Hess theory for sheared nematic polymers II: finite shear rates. Rheol Acta (in press)

  • Fuller GG (1995) Optical rheometry of complex fluids. Oxford University Press, New York

    Google Scholar 

  • Grosso M, Keunings R, Crescitelli S, Maffettone PL (2001) Phys Rev Lett 86:3184

    Google Scholar 

  • Hairer E, Nørsett SP, Wanner G (1993) Solving ordinary differential equations I. Nonstiff problems. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hess S (1975) Z Naturforsch 30A:728

    Google Scholar 

  • Hess S (1976) Z Naturforsch 31A:1507

    Google Scholar 

  • Hess S (1976) Z Naturforsch 31A:1034

    Google Scholar 

  • Hess S (1979) Flow alignment of a colloidal solution which can undergo a transition from the isotropic to the nematic phase (Liquid crystal). In: Jennings BR (ed) Electro-optics and dielectrics of macromolecules and colloids. Plenum, New York

  • Hess S, Kröger M (2005) Regular and chaotic rheological behavior of tumbling polymeric liquid crystals. In: Pasini P, Zannoni C, Zumer S (eds) Computer simulations bridging liquid crystals and polymers, NATO series. Kluwer, Dordrecht, pp 295–333

  • Hess S, Pardowitz I (1981) Z Naturforsch 36A:554

    Google Scholar 

  • Ilg P, Karlin IV, Kröger M, Öttinger HC (2003) Physica A 319:134

    Google Scholar 

  • Jeffrey GB (1922) Proc R Soc Lond Ser A 102:171

    Google Scholar 

  • Kaiser P, Wiese W, Hess S (1992) J Non-Equilib Thermodyn 17:153

    Google Scholar 

  • Kröger M (2004) Phys Rep 390:453

    Google Scholar 

  • Kröger M, Sellers HS (1992) Complex fluids. In: Garrido L (eds) Lecture notes in physics. Springer, Berlin Heidelberg New York 415:295–301

  • Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, Oxford

    Google Scholar 

  • Leslie FM (1968) Arch Ration Mech Anal 28:265

    Google Scholar 

  • Doi M (1980) Ferroelectrics 30:247

    Google Scholar 

  • Maffettone PL, Crescitelli S (1995) Ibid 59:73

    Google Scholar 

  • Maffettone PL, Sonnet A, Virga EG (2000) J Non-Newtonian Fluid Mech 90:283

    Google Scholar 

  • Marrucci G, Maffettone PL (1989) Ibid 22:4076

    Google Scholar 

  • Marrucci G (1991) Macromolecules 24:4176

    Google Scholar 

  • Marrucci G, Greco F (1991) Mol Cryst Liq Cryst 206:17

    Google Scholar 

  • Mours M, Winter HH (1994) Rheol Acta 33:385

    Google Scholar 

  • Olmsted PD, Goldbart P (1990) Phys Rev A 41:4578

    Google Scholar 

  • Olmsted PD, Goldbart P (1992) Phys Rev A 46:4966

    Google Scholar 

  • Pereira Borgmeyer C, Hess S (1995) J Non-Equilib Thermodyn 20:359

    Google Scholar 

  • Polym J (1981) Sci Polym Phys Ed 19:229

    Google Scholar 

  • Pujolle-Robic C, Noirez L (2001) Nature 409:167

    Google Scholar 

  • Pujolle-Robic C, Olmsted PD, Noirez L (2002) Europhys Lett 59:364

    Google Scholar 

  • Quijada-Garrido I, Siebert H, Becker P, Friedrich C, Schmidt C (1999) Rheol Acta 38(6):495

    Google Scholar 

  • Rey AD (1995) Rheol Acta 34:119

    Google Scholar 

  • Marrucci G, Maffettone PL (1990) Rheol J 34:1217

    Google Scholar 

  • Maffettone PL, Crescitelli S (1994) Rheol J 38:1559

    Google Scholar 

  • Rienäcker G (2000) Orientational dynamics of nematic liquid crystals in a shear flow. Thesis TU Berlin 2000, Shaker Verlag, Aachen, Germany

  • Rienäcker G, Hess S (1999) Physica A 267:294

    Google Scholar 

  • Rienäcker G, Kröger M, Hess S (2002) Phys Rev E 66:040702(R)

    Google Scholar 

  • Rienäcker G, Kröger M, Hess S (2002) Physica A 315:537

    Google Scholar 

  • Schmitt V, Lequeux F, Pousse A, Roux D (1994) Langmuir 10:955

    Google Scholar 

  • Schneggenburger C, Kröger M, Hess S (1996) J Non-Newtonian Fluid Mech 62:235

    Google Scholar 

  • Sgalari G, Leal GL, Feng JJ (2002) J Non-Newtonian Fluid Mech 102:361

    Google Scholar 

  • Stevens H, Rehage G, Finkelmann H (1984) Macromolecules 17:851

    Google Scholar 

  • Wang Q (1997) Ibid 41:943

    Google Scholar 

  • Wunenburger AS, Colin A, Leng J, Arnedeo A, Roux D (2001) Phys Rev Lett 86:1374

    Google Scholar 

Download references

Acknowledgements

Valuable comments of L. Noirez are gratefully acknowledged. This research was performed under the auspices of the Sonderforschungsbereich 448 ’Mesoskopisch strukturierte Verbundsysteme’ (Deutsche Forschungsgemeinschaft).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siegfried Hess.

Appendix

Appendix

Coefficients of low and high shear expansion

In the stationary state, the values of b j are determined by those of a j . In the symmetry-adapted case a3=a4=0 and b3=b4=0, the components in the plane of shear are given by

$$ \begin{aligned} b_0 & = \frac{1} {N}\left\{ { - \frac{{\nu _{{\text{ab}}} }} {{\vartheta _{\text{b}} }}\left( {1 + \Gamma ^2 } \right)a_0 - \bar \kappa _{\text{b}} \Gamma \left( {\Lambda _{\text{K}}^b \Gamma + \frac{{\nu _{{\text{ab}}} }} {{\vartheta _{\text{b}} }}\left( {\Gamma a_1 - a_0 } \right)} \right)} \right\} \\ b_1 & = \frac{1} {N}\left\{ {\Lambda _{\text{K}}^b \Gamma ^2 - \frac{{\nu _{{\text{ab}}} }} {{\vartheta _{\text{b}} }}\left( {\Gamma a_2 + \left( {1 - \bar \kappa _{\text{b}}^2 \Gamma ^2 } \right)a_1 - \bar \kappa _{\text{b}} \Gamma a_0 } \right)} \right\} \\ b_2 & = \frac{1} {N}\left\{ {\Lambda _{\text{K}}^b \Gamma - \frac{{\nu _{{\text{ab}}} }} {{\vartheta _{\text{b}} }}\left( {\Gamma a_1 - a_2 + \bar \kappa _{\text{b}} \Gamma a_0 } \right)} \right\} \\ \end{aligned} $$
(46)

with \(\bar \kappa _{\text{b}} \equiv \kappa _{\text{b}} /\sqrt 3 \) and \(\Gamma \equiv \dot \gamma /(\alpha \vartheta _{\text{b}} )\) and \( N \equiv 1 + (1 - \bar \kappa _{\text{b}}^2 )\Gamma ^2 . \) Furthermore, the abbreviations \(\Lambda _{\text{K}} = (\sqrt 3 /2)\lambda _{\text{K}} ,\;\Lambda _{\text{K}}^b = (\sqrt 3 /2)\lambda _{\text{K}}^b \) were used. In equilibrium, Γ=0 and above equations reduce to the equilibrium conditions b j =−(νabb)a j .

Inserting Eqs. 46 into Eqs. 31 results, for the stationary case \(\dot a_j = 0,\) in a set of three nonlinear algebraic equations for a0, a1 and a2. For the special case κ=κb=0 one obtains

$$ \begin{aligned} 0 = & - (\vartheta _{{\text{eff}}} - 3a_0 + 2a^2 )a_0 - 3(a_1^2 + a_2^2 ), \\ 0 = & - (\vartheta _1 + 6a_0 + 2a^2 )a_1 + \dot \gamma _{{\text{eff}}} a_2 - f, \\ 0 = & - (\vartheta _1 + 6a_0 + 2a^2 )a_2 - \dot \gamma _{{\text{eff}}} a_1 + \Lambda _{\text{K}}^{{\text{eff}}} \dot \gamma _{{\text{eff}}} , \\ \end{aligned} $$
(47)

where the abbreviation a2=a 20 +a 21 +a 22 is used. Equations 47) are of the same form as in the one alignment tensor theory with no coupling to the polymer backbone (νab=0) except for an additional constant forcing fabϑbΛ bK Γ2/(1+Γ2). Effective temperatures, shear rate and ratio of relaxation times were used in Eqs. 47 which are defined by ϑeff=ϑ−ν 2ab b, ϑ1=ϑ−ν 2ab /(ϑb(1+Γ2)), \( \dot \gamma _{{\text{eff}}} = g\dot \gamma \) and \( \Lambda _{\text{K}}^{{\text{eff}}} = (\tilde g/g)\Lambda _{\text{K}} , \) respectively, with g=1+(νabb)2/(ζ(1+Γ2)), \( \tilde g = 1 - \left( {v_{{\text{ab}}} /\vartheta _{\text{b}} } \right)/\left( {\zeta _{\text{p}} \left( {1 + \Gamma ^2 } \right)} \right), \) ζ≡τab and ζp≡τapbp. Note, that these effective quantities are highly nonlinear in the shear rate \( \dot \gamma . \)

Expanding Eqs. 46 and 47 up to second order in the shear rate one obtains the coefficient of the low shear expansion (Eqs. 39, 40),

$$ \alpha _2 = \frac{{\Lambda _{\text{K}} }} {{\sqrt 2 \vartheta _{{\text{eff}}} }}\left( {1 - \tilde v_{\text{p}} } \right),\quad \beta _2 = \frac{1} {{\vartheta _{\text{b}} }}\left( {\frac{{\Lambda _{\text{K}} }} {{\sqrt 2 \zeta _{\text{p}} }} - v_{{\text{ab}}} \alpha _2 } \right) $$
(48)
$$ \alpha _1 = \frac{1} {{\vartheta _{{\text{eff}}} }}\left( {\alpha _2 - \tilde v\beta _2 } \right),\quad \beta _1 = \frac{1} {{\vartheta _{\text{b}} }}\left( {\frac{1} {\zeta }\beta _2 - v_{{\text{ab}}} \alpha _1 } \right) $$
(49)
$$ \alpha _0 = - \frac{1} {{\vartheta _{{\text{eff}}} }}\left( {3\alpha _2^2 + \frac{\kappa } {{\sqrt 3 }}\alpha _2 - \frac{{\kappa _{\text{b}} \tilde v\beta _1 }} {{\sqrt 3 }}} \right),\quad \beta _0 = - \frac{1} {{\vartheta _{\text{b}} }}\left( {\frac{{\kappa _{\text{b}} }} {{\sqrt 3 \zeta }}\beta _2 + v_{{\text{ab}}} \alpha _0 } \right) $$
(50)

with \( \tilde v \equiv v_{{\text{ab}}} /(\vartheta _{\text{b}} \zeta ) \) and \( \tilde v_{\text{p}} \equiv v_{{\text{ab}}} /(\vartheta _{\text{b}} \zeta _{\text{p}} ). \) Note, that ϑb>0 by definition.

In the limit of high shear rates one obtains from Eqs. 46 and 47 that a2 and b2 decrease as \( \dot \gamma ^{ - 1} \) where the coefficients are given by

$$ a_2^\infty = (\vartheta + 6a_0^\infty + 2(a_0^\infty )^2 + v_{{\text{ab}}} \Lambda _{\text{K}}^b + 2\Lambda _{\text{K}}^2 )\Lambda _{\text{K}} , $$

and b 2 =ζ(ϑbΛ bK abΛK) are used. The asymptotic value of a0 is

$$ a_0^\infty = \frac{1} {2} + \frac{E} {{3(2)^{2/3} F^{1/3} }} - \frac{{F^{1/3} }} {{6(2)^{1/3} }}, $$

where \( F = G + \sqrt {4E^3 + G^2 } , \) E=−9+12Λ 2K +6ϑeff, G=−54+432Λ 2K +54ϑeff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hess, S., Ilg, P. On the theory of the shear-induced isotropic-to-nematic phase transition of side chain liquid-crystalline polymers. Rheol Acta 44, 465–477 (2005). https://doi.org/10.1007/s00397-004-0426-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-004-0426-z

Keywords

Navigation