Skip to main content
Log in

Effects of pH and temperature on assembly of multiresponsive Janus microgels

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Multiresponsive behaviors of Janus microgels whose properties of both hemispheres are different are presented. We fabricated the multiresponsive Janus microgels by post-polymerization modification at an oil/water interface. To prevent the microgels from wobbling at the interface during the modification process, oil droplets stabilized by microgels were solidified by cooling. Temperature- and pH-responsive behaviors of Janus microgels were characterized both by dynamic light scattering and by optical microscopy. By changing temperature and pH, behaviors of Janus microgels could be controlled; they dispersed individually or assembled into specific structures. The stimuli-responsive behaviors of Janus microgels may be used as microactuators or candidates in developing more precisely controlled particle clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Saunders BR, Vincent B (1999) Adv Colloid Interface Sci 80:1–25

    Article  CAS  Google Scholar 

  2. Pelton R (2000) Adv Colloid Interface Sci 85:1–33

    Article  CAS  Google Scholar 

  3. Kawaguchi H (2000) Prog Polym Sci 25:1171–1210

    Article  CAS  Google Scholar 

  4. Nayak S, Lyon LA (2005) Angew Chem Int Ed 44:7686–7708

    Article  CAS  Google Scholar 

  5. Hsiue GH, Hsu SH, Yang CC, Lee SH, Yang IK (2002) Biomaterials 23:457–462

    Article  CAS  Google Scholar 

  6. Nayak S, Lee H, Chmielewski J, Lyon LA (2004) J Am Chem Soc 126:10258–10259

    Article  CAS  Google Scholar 

  7. Bae Y, Jang WD, Nishiyama N, Fukushima S, Kataoka K (2005) Mol Biosyst 1:242–250

    Article  CAS  Google Scholar 

  8. Tamura A, Oishi M, Nagasaki Y (2009) Biomacromolecules 10:1818–1827

    Article  CAS  Google Scholar 

  9. Morris GE, Vincent B, Snowden MJ (1997) J Colloid Interface Sci 190:198–205

    Article  CAS  Google Scholar 

  10. Kawaguchi H, Kisara K, Takahashi T, Achiha K, Yasui M, Fujimoto K (2000) Macromol Symp 151:591–598

    Article  CAS  Google Scholar 

  11. Zhang J, Xu S, Kumacheva E (2004) J Am Chem Soc 126:7908–7914

    Article  CAS  Google Scholar 

  12. Suzuki D, Kawaguchi H (2005) Langmuir 21:8175–8179

    Article  CAS  Google Scholar 

  13. Suzuki D, Kawaguchi H (2006) Colloid Polym Sci 284:1443–1451

    Article  CAS  Google Scholar 

  14. Lu Y, Mei Y, Ballauff M, Drechsler M (2006) J Phys Chem B 110:3930–3937

    Article  CAS  Google Scholar 

  15. Weissman JM, Sunkara HB, Tse AS, Asher SA (1996) Science 274:959–960

    Article  CAS  Google Scholar 

  16. Lyon LA, Debord JD, Debord SB, Jones CD, McGrath JG, Serpe MJ (2004) J Phys Chem B 108:19099–19108

    Article  CAS  Google Scholar 

  17. Tsuji S, Kawaguchi H (2005) Langmuir 21:8439–8442

    Article  CAS  Google Scholar 

  18. Suzuki D, McGrath JG, Kawaguchi H, Lyon LA (2007) J Phys Chem C 111:5667–5672

    Article  CAS  Google Scholar 

  19. Ngai T, Behrens SH, Auweter H (2005) Chem Comm 3:331–333

    Article  Google Scholar 

  20. Fujii S, Read E, Binks BP, Armes SP (2005) Adv Mater 17:1014–1018

    Article  CAS  Google Scholar 

  21. Tsuji S, Kawaguchi H (2008) Langmuir 24:3300–3305

    Article  CAS  Google Scholar 

  22. Brugger B, Richtering W (2008) Langmuir 24:7769–7777

    Article  CAS  Google Scholar 

  23. Pelton RH, Chibante P (1986) Colloids Surf 20:247–256

    Article  CAS  Google Scholar 

  24. Ito S, Ogawa K, Suzuki H, Wang BL, Yoshida R, Kokufuta E (1999) Langmuir 15:4289–4294

    Article  CAS  Google Scholar 

  25. Hayashi H, Iijima M, Kataoka K, Nagasaki Y (2004) Macromolecules 37:5389–5396

    Article  CAS  Google Scholar 

  26. Sershen SR, Westcott SL, Halas NJ, West JL (2000) J Biomed Mater Res 51:293–298

    Article  CAS  Google Scholar 

  27. Nayak S, Lyon LA (2004) Chem Mater 16:2623–2627

    Article  CAS  Google Scholar 

  28. Suzuki D, Sakai T, Yoshida R (2008) Angew Chem Int Ed 47:917–920

    Article  CAS  Google Scholar 

  29. Suzuki D, Yoshida R (2008) Macromolecules 41:5830–5838

    Article  CAS  Google Scholar 

  30. Suzuki D, Yoshida R (2008) J Phys Chem B 112:12618–12624

    Article  CAS  Google Scholar 

  31. Suzuki D, Taniguchi H, Yoshida R (2009) J Am Chem Soc 131:12058–12059

    Article  CAS  Google Scholar 

  32. Taniguchi H, Suzuki D, Yoshida R (2010) J Phys Chem B 114:2405–2410

    Article  CAS  Google Scholar 

  33. Suzuki D, Yoshida R (2010) Polym J 42:501–508

    Article  CAS  Google Scholar 

  34. Ole Kiminta DM, Luckham PF, Lenon S (1995) Polymer 36:4827–4831

    Google Scholar 

  35. Debord JD, Lyon LA (2000) J Phys Chem B 104:6327–6331

    Article  CAS  Google Scholar 

  36. Jones CD, Lyon LA (2003) J Am Chem Soc 125:460–465

    Article  CAS  Google Scholar 

  37. Suzuki D, Tsuji S, Kawaguchi H (2007) J Am Chem Soc 129:8088–8089

    Article  CAS  Google Scholar 

  38. Pickering SU (1907) J Chem Soc Trans 91:2001–2021

    Article  Google Scholar 

  39. Hong L, Jiang S, Granick S (2006) Langmuir 22:9495–9499

    Article  CAS  Google Scholar 

  40. Jiang S, Chen Q, Tripathy M, Luijten E, Schweizer KS, Granick S (2010) Adv Mater 22:1060–1071

    Article  CAS  Google Scholar 

  41. Meng ZY, Smith MH, Lyon LA (2009) Colloid Polym Sci 287:277–285

    Article  CAS  Google Scholar 

  42. Kaszuba M, McKnight D, Connah MT, McNeil-Watson FK, Nobbmann U (2008) J Nanopart Res 10:823–829

    Article  CAS  Google Scholar 

  43. Heskins M, Guillet JE (1968) J Macromol Sci Chem A2:1441–1455

    Article  Google Scholar 

  44. Schild HG (1992) Prog Polym Sci 17:163–249

    Article  CAS  Google Scholar 

  45. Wu C, Zhou S (1997) Macromolecules 30:574–576

    Article  CAS  Google Scholar 

Download references

Acknowledgment

D.S. acknowledges Prof. Haruma Kawaguchi of Kanagawa University for permitting us to continue this research. D.S. acknowledges Grant-in-Aid for Young Scientists (A) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (22685024). This work was partially supported by MEXT’s program “Promotion of Environmental Improvement for Independence of Young Researchers” under the Special Coordination Funds for Promoting Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Suzuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Umeda, Y., Kobayashi, T., Hirai, T. et al. Effects of pH and temperature on assembly of multiresponsive Janus microgels. Colloid Polym Sci 289, 729–737 (2011). https://doi.org/10.1007/s00396-010-2356-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-010-2356-x

Keywords

Navigation