Skip to main content
Log in

Conditions of nucleation in crystallizable polymers: reconnaissance of positions — a critical evaluation

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In view of the enormous difficulties in obtaining reliable experimental data for the purpose of structure simulation with the aid of computer programs (presently being so popular), every classifying endeavor must be considered of great importance. One of the goals of such an endeavor is the demarcation of characteristic temperature ranges. With the aid of thermodynamic considerations an estimate of the restricted temperature range of metastable undercooling, in which the classical theory of homogeneous nucleation, as developed for polymer solutions, is valid also for polymer melts (“thermal nucleation”) can be given. This consideration includes a discussion of the course of the relevant interface tensions along the co-existence lines of the P-T diagram. The so-called spinodal crystallization mode (see [1–3]) is found at lower temperatures and seems to be quite common in polymer crystallization. In this connection the so-called athermal nucleation can be identified with a specific process. However, the present author is not in favor of the term “spinodal mode”. This is explained by a comparison with the meaning of spinodal decomposition into two phases in the ordinary gas-liquid phase transition, which always occurs at the lower bound of the metastable undercooling. Remarkably, spinodal decomposition cannot be defined in the same way for the liquid-solid transition. Anyway, the author tries hard to induce unorthodox trains of thought in the hope to revie the discussion of a difficult matter, which has almost gone to sleep, before a satisfying settlement has been reached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Imai M, Kaji K, Kanaya T (1994) Macromolecules 27:7103–8

    Article  CAS  Google Scholar 

  2. Cakmak M (1996) The 12th Annual Meeting, the Polymer Processing Society, Sorrento, Italy, May 27–31, KN 5.2

  3. Strobl G (1996) The Physics of Polymers. Springer Berlin, Heidelberg, New York

    Google Scholar 

  4. Becker R (1938) Ann Phys 32:128

    Article  CAS  Google Scholar 

  5. Zachmann HG (1964) Adv Polym Sci 3:581

    Article  CAS  Google Scholar 

  6. Becker R, Döring W (1935) Ann Phys 24:719

    Article  CAS  Google Scholar 

  7. Ziabicki A, Alfonso GL (1994) Colloid Polym Sci 272:1027

    Article  CAS  Google Scholar 

  8. Binsbergen FL (1972) J Cryst Growth 16:149

    Article  Google Scholar 

  9. Ratajski Ewa, Janeschitz-Kriegl H (1996) Colloid Polymer Sci 274:938

    Article  CAS  Google Scholar 

  10. Binsbergen FL (1970) Kolloid Z & Zeitschrf Polymere 237:289; 238:389

    Article  CAS  Google Scholar 

  11. Baehr HD (1996) Thermodynami, 9th ed (in German) Springer, Berlin, p 185

    Google Scholar 

  12. Eder G (1997) Personal communication

  13. CRC-Handbook of Chemistry and Physics (1989–90) Weast RC (ed.) in chief) 70th ed. CRC Press, Boca Raton, FL

    Google Scholar 

  14. Krevelen Van DW (1990) Properties of Polymers. 3rd ed Elsevier, Amsterdam, Oxford, New York, Tokyo

    Google Scholar 

  15. Elmendorp JJ (1986) Doctoral thesis, Delft University, The Netherlands

    Google Scholar 

  16. Grammespacher H, Meissner J (1992) J Rheol 36:1127

    Article  Google Scholar 

  17. Monasse B (1982) Doct Ing Thesis, Ecole Nationale Supérieure des Mines de Paris

  18. Monasse B, Haudin JM (1986) Colloid Polym Sci 264:117

    Article  CAS  Google Scholar 

  19. Krevelen Van DW (1978) Chimia 32:279

    Google Scholar 

  20. Chew S, Griffith JR, Stachurski ZH (1989) Polymer 30:874

    Article  CAS  Google Scholar 

  21. Turner-Jones A, Aizlewood JM, Backett DR (1964) Makromol Chem 74:134

    Article  Google Scholar 

  22. Magill JH, Li HM, Gandica A (1973) J Cryst Growth 19:361

    Article  CAS  Google Scholar 

  23. Eder G (1996) In: Macromolecular Design in Polymer Materials. Hatada K, Kitayama T, Vogl O (eds) Marcel Dekker, New York, pp 763–784

    Google Scholar 

  24. Eder G, Janeschitz-Kriegl H (1997) In: Maijer HEN (ed) Material Science and Technology. Vol 18, Verlag Chemie, Weinheim, pp 269–342

    Google Scholar 

  25. Nakamura K, Watanabe T, Katayama K, Amano T (1972) J Appl Polym Sci 16:1077

    Article  CAS  Google Scholar 

  26. Eder G, Janeschitz-Kriegl H, Liedauer S (1990) Prog Polym Sci 15:629–714

    Article  CAS  Google Scholar 

  27. Piccarolo S (1992) J Macromol Sci B31:501

    Article  Google Scholar 

  28. Janeschitz-Kriegl H, Wippel H, Paulik Ch, Eder G (1993) Colloid Polym Sci 271:1107

    Article  CAS  Google Scholar 

  29. Wu CH, Eder G, Janeschitz-Kriegl H (1993) Colloid Polym Sci 271:1116

    Article  CAS  Google Scholar 

  30. Magill JH (1960) Nature 187:770

    Article  CAS  Google Scholar 

  31. Keller A (1957) Phil Mag 2:1171

    Article  CAS  Google Scholar 

  32. Geil Ph H (1973) Polymer Single Crystals, RE Krieger Publ Comp, Huntington, NY

    Google Scholar 

  33. Lauritzen JI, Hoffman JD (1960) J Res Nat Bur Standards 64A:73

    CAS  Google Scholar 

  34. Doi M, Edwards SF (1986) The Theory of Polymer Dynamics. Clarendon Press, Oxford

    Google Scholar 

  35. Ferry JD (1980) Viscoelastic Properties of Polymers, 3rd ed. John Wiley, New York, Chichester, Brisbane, Toronto, Singapore

    Google Scholar 

  36. Mandelkern L, Jain NL, Kim H (1968) J Polym Sci A-2:6, 165

    Google Scholar 

  37. Liedauer S, Eder G, Janeschitz-Kriegl H, Jerschow P, Geymayer W, Ingolic E (1993) Int Polym Processing 8:236

    CAS  Google Scholar 

  38. Liedauer S, Eder G, Janeschitz-Kriegl H (1995) Int Polym Process 10:243

    CAS  Google Scholar 

  39. Jerschow P, Janeschitz-Kriegl H (1996) Rheol Acta 35:127

    Article  CAS  Google Scholar 

  40. Jerschow P, Janeschitz-Kriegl H (1997) Int Polym Process 12:72

    CAS  Google Scholar 

  41. Smoluchowski M von (1917) Z Phys Chemie 92:129

    Google Scholar 

  42. Mandelkern L (1964) Crystallization of Polymers, McGraw-Hill, NY

    Google Scholar 

  43. Barham PJ, Chivers RA, Keller A, Martinez-Salazar J, Organ SJ (1985) J Material Sci 20:1625

    Article  CAS  Google Scholar 

  44. VDI-Wärmeatlas (1977) EU Schlünder (ed) 3rd ed, Karlsruhe-Düsseldorf

Reference

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. W.J. Beek, Delft

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janeschitz-Kriegl, H. Conditions of nucleation in crystallizable polymers: reconnaissance of positions — a critical evaluation. Colloid Polym Sci 275, 1121–1135 (1997). https://doi.org/10.1007/s003960050192

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s003960050192

Key words

Navigation