Skip to main content
Log in

Growth mechanism of gold nanoparticles decorated on polystyrene spheres via self-regulated reduction

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Uniform polystyrene (PS) microspheres prepared for deposition of metallic nanoparticles were synthesized using the surfactant-free emulsion polymerization based on styrene/potassium persulfate/water (St/KPS/H2O) system. Owing to the presence of sulfate groups, the PS microspheres can be utilized to reduce gold nanoparticles without adding extra reducing agent into the mixture. The synthesis and characterization of metal-polystyrene nanocomposites are reported, and a possible reduction mechanism is proposed: by heating the aqueous solution in the presence of metal ions and PS, the sulfate chain end groups of the PS hydrolyzed and transformed to hydroxyl groups firstly. The hydroxyl groups function as a reducing agent, and carboxylic groups provide a site to adsorb the gold nuclei. The Au nanoparticles grow in size with the coalescence and dissolving of nuclei through the Ostwald ripening process. The PS microspheres and Au nanoparticles were characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, X-ray power diffraction, and thermal gravimetric analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liang Z, Susha A, Caruso F (2003) Chem Mater 15:3176

    Article  CAS  Google Scholar 

  2. Lu Y, Mei Y, Schrinner M, Ballauff M, Moller MW, Breu J (2007) J Phys Chem C 111:7676

    Article  CAS  Google Scholar 

  3. Yang X, Zhang Y (2004) Langmuir 20:6071

    Article  CAS  Google Scholar 

  4. Chen CW, Serizawa T, Akashi M (1999) Langmuir 15:7998

    Article  CAS  Google Scholar 

  5. Dokoutchaev A, James JT, Koene SC, Pathak S, Prakash GKS, Thompson ME (1999) Chem Mater 11:2389

    Article  CAS  Google Scholar 

  6. Xia H, Zhang Y, Sun S, Fang Y (2007) Colloid Polym Sci 285:1655

    Article  CAS  Google Scholar 

  7. Wang PH, Pan CY (2000) J Appl Polym Sci 75:1693

    Article  CAS  Google Scholar 

  8. Mohammed HS, Shipp DA (2006) Macromol Rapid Commun 27:1774

    Article  CAS  Google Scholar 

  9. Yong KT, Sahoo Y, Swihart MT, Prasad PN (2006) Colloids Surf A: Physicochem Eng Aspects 290:89

    Article  CAS  Google Scholar 

  10. Pol VG, Grisaru H, Gedanken A (2005) Langmuir 21:3635

    Article  CAS  Google Scholar 

  11. Shi W, Sahoo Y, Swihart MT, Prasad PN (2005) Langmuir 21:1610

    Article  CAS  Google Scholar 

  12. Tian C, Wang E, Kang Z, Mao B, Zhang C, Lan Y, Wang C, Song Y (2006) J Solid State Chem 179:3270

    Article  CAS  Google Scholar 

  13. Mei Y, Lu Y, Polzer F, Ballauff M (2007) Chem Mater 19:1062

    Article  CAS  Google Scholar 

  14. Raveendran P, Goyal A, Blatchford MA, Wallen SL (2006) Mater Lett 60:897

    Article  CAS  Google Scholar 

  15. Note C, Koetz J, Kosmella S, Tiersch B (2005) Colloid Polym Sci 283:1334

    Article  CAS  Google Scholar 

  16. Lee CL, Wan CC, Wang YY (2001) Adv Funct Mater 11:344

    Article  CAS  Google Scholar 

  17. Kim DW, Lee JM, Oh C, Kim DS, Oh SG (2006) J Colloid Interface Sci 297:365

    Article  CAS  Google Scholar 

  18. Ou JL, Chang CP, Sung Y, Ou KL, Tseng CC, Ling HW, Ger MD (2007) Colloids Surf A: Physicochem Eng Aspects 305:36

    Article  CAS  Google Scholar 

  19. Tseng CC, Kuo JL, Chang CP, Hwu WH, Ger MD (2007) Paper presented at the 20th international microprocesses and nanotechnology conference, International Conference Center, Kyoto, Japan (MNC 2007), paper no. 147

  20. Ou JL, Yang JK, Chen H (2001) Eur Polym J 37:789

    Article  CAS  Google Scholar 

  21. Cao L, Zhu T, Liu Z (2006) J Colloid Interface Sci 293:69

    Article  CAS  Google Scholar 

  22. Huang H, Yang X (2005) Colloids Surf A: Physicochem Eng Aspects 255:11

    Article  CAS  Google Scholar 

  23. Grace AN, Pandian K, Yang X (2006) Colloids Surf A: Physicochem Eng Aspects 290:138

    Article  CAS  Google Scholar 

  24. Lee JH, Kamada K, Enomoto N, Hojo J (2007) J Colloid Interface Sci 316:887

    Article  CAS  Google Scholar 

  25. Xu K, Guo ZR, Gu N (2009) Chin Chem Lett 20:241

    Article  CAS  Google Scholar 

  26. Sun Y, Xia Y (2002) Science 298:2176

    Article  CAS  Google Scholar 

  27. Vanderhoff JW (1980) Pure & Appl Chem 51:1263

    Article  Google Scholar 

  28. Rodríguez AM, Vílchez MAC, Álvarez RH (1996) Colloids Surf A: Physicochem Eng Aspects 108:263

    Article  Google Scholar 

  29. Bastos D, Hidalgo-Álvarez R, De las Nieves FJ (1996) J Colloid Interface Sci 177:372

    Article  Google Scholar 

  30. Polzonetti G, Russo MV, Furlani A, Infante G (1993) Chem Phys Lett 214:333

    Article  CAS  Google Scholar 

  31. Moore RGC, Evans SD, Shen T, Hodson CEC (2001) Physica E 9:253

    Article  CAS  Google Scholar 

  32. Lala NL, Deivaraj TC, Lee JY (2005) Colloids Surf A: Physicochem Eng Aspects 269:119

    Article  CAS  Google Scholar 

  33. Deivaraj TC, Lala NL, Lee JY (2005) J Colloid Interface Sci 289:402

    Article  CAS  Google Scholar 

  34. Radha N, El-Sayed MA (2003) J Am Chem Soc 125:8340

    Article  CAS  Google Scholar 

  35. Chung C, Lee M (2004) Bull Korean Chem Soc 25:1461

    Article  CAS  Google Scholar 

  36. Tseng CC, Chang CP, Ou JL, Sung Y, Ger MD (2009) Colloids Surf A: Physicochem Eng Aspects 333:138

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Der Ger.

Electronic supplementary material

ESM 1

(DOC 65 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, CP., Tseng, CC., Ou, JL. et al. Growth mechanism of gold nanoparticles decorated on polystyrene spheres via self-regulated reduction. Colloid Polym Sci 288, 395–403 (2010). https://doi.org/10.1007/s00396-009-2134-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2134-9

Keywords

Navigation