Skip to main content
Log in

Temperature-programmed synthesis of micron-sized multi-responsive microgels

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A new synthetic protocol for the synthesis of large diameter (2.5 to 5 μm), temperature-, and pH-responsive microgels via aqueous surfactant-free radical precipitation copolymerization is presented. We have found that in this size range, which is not typically attainable using traditional dispersion polymerization approaches, excellent monodispersity and size control are achieved when the synthesis employs a programmed temperature ramp from 45 to 65 °C during the nucleation stage of the polymerization. A combined kinetic and thermodynamic hypothesis for large particle formation under these conditions is described. Particle sizes, volume phase transition temperatures, and pH responsivity were characterized by particle tracking and photon correlation spectroscopy to illustrate their similar behavior to particles made via more traditional routes. These particles have been enabling for various studies in our group where microscopic visualization of the particles is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pelton RH, Chibante P (1986) Preparation of aqueous latices with N-isopropylacrylamide. Colloids Surf 20:247–256

    CAS  Google Scholar 

  2. Murray MJ, Snowden MJ (1995) The preparation, characterization and applications of colloidal microgels. Adv Colloid Interface Sci 54:73–91

    CAS  Google Scholar 

  3. Pelton R (2000) Temperature-sensitive aqueous microgels. Adv Colloid Interface Sci 85:1–33

    CAS  Google Scholar 

  4. Staudinger H, Husemann E (1935) Über hochpolymere Verbindungen, 116. Mitteil.: Über das begrenzt quellbare Poly-styrol. Ber Chem 68:1618–1634

    Google Scholar 

  5. Medalia AI (1951) Structure and thermodynamics of elastomeric microgel. J Polym Sci 6:423–431

    CAS  Google Scholar 

  6. Shashoua VE, Beaman RG (1958) Microgel—an idealized polymer molecule. J Polym Sci 33:101–117

    CAS  Google Scholar 

  7. Sieglaff CL (1963) Viscosity and swelling behaviour of lightly crosslinked microgels. Polymer 4:281–284

    CAS  Google Scholar 

  8. Keerl M, Richtering W (2007) Synergistic depression of volume phase transition temperature in copolymer microgels. Colloid Polym Sci 285:471–474

    CAS  Google Scholar 

  9. Duracher D, Elaissari A, Pichot C (1999) Characterization of cross-linked poly(N-isopropylmethacrylamide) microgel latexes. Colloid Polym Sci 277:905–913

    CAS  Google Scholar 

  10. Senff H, Richtering W (1999) Temperature sensitive microgel suspensions: colloidal phase behavior and rheology of soft spheres. J Chem Phys 111:1705–1711

    CAS  Google Scholar 

  11. Jones CD, Lyon LA (2000) Synthesis and characterization of multiresponsive core-shell microgels. Macromolecules 33:8301–8306

    CAS  Google Scholar 

  12. Ni H, Kawaguchi H, Endo T (2007) Preparation of pH-sensitive hydrogel microspheres of poly(acrylamide-co-methacrylic acid) with sharp pH-volume transition. Colloid Polym Sci 285:819–826

    CAS  Google Scholar 

  13. Ni HM, Kawaguchi H, Endo T (2007) Characteristics of pH-sensitive hydrogel microsphere of poly(acrylamide-co-meth acrylic acid) with sharp pH-volume transition. Colloid Polym Sci 285:873–879

    CAS  Google Scholar 

  14. Dai S, Ravi P, Tam KC (2008) pH-Responsive polymers: synthesis, properties and applications. Soft Matter 4:435–449

    CAS  Google Scholar 

  15. Tan BH, Tam KC (2008) Review on the dynamics and micro-structure of pH-responsive nano-colloidal systems. Adv Colloid Interface Sci 136:25–44

    CAS  Google Scholar 

  16. Greinert N, Richtering W (2004) Influence of polyelectrolyte multilayer adsorption on the temperature sensitivity of poly(N-isopropylacrylamide) (PNiPAM) microgels. Colloid Polym Sci 282:1146–1149

    CAS  Google Scholar 

  17. Kim JH, Ballauff M (1999) The volume transition in thermosensitive core-shell latex particles containing charged groups. Colloid Polym Sci 277:1210–1214

    CAS  Google Scholar 

  18. Kashiwabara M, Fujimoto K, Kawaguchi H (1995) Preparation of monodisperse, reactive hydrogel microspheres and their amphoterization. Colloid Polym Sci 273:339–345

    CAS  Google Scholar 

  19. Daly E, Saunders BR (2000) A study of the effect of electrolyte on the swelling and stability of poly(N-isopropylacrylamide) microgel dispersions. Langmuir 16:5546–5552

    CAS  Google Scholar 

  20. Zha LS, Hu JH, Wang CC, Fu SK, Luo MF (2002) The effect of electrolyte on the colloidal properties of poly(N-isopropylacrylamide-co-dimethylaminoethylmethacrylate) microgel latexes. Colloid Polym Sci 280:1116–1121

    CAS  Google Scholar 

  21. Nayak S, Lee H, Chmielewski J, Lyon LA (2004) Folate-mediated cell targeting and cytotoxicity using thermoresponsive microgels. J Am Chem Soc 126:10258–10259

    CAS  Google Scholar 

  22. Serpe MJ, Kim J, Lyon LA (2004) Colloidal hydrogel microlenses. Adv Mater 16:184–187

    CAS  Google Scholar 

  23. Kim J, Nayak S, Lyon LA (2005) Bioresponsive hydrogel microlenses. J Am Chem Soc 127:9588–9592

    CAS  Google Scholar 

  24. Kim JS, Singh N, Lyon LA (2006) Label-free biosensing with hydrogel microlenses. Angew Chem Int Ed 45:1446–1449

    CAS  Google Scholar 

  25. Bhattacharya S, Eckert F, Boyko V, Pich A (2007) Temperature-, pH-, and magnetic-field-sensitive hybrid microgels. Small 3:650–657

    CAS  Google Scholar 

  26. Snoswell DRE, Brill RK, Vincent B (2007) pH-Responsive microrods produced by electric-field-induced aggregation of colloidal particles. Adv Mater 19:1523–1527

    CAS  Google Scholar 

  27. Senff H, Richtering W (2000) Influence of cross-link density on rheological properties of temperature-sensitive microgel suspensions. Colloid Polym Sci 278:830–840

    CAS  Google Scholar 

  28. Wolfe MS (1992) Dispersion and solution rheology control with swellable microgels. Prog Org Coat 20:487–500

    CAS  Google Scholar 

  29. Lyon LA, Debord JD, Debord SB, Jones CD, McGrath JG, Serpe MJ (2004) Microgel colloidal crystals. J Phys Chem B 108:19099–19108

    CAS  Google Scholar 

  30. Suzuki D, McGrath JG, Kawaguchi H, Lyon LA (2007) Colloidal crystals of thermosensitive, core/shell hybrid microgels. J Phys Chem C 111:5667–5672

    CAS  Google Scholar 

  31. Reese CE, Mikhonin AV, Kamenjicki M, Tikhonov A, Asher SA (2004) Nanogel nanosecond photonic crystal optical switching. J Am Chem Soc 126:1493–1496

    CAS  Google Scholar 

  32. Xu SQ, Zhang JG, Paquet C, Lin YK, Kumacheva E (2003) From hybrid microgels to photonic crystals. Adv Funct Mater 13:468–472

    CAS  Google Scholar 

  33. Meng Z, Cho JK, Debord S, Breedveld V, Lyon LA (2007) Crystallization behavior of soft, attractive microgels. J Phys Chem B 111:6992–6997

    CAS  Google Scholar 

  34. Freemont TJ, Saunders BR (2008) PH-responsive microgel dispersions for repairing damaged load-bearing soft tissue. Soft Matter 4:919–924

    CAS  Google Scholar 

  35. Retama JR, Lopez-Ruiz B, Lopez-Cabarcos E (2003) Microstructural modifications induced by the entrapped glucose oxidase in cross-linked polyacrylamide microgels used as glucose sensors. Biomaterials 24:2965–2973

    CAS  Google Scholar 

  36. Khoury C, Adalsteinsson T, Johnson B, Crone WC, Beebe DJ (2003) Tunable microfabricated hydrogels - A study in protein interaction and diffusion. Biomed Microdevices 5:35–45

    CAS  Google Scholar 

  37. Perez JPH, Lopez MSP, Lopez-Cabarcos E, Lopez-Ruiz B (2006) Amperometric tyrosinase biosensor based on polyacrylamide microgels. Biosens Bioelect 22:429–439

    Google Scholar 

  38. Kawaguchi H, Fujimoto K, Mizuhara Y (1992) Hydrogel microspheres.3. Temperature-dependent adsorption of proteins on poly-N-isopropylacrylamide hydrogel microspheres. Colloid Polym Sci 270:53–57

    CAS  Google Scholar 

  39. Fang SJ, Kawaguchi H (2002) A thermosensitive amphoteric microsphere and its potential application as a biological carrier. Colloid Polym Sci 280:984–989

    CAS  Google Scholar 

  40. Kiser PF, Wilson G, Needham D (2000) Lipid-coated microgels for the triggered release of doxorubicin. J Control Release 68:9–22

    CAS  Google Scholar 

  41. Nolan CM, Gelbaum LT, Lyon LA (2006) H-1 NMR investigation of thermally triggered insulin release from poly(N-isopropylacrylamide) microgels. Biomacromolecules 7:2918–2922

    CAS  Google Scholar 

  42. Serpe MJ, Yarmey KA, Nolan CM, Lyon LA (2005) Doxorubicin uptake and release from microgel thin films. Biomacromolecules 6:408–413

    CAS  Google Scholar 

  43. Ogawa K, Wang B, Kokufuta E (2001) Enzyme-regulated microgel collapse for controlled membrane permeability. Langmuir 17:4704–4707

    CAS  Google Scholar 

  44. Hirose Y, Amiya T, Hirokawa Y, Tanaka T (1987) Phase-transition of submicron gel beads. Macromolecules 20:1342–1344

    CAS  Google Scholar 

  45. Blackburn WH, Lyon LA (2008) Size-controlled synthesis of monodisperse core/shell nanogels. Colloid Polym Sci 286:563–569

    CAS  Google Scholar 

  46. Murray CA, Grier DG (1996) Video microscopy of monodisperse colloidal systems. Annu Rev Phys Chem 47:421–462

    CAS  Google Scholar 

  47. Hellweg T, Dewhurst CD, Bruckner E, Kratz K, Eimer W (2000) Colloidal crystals made of poly(N-isopropylacrylamide) microgel particles. Colloid Polym Sci 278:972–978

    CAS  Google Scholar 

  48. Pecora R (1985) Dynamic light scattering. Plenum, New York

    Google Scholar 

  49. Beynon R (2006) Buffer calculator. http://www.liv.ac.uk/buffers

  50. Crocker JC, Grier DG (1996) Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179:298–310

    CAS  Google Scholar 

  51. St. John AN, Breedveld V, Lyon LA (2007) Phase behavior in highly concentrated assemblies of microgels with soft repulsive interaction potentials. J Phys Chem B 111:7796–7801

    CAS  Google Scholar 

  52. Fritz G, Schadler V, Willenbacher N, Wagner NJ (2002) Electrosteric stabilization of colloidal dispersions. Langmuir 18:6381–6390

    CAS  Google Scholar 

  53. Dai S, Ravi P, Tam KC (2008) pH-Responsive polymers: synthesis, properties, and applications. Soft Matter 4:435–449

    CAS  Google Scholar 

  54. Tan BH, Tam KC (2008) Review on the dynamics and micro-structure of pH-responsive nano-colloidal systems. Adv Colloid Interface Sci 136:25–44

    CAS  Google Scholar 

  55. Kratz K, Hellweg T, Eimer W (2000) Influence of charge density on the swelling of colloidal poly(N-isopropylacrylamide-co-acrylic acid) microgels. Colloid Surf A-Physicochem Eng Asp 170:137–149

    CAS  Google Scholar 

  56. Rasmusson M, Vincent B, Marston N (2000) The electrophoresis of poly(N-isopropylacrylamide) microgel particles. Colloid Polym Sci 278:253–258

    CAS  Google Scholar 

  57. Ohshima H (2007) Electrokinetics of soft particles. Colloid Polym Sci 285:1411–1421

    CAS  Google Scholar 

  58. Snowden MJ, Chowdhry BZ, Vincent B, Morris GE (1996) Colloidal copolymer microgels of N-isopropylacrylamide and acrylic acid: pH, ionic strength and temperature effects. J Chem Soc-Faraday Trans 92:5013–5016

    CAS  Google Scholar 

  59. Zhou SQ, Chu B (1998) Synthesis and volume phase transition of poly(methacrylic acid-co-N-isopropylacrylamide) microgel particles in water. J Phys Chem B 102:1364–1371

    CAS  Google Scholar 

  60. Debord SB, Lyon LA (2003) Influence of particle volume fraction on packing in responsive hydrogel colloidal crystals. J Phys Chem B 107:2927–2932

    CAS  Google Scholar 

  61. Serpe MJ, Lyon LA (2004) Optical and acoustic studies of pH-dependent swelling in microgel thin films. Chem Mat 16:4373–4380

    CAS  Google Scholar 

  62. Tang YC, Ding YW, Zhang GZ (2008) Role of methyl in the phase transition of poly(N-isopropylmethacrylamide). J Phys Chem B 112:8447–8451

    CAS  Google Scholar 

  63. Blackburn WH, Lyon LA (2008) Size-controlled synthesis of monodisperse core/shell nanogels. Colloid Polym Sci 286:563–569

    CAS  Google Scholar 

  64. Duracher D, Elaissari A, Pichot C (1999) Preparation of poly(N-isopropylmethacrylamide) latexes kinetic studies and characterization. J Polym Sci Pol Chem 37:1823–1837

    CAS  Google Scholar 

  65. Debord SB, Lyon LA (2003) Influence of particle volume fraction on packing in responsive hydrogel colloidal crystals. J Phys Chem B 107:2927–2932

    CAS  Google Scholar 

  66. St. John AN, Breedveld V, Lyon LA (2007) Phase behavior in highly concentrated assemblies of microgels with soft repulsive interaction potentials. J Phys Chem B 111:7796–7801

    CAS  Google Scholar 

  67. Meng Z, Cho JK, Debord S, Breedveld V, Lyon LA (2007) Crystallization behavior of soft, attractive microgels. J Phys Chem B 111:6992–6997

    CAS  Google Scholar 

  68. Xu SQ, Zhang JG, Paquet C, Lin YK, Kumacheva E (2003) From hybrid microgels to photonic crystals. Adv Funct Mater 13:468–472

    CAS  Google Scholar 

  69. Suzuki D, McGrath JG, Kawaguchi H, Lyon LA (2007) Colloidal crystals of thermosensitive, core/shell hybrid microgels. J Phys Chem C 111:5667–5672

    CAS  Google Scholar 

  70. Lyon LA, Debord JD, Debord SB, Jones CD, McGrath JG, Serpe MJ (2004) Microgel colloidal crystals. J Phys Chem B 108:19099–19108

    CAS  Google Scholar 

  71. Hansen JP, McDonald IR (2006) Theory of simple liquids. Elsevier, Amsterdam

    Google Scholar 

  72. Tan BH, Tam KC, Lam YC, Tan CB (2005) Osmotic compressibility of soft colloidal systems. Langmuir 21:4283–4290

    CAS  Google Scholar 

  73. Kawaguchi H, Kawahara M, Yaguchi N, Hoshino F, Ohtsuka Y (1988) Hydrogel microspheres.1. Preparation of monodisperse hydrogel microspheres of sub-micron or micron size. Polym J 20:903–909

    CAS  Google Scholar 

  74. Kawaguchi H, Yamada Y, Kataoka S, Morita Y, Ohtsuka Y (1991) Hydrogel microspheres. 2. Precipitation copolymerization of acrylamide with comonomers to prepare monodisperse hydrogel microspheres. Polym J 23:955–962

    CAS  Google Scholar 

  75. Martinez VS, Alvarez LP, Hernaez E, Herrero T, Katime I (2007) Synthesis, characterization, and influence of synthesis parameters on particle sizes of a new microgel family. J Polym Sci Polym Chem 45:3833–3842

    CAS  Google Scholar 

  76. Hazot P, Chapel JP, Pichot C, Elaissari A, Delair T (2002) Preparation of poly(N-ethyl methacrylamide) particles via an emulsion/precipitation process: the role of the crosslinker. J Polym Sci Polym Chem 40:1808–1817

    CAS  Google Scholar 

  77. Diaz-Camacho F, Lopez-Morales S, Vivaldo-Lima E, Saldivar-Guerra E, Vera-Graziano R, Alexandrova L (2004) Effect of regime of addition of initiator on TEMPO-mediated polymerization of styrene. Polym Bull 52:339–347

    CAS  Google Scholar 

  78. Downey JS, McIsaac G, Frank RS, Stöver DH (2001) Poly(divinylbenzene) microspheres as an intermediate morphology between microgel, macrogel, and coagulum in cross-linking precipitation polymerization. Macromolecules 34:4534–4541

    CAS  Google Scholar 

  79. Kolthoff IM, Miller IK (1951) The chemistry of persulfate. I. The kinetics and mechanism of decomposition of the persulfate ion in aqueous medium. J Am Chem Soc 73:3055–3059

    CAS  Google Scholar 

  80. Wu X, Pelton RH, Hamielec AE, Woods DR, McPhee W (1994) The kinetics of poly(N-isopropylacrylamide) microgel latex formation. Colloid Polym Sci 272:467–477

    CAS  Google Scholar 

  81. Duracher D, Elaissari A, Pichot C (1999) Preparation of poly(N-isopropylmethacrylamide) latexes: kinetic studies and characterization. J Polym Sci Polym Chem 37:1823–1837

    CAS  Google Scholar 

  82. Snowden MJ, Chowdhry BZ, Vincent B, Morris GE (1996) Colloidal copolymer microgels of N-isopropylacrylamide and acrylic acid: pH, ionic strength and temperature effects. J Chem Soc Faraday Trans 92:5013–5016

    CAS  Google Scholar 

Download references

Acknowledgment

This manuscript is dedicated to Professor Haruma Kawaguchi on the occasion of his retirement from Keio University. LAL acknowledges funding from the Georgia Institute of Technology and the Centers for Disease Control.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Andrew Lyon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, Z., Smith, M.H. & Lyon, L.A. Temperature-programmed synthesis of micron-sized multi-responsive microgels. Colloid Polym Sci 287, 277–285 (2009). https://doi.org/10.1007/s00396-008-1986-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-008-1986-8

Keywords

Navigation