Skip to main content
Log in

Effect of temperature gradient on the development of β phase polypropylene in dynamically vulcanized PP/EPDM blends

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Different sample thicknesses were adopted to investigate the effect of temperature gradient on the development of β phase polypropylene (PP) in the compression-molded dynamically vulcanized thermoplastic elastomers (TPVs) based on PP/ethylene-propylene-diene rubber blend. Differential scanning calorimetry and wide-angle X-ray diffraction were employed to study the melting behavior and crystalline structures. The results indicated that the content of β phase increased with the sample thickness of TPV increasing, while the total crystallinity of PP almost kept constant. The simulation of the temperature field showed that there was a temperature gradient along the direction of sample thickness, and the strength of the temperature gradient increased with the thickness of TPV increasing. The reason for the change of β phase content was found to lie in the reduction of the entropy in the temperature gradient field, which was a result from the decrease of the molecular chain conformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Lotz B (2000) Eur Phys J 3:185

    CAS  Google Scholar 

  2. Tjong SC, Li RKY, Cheung T (1997) Polym Eng Sci 37:166

    Article  CAS  Google Scholar 

  3. Karger-Kocsis J (1996) Polym Eng Sci 36:203

    Article  CAS  Google Scholar 

  4. Varga J, Schulek-Tóth F, Ille A (1991) Colloid Polym Sci 269:655

    Article  CAS  Google Scholar 

  5. Yuan Q, Jiang W, An LJ (2004) Colloid Polym Sci 282:1236

    Article  CAS  Google Scholar 

  6. Hou WM, Liu G, Zhou JJ, Gao X, Li Y, Li Y, Zheng S, Xin Z, Zhao LQ (2006) Colloid Polym Sci 285:11

    Article  CAS  Google Scholar 

  7. Varga J (2002) J Macromol Sci Part B: Polym Phys 41:1121

    Article  CAS  Google Scholar 

  8. Padden FJ, Keith HD (1959) J Appl Physiol 30:1479

    Article  CAS  Google Scholar 

  9. Crissman JM (1969) J Polym Sci 7:389

    CAS  Google Scholar 

  10. Varga J, Ehrenstein GW (1996) Polymer 37:5959

    Article  CAS  Google Scholar 

  11. Lovinger AJ, Chua JO, Gryte CC (1977) J Polym Sci Part B: Polym Phys 15:641

    CAS  Google Scholar 

  12. Schulze GEW, Naujeck TR (1991) Colloid Polym Sci 269:695

    Article  CAS  Google Scholar 

  13. Pawlak A, Piorkowska E (2001) Colloid Polym Sci 279:939

    Article  CAS  Google Scholar 

  14. Choi HJ, Cho MS, Kim CA, Jhon MS (1999) Polym Eng Sci 39:1473–1479

    Article  CAS  Google Scholar 

  15. Grein C (2005) Adv Polym Sci 188:43

    Article  CAS  Google Scholar 

  16. Karger-Kocsis J (1996) Polym Bull 37:119

    Article  CAS  Google Scholar 

  17. Karger-Kocsis J (1996) Polym Eng Sci 36:20

    Article  Google Scholar 

  18. Varga J, Garzo G (1990) Angew Makromol Chem 180:15

    Article  CAS  Google Scholar 

  19. Jancar J, Dianselmo A, Dibenedetto AT, Kucera J (1993) Polymer 34:1684

    Article  CAS  Google Scholar 

  20. Yokoyama Y, Ricco T (1998) Polymer 39:3675

    Article  CAS  Google Scholar 

  21. Ellul MD, Tsou AH, Hu WG (2004) Polymer 45:3351

    Article  CAS  Google Scholar 

  22. Wang Y, Zhang Q, Na B, Du RN, Fu Q, Shen KZ (2003) Polymer 44:4261

    Article  CAS  Google Scholar 

  23. Wang Y, Fu Q, Li QJ, Zhang G, Shen KZ, Wang YZ (2002) J Polym Sci Part B: Polym Phys 40:2086

    Article  CAS  Google Scholar 

  24. Bai HW, Wang Y, Song B, Li YL, Liu L (2008) J Polym Sci Part B: Polym Phys 46:577

    Article  CAS  Google Scholar 

  25. Bai HW, Wang Y, Song B, Huang T, Han L (2009) J Polym Sci Part B: Polym Phys 47:46

    Article  CAS  Google Scholar 

  26. Kim JK, Park JY, Lee KK, Bae CH, Kim SJ (2000) Rubber Technol 1:87

    Google Scholar 

  27. Kim JK, Lee SH, Hwang SH (2002) J Appl Polym Sci 85:2276

    Article  CAS  Google Scholar 

  28. Kim JK, Lee SH (2002) Rubber World 225:26

    CAS  Google Scholar 

  29. van Duin M (2006) Macromol Symp 233:11

    Article  Google Scholar 

  30. Tang XG, Bao RY, Yang W, Xie BH, Yang MB, Meng H (2009) Eur Polym J 45:1448

    Article  CAS  Google Scholar 

  31. Tang XG, Yang W, Bao RY, Shan GF, Xie BH, Yang MB, Hou M (2009) Polymer 50:4122

    Article  CAS  Google Scholar 

  32. Turner-Jones A, Aizlewood JM, Beckett DR (1964) Makromol Chem 75:134

    Article  CAS  Google Scholar 

  33. Yang B, Fu XR, Yang W, Huang L, Yang MB, Feng JM (2008) Polym Eng Sci 48:1707

    Article  CAS  Google Scholar 

  34. Bai Y, Yin B, Fu XR, Yang MB (2006) J Appl Polym Sci 102:2249

    Article  CAS  Google Scholar 

  35. Pethrick RA. Polymer structure characterization: from nona to macro organization. p 21

  36. Gibbs JW (1906) The scientific work of J. Willard Gibbs, Vol. 1. Longmans Green, New York, p 219

    Google Scholar 

  37. Lee KWD, Chan PK, Feng XS (2003) Macromol Theory Simul 12:413

    Article  CAS  Google Scholar 

  38. Li WB, Zhang KJ, Sengers JV, Gammon RW, Zárate JMOD (1998) Phys Rev Let 81:5580

    Article  CAS  Google Scholar 

  39. Morse TF, Cipolla JW (1984) J Colloid Int Sci 97:137

    Article  CAS  Google Scholar 

  40. Subramanian RS (1981) AIChE J 27:646

    Article  CAS  Google Scholar 

  41. Law BM, Nieuwoudt JC (1989) Phys Rev A40:3880; Velasco RM, García-Colín (1991) J Phys A 24:1007

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of National Natural Science Foundation of China (grant number 20734005), the Program for New Century Excellent Talents in University (NCET-08-0382), Doctoral Research Foundation granted by the National Ministry of Education, China (grant number 20060610029), the Special Funds for Major Basic Research of China (grant number 2005CB623808), and the support from International Postgraduate Research Scholarship, Australia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Yang or Meng Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, XG., Yang, W., Shan, GF. et al. Effect of temperature gradient on the development of β phase polypropylene in dynamically vulcanized PP/EPDM blends. Colloid Polym Sci 287, 1237–1242 (2009). https://doi.org/10.1007/s00396-009-2092-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2092-2

Keywords

Navigation