Skip to main content
Log in

Initial inter-phase transport of compounds in a model emulsion system

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The individual compounds in an emulsion system of water, a commercial surfactant, Laureth 4, and salicylic acid were brought into contact in order to estimate the difference between emulsion phase changes during evaporation and those expected from equilibrium conditions. The transfer of compounds between the phases was followed by visual observation of new phases appearing and the movement of the interfaces. The results showed the structure of the phases to exert a strong effect on the rate of the relocation of the compounds between the phases. The most conspicuous effect was found in the actions involving the solid phase, but even the isotropic liquid phases revealed significant differences in the rate of inter-phase transfer due to difference in diffusion rate between single molecules and inverse micelles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Sjoeblom J (2001) Handbook of emulsion technology. Marcel Dekker, New York, USA

    Google Scholar 

  2. Bibette J, Leal-Calderon F, Poulin P (1999) Emulsions: basic principles. Rep Prog Phys 62:969–1033

    Article  CAS  Google Scholar 

  3. Binks PB (1998) Modern aspects of emulsion science. Society of Chemistry, Cambridge, UK

    Book  Google Scholar 

  4. McClements DJ (2005) Food emulsions. CRC Press, Boca Raton, FA, USA

    Google Scholar 

  5. Aserine A (2008) Multiple emulsions. Wiley, Hoboken, NJ, USA

    Google Scholar 

  6. Fan H, Van Swol F, Lu Y, Brinker CJ (2001) Multiphased assembly of nanoporous silica particles. J Non-Crystalline Solids 285:71–78

    Article  CAS  Google Scholar 

  7. Zarur AJ, Ying JY (2000) Microemulsion synthesis of nanostructured complex oxides for catalytic combustion. Nature 403:65–67

    Article  CAS  Google Scholar 

  8. Chen DH, Chen CJ (2002) Formation and characterization of Au–Ag bimetallic nanoparticles in water-in-oil microemulsions. J Mater Chem 12:1557–1562

    Article  CAS  Google Scholar 

  9. Alberius PCA, Frindell KL, Hayward RC, Kramer EJ, Stucky GS, Chmelka BF (2002) General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin films. Chem Mater 14:3284–3294

    Article  CAS  Google Scholar 

  10. Andersson N, Kronberg B, Corkery R, Alberius P (2007) Combined emulsion and solvent evaporation (ESE) synthesis route to well-ordered mesoporous materials. Langmuir 23:1459–1464

    Article  CAS  Google Scholar 

  11. Gonzales KE, Sjunua J, Baraton MJ (1998) Synthesis and surface characterization of functionalized polyactide copolymer particles. Biomaterials 19:1501–1505

    Article  Google Scholar 

  12. Lorenceau E, Utada AS, Link DR, Cristobal G, Joanicot M, Weitz DA (2005) Generation of polymerosomes from double-emulsions. Langmuir 21:9183–9186

    Article  CAS  Google Scholar 

  13. Behera BC, Sahoo SK, Dhai S, Barik BB, Gupta BK (2008) Characterization of glipizide-loaded polymethacrylate microspheres prepared by an emulsion evaporation method. Tropical J Pharm Res 7:879–885

    Google Scholar 

  14. Lin KH, Lai LJ, Chang ChCh, Chen H (2008) Assembly of microspheres with polymer shells by evaporating emulsion droplets. Phys Rev E 78:408–413

    Google Scholar 

  15. Della Porta G, Reverchon E (2008) Nanostructured microspheres produced by supercritical fluid extraction of emulsions. Biotechnol. Bioeng 100:2362–2378

    Article  CAS  Google Scholar 

  16. Kamyshny A, Ben-Moshe M, Aviezer S, Magdassi S (2005) Ink-jet printing of metallic nanoparticles and microemulsions. Macromol Rapid Commun 26:281–288

    Article  CAS  Google Scholar 

  17. Sarikaya Y, Seving I, Onal M, Aroglu A (2001) Determination of some of the physicochemical properties of fine alumina powder prepared by emulsions evaporation. Turk J Chem 25:283–291

    CAS  Google Scholar 

  18. Pearce EI, Tomlinson A, Blades KJ, Falkenberg HK, Lindsay B, Wilson CG (2000) Effect of an oil and water emulsion on tear evaporation rate. Cornea 19:114–117

    Article  Google Scholar 

  19. Liu J, Zhang Z, Zhong Z, He Q (2006) Study of the oppression of EGFP; TK loaded PLGA-nanoparticles in hepatocarcinoma cells. Asian J Pharm Sci 1:193–198

    CAS  Google Scholar 

  20. Blino VI, Dobrynina VV (1971) Evaporation of emulsion drops in still air. J Eng Phys Thermophys 21:973–978

    Google Scholar 

  21. Aranberri I, Binks BP, Clint JH, Fletcher PDI (2004) Evaporation rates of water from concentrated oil-in-water emulsions. Langmuir 20:2069–2074

    Article  CAS  Google Scholar 

  22. Beverley KJ, Clint JH, Fletcher PDI (1999) Evaporation rates of pure liquids measured using a gravimetric technique. Phys Chem Chem Phys 1:149–153

    Article  CAS  Google Scholar 

  23. Beverley KJ, Clint JH, Fletcher PDI (2000) Evaporation rates of structured and non-structured liquid mixtures. Phys Chem Chem Phys 2:4173–4177

    Article  CAS  Google Scholar 

  24. Aranberri I, Beverley KJ, Binks BP, Clint JH, Fletcher PDI (2002) How do emulsions evaporate? Langmuir 18:3471–3475

    Article  CAS  Google Scholar 

  25. Aranberri I, Binks BP, Clint JH, Fletcher PDI (2003) Retardation of oil drop evaporation from oil-in-water emulsions. Chem Comm 21:2538–2539

    Google Scholar 

  26. Plawsky JL, Ojha M, Chatterjee A, Wayner PC (2008) A review of the effects of surface topography, surface chemistry and fluid physics on evaporation at the contact line. Chem Eng Comm 196:658–696

    Article  CAS  Google Scholar 

  27. Kapilashrami A, Eskilsson K, Bergstrom L, Malmsten M (2004) Effects of oil viscosity and substrate energy on drying of diluted O/W emulsions. Colloids Surf A: Physicochem Eng Asp 233:155–161

    Article  CAS  Google Scholar 

  28. Saettone MF, Annipieri E, Cervetto L, Eschini N, Carelli V (1980) Electrical impedance changes and water content in O/W emulsions during evaporation. Int J Cosmet Sci 2(2):63–75

    Article  CAS  Google Scholar 

  29. Friberg SE, Huang T, Aikens PA (1997) Phase changes during evaporation from a vegetable oil emulsion stabilized by a polyoxyethylene 20 sorbitanoleate, Tween 80. Colloids Surf A: Physicochem Eng Asp 121:1–7

    Article  CAS  Google Scholar 

  30. Friberg SE, Al-Bawab A (2005) Analytical expressions to calculate relative amounts of phases in a three-phase emulsion. Langmuir 21:9896–9900

    Article  CAS  Google Scholar 

  31. Friberg SE (2006) Weight fractions in a three-phase emulsion with an L(α) Phase. Colloids Surf A: Physicochem Eng Asp 282–283:369–376

    Article  CAS  Google Scholar 

  32. Friberg SE (2007) Evaporation from a three-phase emulsion. Can J Chem Eng 85:602–608

    Article  CAS  Google Scholar 

  33. Friberg SE (2007) Evaporation from a limonene emulsion. J Dispersion Sci Technol 28:11–20

    Article  CAS  Google Scholar 

  34. Friberg SE, Al-Bawab A, Odeh F, Bozeya A, Aikens PA (2009) Emulsion evaporation path: a first comparison of experimental and calculated values. Colloids Surf A: Physicochem Eng Asp 338:102–106

    Article  CAS  Google Scholar 

  35. Neogi P, Kim M, Friberg SE (1985) Hydrocarbon extraction into a surfactant phase with a non-ionic surfactant. Sep Sci Technol 20:613–622

    Article  CAS  Google Scholar 

  36. Friberg SE, Podzimek M, Neogi P (1986) Transient liquid crystals in a W/O microemulsion. J Dispersion Sci Technol 7:57–79

    Article  CAS  Google Scholar 

  37. Miller CA, Neogi P (2008) Interfacial phenomena equilibrium and dynamic effects. CRC Press, Baton Rouge FA, USA

    Google Scholar 

  38. Masliyah JH, Bhattacharjee S (2006) Electrokinetic and colloid transport phenomena. Wiley Interscience, NJ, USA

    Book  Google Scholar 

  39. Al-Bawb A, Friberg SE, Bergamashi M, DosSantos ODP (2007) Some non-equilibrium phenomena in the malic acid /water polysorbate 81 system. Int J Pharm 332:140–146

    Article  CAS  Google Scholar 

  40. Sternling CV, Scriven LE (1959) Hydrodynamic stabilization and the marangoni effect. J AIChE 5:514–523

    Article  CAS  Google Scholar 

  41. Kakiuchi T (2002) Electrochemical instability of the liquid/liquid interface in the presence of ionic surfactant adsorption. J Electroanal Chem 536:63–66

    Article  CAS  Google Scholar 

  42. Ruschak KJ, Miller CA (1972) Spontaneous emulsification in ternary systems with mass transfer. Ind Eng Chem Fundam 11:574–583

    Article  Google Scholar 

  43. Miller CA (1988) Spontaneous emulsification produced by diffusion: a review. Colloids Surf A: Physicochem Eng Asp 29:89–102

    CAS  Google Scholar 

  44. Shahidzadeh N, Bonn D, Meunier J (1997) A new mechanism of spontaneous emulsification: relation to surfactant properties. Europhys Let 40:459–464

    Article  CAS  Google Scholar 

  45. Tauer K, Kozempel S, Rother G (2007) The interface engine: experimental consequences. J Colloid Interface Sci 312:432–438

    Article  CAS  Google Scholar 

  46. Sacanna S, Kegel WK, Philipse AP (2007) Spontaneous oil-in-water emulsification induced by charge-stabilized dispersions of various inorganic colloids. Langmuir 98:10496–10492

    Google Scholar 

  47. Sajjadi S, Jahanzad F, Brooks BW (2002) Phase inversion in abnormal O/W/O emulsions: effect of surfactant concentration. Ind Eng Chem Res 41:6033–6041

    Article  CAS  Google Scholar 

  48. Sajjadi S, Jahanzad F, Yianneskis M, Brooks BW (2003) Phase inversion in abnormal O/W/O emulsions: effect of surfactant hydrophilic-lipophilic balance. Ind Eng Chem Res 42:3571–3577

    Article  CAS  Google Scholar 

  49. Sajjadi S, Zerfa M, Brooks BW (2003) Phase inversion in p-xylene-water emulsions with the non-ionic surfactant pair sorbitan monolaurate/polyoxyethylene sorbitan monolaurate (Span20/Tween20). Colloids Surf A: Physicochem Eng Asp 218:241–254

    Article  CAS  Google Scholar 

  50. Salager JL, Marquéz L, Peña AA, Rondón M, Silva F, Tyrode E (2000) Current phenomenological know-how and modelling of emulsion inversion. Ind Eng Chem Res 39:2665–2675

    Article  CAS  Google Scholar 

  51. Salager JL, Forgiarini A, Marquéz L, Peña A, Pizzino A, Rodriguez MP, González MR (2004) Using emulsion inversion in industrial process. Adv Colloid Interface Sci 259(108–109):259–272

    Article  CAS  Google Scholar 

  52. Friberg SE, Al-Bawab A (2006) Phase behavior of beta-hydroxy acids with Laureth 4. J Pharm Sci 95:1834–1840

    Article  CAS  Google Scholar 

  53. Wennerstrom H (1990) The unbinding transition lamellar phase-lamellar phase coexistence. Langmuir 6:834–836

    Article  Google Scholar 

  54. Rong G, Yang Y, Friberg SE, Aikens PA, Greenshields J (1996) Complex lamellar structure of polyoxyethylene (20) sorbitan mono-oleate and a fatty acid/lecithin lamellar liquid crystal. Langmuir 12:4286–4291

    Article  CAS  Google Scholar 

  55. Koetz J, Kosmella S (1999) Polymers in liquid crystals. Curr Op Colloid Interface Sci 4:348–353

    Article  Google Scholar 

  56. Koetz J, Tiersch B, Bogen I (2000) Polyeletrolyte-induced vesicle formation in lamellar liquid-crystalline model systems. Colloid Polym Sci 278:164–168

    Article  Google Scholar 

  57. Varade D, Kunieda H, Strey R, Stubenrauch CJ (2006) Disconnected lamellar phases (Lα) in pseudobinary water-non-ionic surfactant systems: a general phenomenon. J Colloid Interface Sci 300:338–342

    Article  CAS  Google Scholar 

  58. Frank C, Strey R, Schmidt C, Stubenrauch C (2007) Coexisting lamellar phases in a water-oil-surfactant system induced by addition of a block-co-polymer. J Colloid Interface Sci 312:78–86

    Article  CAS  Google Scholar 

  59. Campbell S, Yang H, Patel R, Friberg SE, Aikens A (1997) Kinetics of vesicle formation. Colloid Polym Sci 275:303–306

    Article  CAS  Google Scholar 

  60. Campbell S, Zhang Z, Friberg SE, Patel R (1998) Kinetics of formation of vesicles from lecithin/sodium xylenesulphonate micelles from stopped-flow measurements. Langmuir 14:590–598

    Article  CAS  Google Scholar 

  61. Chen J, Ge LL, Friberg SE, Guo R (in press) Inter-phase transport in a salicylic acid emulsion. J Dispersion Sci Technol (in press)

Download references

Acknowledgment

This work was supported by the National Nature Science Foundation of China (No. 20633010 and 20773106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stig E. Friberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Ge, L., Friberg, S.E. et al. Initial inter-phase transport of compounds in a model emulsion system. Colloid Polym Sci 288, 479–486 (2010). https://doi.org/10.1007/s00396-009-2166-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2166-1

Keywords

Navigation