Skip to main content
Log in

A simple hydrothermal route to synthesis of rod-like MnOOH and spindle-shaped MnCO3

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A simple hydrothermal route was developed to synthesis of rod-like manganese oxyhydroxide (MnOOH) and spindle-shaped manganese carbonate (MnCO3) based on the redox reactions between potassium permanganate (KMnO4) and β-cyclodextrin (β-CD) without extra surfactant or template. At the mass ratio between β-CD and KMnO4 of 0.25, MnOOH nanorods with the diameter about 40–400 nm and the length in the range of 2–10 μm could be facilely prepared in high yield. However, spindle-shaped MnCO3 microparticles were prepared when the mass ratio between β-CD and KMnO4 was increased to 1.5. The as-prepared products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and high-resolution transmission electron microscopy. The formation mechanisms of rod-like MnOOH and spindle-shaped MnCO3 were preliminarily discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Devaraj S, Munichandraiah N (2008) Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C 112:4406–4417

    Article  CAS  Google Scholar 

  2. Yang Y, Huang C (2010) Effect of synthetical conditions, morphology, and crystallographic structure of MnO2 on its electrochemical behavior. J Solid State Electrochem 14:1293–1301

    Article  CAS  Google Scholar 

  3. Zhang Y, Deng B, Zhang T, Gao D, Xu A-W (2010) Shape effects of Cu2O polyhedral microcrystals on photocatalytic activity. J Phys Chem C 114:5073–5079

    Article  CAS  Google Scholar 

  4. Xia Y, Xiong Y, Lim B, Skrabalak Sara E (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics. Angew Chem Int Ed 48:60–103

    Article  CAS  Google Scholar 

  5. Wiley B, Sun Y, Mayers B, Xia Y (2005) Shape-controlled synthesis of metal nanostructures: the case of silver. Chem-Eur J 11:454–464

    Article  CAS  Google Scholar 

  6. Li Z, Gu A, Guan M, Zhou Q, Shang T (2010) Large-scale synthesis of silver nanowires and platinum nanotubes. Colloid Polymer Sci 288:1185–1191

    Article  CAS  Google Scholar 

  7. Yu C, Zhang L, Shi J, Zhao J, Gao J, Yan D (2008) A simple template-free strategy to synthesize nanoporous manganese and nickel oxides with narrow pore size distribution, and their electrochemical properties. Adv Funct Mater 18:1544–1554

    Article  Google Scholar 

  8. Zhang W, Wang H, Yang Z, Wang F (2007) Promotion of H2O2 decomposition activity over β-MnO2 nanorod catalysts. Colloid Surf A 304:60–66

    Article  CAS  Google Scholar 

  9. Fu X, Feng J, Wang H, Ng KM (2009) Room temperature synthesis of a novel γ-MnO2 hollow structure for aerobic oxidation of benzyl alcohol. Nanotechnology 20(37):375601

    Article  Google Scholar 

  10. Feng Z-P, Li G-R, Zhong J-H, Wang Z-L, Ou Y-N, Tong Y-X (2009) MnO2 multilayer nanosheet clusters evolved from monolayer nanosheets and their predominant electrochemical properties. Electrochem Commun 11:706–710

    Article  CAS  Google Scholar 

  11. Cao X, Wang N, Wang L, Mo C, Xu Y, Cai X, Guo L (2010) A novel non-enzymatic hydrogen peroxide biosensor based on ultralong manganite MnOOH nanowires. Sensor Actuator B Chem 147:730–734

    Article  Google Scholar 

  12. Wang W, Ao L (2007) Synthesis and optical properties of Mn3O4 nanowires by decomposing MnCO3 nanoparticles in flux. Cryst Growth Des 8:358–362

    Article  Google Scholar 

  13. Dong Y, Yang H, He K, Song S, Zhang A (2009) β-MnO2 nanowires: a novel ozonation catalyst for water treatment. Appl Catal B Environ 85:155–161

    Article  CAS  Google Scholar 

  14. Li X, Zhou L, Gao J, Miao H, Zhang H, Xu J (2009) Synthesis of Mn3O4 nanoparticles and their catalytic applications in hydrocarbon oxidation. Powder Tech 190:324–326

    Article  CAS  Google Scholar 

  15. Kuratani K, Tatsumi K, Kuriyama N (2007) Manganese oxide nanorod with 2 × 4 tunnel structure: synthesis and electrochemical properties. Cryst Growth Des 7:1375–1377

    Article  CAS  Google Scholar 

  16. Zhao J, Tao Z, Liang J, Chen J (2008) Facile synthesis of nanoporous γ-MnO2 structures and their application in rechargeable Li-ion batteries. Cryst Growth Des 8:2799–2805

    Article  CAS  Google Scholar 

  17. Yu P, Zhang X, Wang D, Wang L, Ma Y (2009) Shape-controlled synthesis of 3D hierarchical MnO2 nanostructures for electrochemical supercapacitors. Cryst Growth Des 9:528–533

    Article  CAS  Google Scholar 

  18. Qu Q, Zhang P, Wang B, Chen Y, Tian S, Wu Y, Holze R (2009) Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors. J Phys Chem C 113:14020–14027

    Article  CAS  Google Scholar 

  19. Xu M, Kong L, Zhou W, Li H (2007) Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins. J Phys Chem C 111:19141–19147

    Article  CAS  Google Scholar 

  20. Yang L-X, Liang Y, Chen H, Meng Y-F, Jiang W (2009) Controlled synthesis of Mn3O4 and MnCO3 in a solvothermal system. Mater Res Bull 44:1753–1759

    Article  CAS  Google Scholar 

  21. Hu C-C, Wu Y-T, Chang K-H (2008) Low-temperature hydrothermal synthesis of Mn3O4 and MnOOH single crystals: determinant influence of oxidants. Chem Mater 20:2890–2894

    Article  CAS  Google Scholar 

  22. Wu XL, Cao MH, Lu HY, He XY, Hu CW (2006) Microemulsion-mediated solvothermal synthesis and morphological evolution of MnCO3 nanocrystals. J Nanosci Nanotechnol 6:2123–2128

    Article  CAS  Google Scholar 

  23. Li Z, Bao H, Miao X, Chen X (2011) A facile route to growth of γ-MnOOH nanorods and electrochemical capacitance properties. J Colloid Interface Sci 357:286–291

    Article  CAS  Google Scholar 

  24. Wang X, Wang X, Huang W, Sebastian PJ, Gamboa S (2005) Sol–gel template synthesis of highly ordered MnO2 nanowire arrays. J Power Sourc 140:211–215

    Article  CAS  Google Scholar 

  25. Chang J-K, Hsu S-H, Tsai W-T, Sun IW (2008) A novel electrochemical process to prepare a high-porosity manganese oxide electrode with promising pseudocapacitive performance. J Power Sourc 177:676–680

    Article  CAS  Google Scholar 

  26. Dong B, Xue T, Xu C-L, Li H-L (2008) Electrodeposition of mesoporous manganese dioxide films from lyotropic liquid crystalline phases. Micropor Mesopor Mat 112:627–631

    Article  CAS  Google Scholar 

  27. Wu M-S, Lee J-T, Wang Y-Y, Wan C-C (2004) Field emission from manganese oxide nanotubes synthesized by cyclic voltammetric electrodeposition. J Phys Chem B 108:16331–16333

    Article  CAS  Google Scholar 

  28. Kumar VG, Kim KB (2006) Organized and highly dispersed growth of MnO2 nano-rods by sonochemical hydrolysis of Mn(III)acetate. Ultrason Sonochem 13:549–556

    Article  CAS  Google Scholar 

  29. Askarinejad A, Morsali A (2009) Direct ultrasonic-assisted synthesis of sphere-like nanocrystals of spinel Co3O4 and Mn3O4. Ultrason Sonochem 16:124–131

    Article  CAS  Google Scholar 

  30. Gopalakrishnan IK, Bagkar N, Ganguly R, Kulshreshtha SK (2005) Synthesis of superparamagnetic Mn3O4 nanocrystallites by ultrasonic irradiation. J Cryst Growth 280:436–441

    Article  CAS  Google Scholar 

  31. Salavati-Niasari M, Davar F, Mazaheri M (2008) Synthesis of Mn3O4 nanoparticles by thermal decomposition of a [bis(salicylidiminato)manganese(II)] complex. Polyhedron 27:3467–3471

    Article  CAS  Google Scholar 

  32. Chang YQ, Yu DP, Long Y, Xu J, Luo XH, Ye RC (2005) Large-scale fabrication of single-crystalline Mn3O4 nanowires via vapor phase growth. J Cryst Growth 279:88–92

    Article  CAS  Google Scholar 

  33. Yu P, Zhang X, Chen Y, Ma Y, Qi Z (2009) Preparation and pseudo-capacitance of birnessite-type MnO2 nanostructures via microwave-assisted emulsion method. Mater Chem Phys 118:303–307

    Article  CAS  Google Scholar 

  34. Hu Y, Chen J, Xue X, Li T (2006) Synthesis of monodispersed single-crystal compass-shaped Mn3O4 via gamma-ray irradiation. Mater Lett 60:383–385

    Article  CAS  Google Scholar 

  35. Apte SK, Naik SD, Sonawane RS, Kale BB, Pavaskar N, Mandale AB, Das BK (2006) Nanosize Mn3O4 (hausmannite) by microwave irradiation method. Mater Res Bull 41:647–654

    Article  CAS  Google Scholar 

  36. Chen S, Zhu J, Han Q, Zheng Z, Yang Y, Wang X (2009) Shape-controlled synthesis of one-dimensional MnO2 via a facile quick-precipitation procedure and its electrochemical properties. Cryst Growth Des 9:4356–4361

    Article  CAS  Google Scholar 

  37. Subramanian V, Zhu H, Wei B (2008) Alcohol-assisted room temperature synthesis of different nanostructured manganese oxides and their pseudocapacitance properties in neutral electrolyte. Chem Phys Lett 453:242–249

    Article  CAS  Google Scholar 

  38. Wu Z, Yu K, Huang Y, Pan C, Xie Y (2007) Facile solution-phase synthesis of γ-Mn3O4 hierarchical structures. Chem Cent J 1:8

    Article  Google Scholar 

  39. Wang N, Guo L, He L, Cao X, Chen C, Wang R, Yang S (2007) Facile synthesis of monodisperse Mn3O4 tetragonal nanoparticles and their large-scale assembly into highly regular walls by a simple solution route. Small 3:606–610

    Article  CAS  Google Scholar 

  40. Lei S, Liang Z, Zhou L, Tang K (2009) Synthesis and morphological control of MnCO3 and Mn(OH)2 by a complex homogeneous precipitation method. Mater Chem Phys 113:445–450

    Article  CAS  Google Scholar 

  41. Tang Q, Gong X, Wu C, Chen Y, Borgna A, Yang Y (2009) Insights into the nature of alumina-supported MnOOH and its catalytic performance in the aerobic oxidation of benzyl alcohol. Catal Commun 10:1122–1126

    Article  CAS  Google Scholar 

  42. El-Deab MS (2009) Electrocatalytic oxidation of methanol at γ-MnOOH nanorods modified Pt electrodes. Int J Electrochem Sci 4:1329–1338

    CAS  Google Scholar 

  43. Wu Y-T, Hu C-C (2005) Aspect ratio controlled growth of MnOOH in mixtures of Mn3O4 and MnOOH single crystals for supercapacitors. Electrochem Solid-State Lett 8:A240–A244

    Article  CAS  Google Scholar 

  44. Li F, Wu J, Qin Q, Li Z, Huang X (2010) Facile synthesis of γ-MnOOH micro/nanorods and their conversion to β-MnO2, Mn3O4. J Alloy Comp 492:339–346

    Article  CAS  Google Scholar 

  45. Folch B, Larionova J, Guari Y, Guérin C, Reibel C (2005) Synthesis of MnOOH nanorods by cluster growth route from [Mn12O12(RCOO)16(H2O)n] (R = CH3, C2H5). Rational conversion of MnOOH into Mn3O4 or MnO2 nanorods. J Solid State Chem 178:2368–2375

    Article  CAS  Google Scholar 

  46. Zhou F, Zhao X, Yuan C, Xu H (2007) Synthesis of γ-MnOOH nanorods and their isomorphous transformation into β-MnO2 and α-Mn2O3 nanorods. J Mater Sci 42:9978–9982

    Article  CAS  Google Scholar 

  47. Gao L, Fei L, Zheng H (2007) Preparation of α-MnO2 nanowires through a γ-MnOOH precursor route. Mater Lett 61:1785–1788

    Article  CAS  Google Scholar 

  48. Zhang YC, Qiao T, Hu XY, Zhou WD (2005) Simple hydrothermal preparation of γ-MnOOH nanowires and their low-temperature thermal conversion to β-MnO2 nanowires. J Cryst Growth 280:652–657

    Article  CAS  Google Scholar 

  49. Wang HZ, Zhao HL, Liu B, Zhang XT, Du ZL, Yang WS (2010) Facile preparation of Mn2O3 nanowires by thermal decomposition of MnCO3. Chem Res Chinese U 26:5–7

    Google Scholar 

  50. Du K, Hu GR, Peng ZD, Qi L (2010) Synthesis of spinel LiMn2O4 with manganese carbonate prepared by micro-emulsion method. Electrochim Acta 55:1733–1739

    Article  CAS  Google Scholar 

  51. Guo H-j, Li X-h, Wang Z-x, Peng W-j, Cao X, Li H-f (2009) Preparation of manganese oxide with high density by decomposition of MnCO3 and its application to synthesis of LiMn2O4. J Power Sourc 189:95–100

    Google Scholar 

  52. Sampanthar JT et al (2007) Template-free low temperature hydrothermal synthesis and characterization of rod-shaped manganese oxyhydroxides and manganese oxides. Nanotechnology 18:025601

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Key Technology R&D Program (2011BAC10B03), the Natural Scientific Foundation for Universities in Jiangsu Province (11KJB150003), and the Practice and Innovation Project for Jiangsu Undergraduates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongchun Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Xu, J., Chen, X. et al. A simple hydrothermal route to synthesis of rod-like MnOOH and spindle-shaped MnCO3 . Colloid Polym Sci 289, 1643–1651 (2011). https://doi.org/10.1007/s00396-011-2486-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-011-2486-9

Keywords

Navigation