Skip to main content
Log in

Polypyrrole-coated poly(vinyl chloride) powder particles: surface chemical and morphological characterisation by means of X-ray photoelectron spectroscopy and scanning electron microscopy

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Polypyrrole (PPy)-coated poly(vinyl chloride) (PVC) powder particles were prepared by the in situ chemical polymerisation of pyrrole in aqueous solutions in the presence of PVC powder particles. The PVC particles in suspension served as a hydrophobic substrate for the in situ polymerisation of pyrrole using iron chloride as the oxidising agent and sodium p-toluene sulfonate. In these conditions, tosylate-doped PPy (PPyTS) was obtained and chlorides were inserted as minor codoping species. In some cases, the pyrrole was polymerised after incubating the PVC particles with poly(N-vinyl pyrrolidone). Scanning electron microscope (SEM) micrographs showed that the PVC particles retained their initial, quasispherical shape after coating by PPy. At low magnification, the coated PVC particles appeared smooth, but at high magnification, they exhibited a decoration by elementary nanoparticles of about 200-nm size due to PPy bulk powder grains. Elemental analysis indicated a mass loading of PPy in the range 1–58% w/w. Specific surface analysis by X-ray photoelectron spectroscopy (XPS) resulted in the spectra of the PPy-coated PVC particles resembling those of bulk powder PPyTS even for low PPy mass loading. The surface fraction of PPy repeat units was found to vary in the 55–91% range. This result is consistent with the SEM observation of the PPy nanoparticles at the surface of PVC powder grains. However, despite the important loading of PPy, the XPS estimation of the overlayer thickness is in favour of a patchy coating rather than continuous coatings of PPy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. Aldissi M (ed) (1993) Intrinsically conducting polymers: an emerging technology. Kluwer, Dordrecht

    Google Scholar 

  2. Nalwa HS (ed) (1997) Handbook of organic conducting molecules and polymers, vol 2, Wiley, Chichester

  3. Skotheim TA, Elsenbaumer RL, Reynolds JR (eds) (1998) Handbook of conducting polymers, 2nd edn. Dekker, New York

  4. Rodriguez J, Grande H, Otero TF (1997) In: Nalwa HS (ed) Handbook of organic conducting molecules and polymers, vol 2, Wiley, Chichester, pp 415–468

  5. Gangopadhyay R, De A (2000) Chem Mater 12:608

    Article  CAS  Google Scholar 

  6. Miksa B, Slomkowski S (1995) Colloid Polym Sci 273:47

    Article  CAS  Google Scholar 

  7. Pope MR, Armes SP, Tarcha P (1996) Bioconjugate Chem 7:436

    Article  CAS  Google Scholar 

  8. Chehimi MM, Azioune A, Bousalem S, Ben Slimane A, Yassar A In: Elaissari A (ed) Colloid polymers: preparation and biomedical applications. Dekker, New York) (in press)

  9. Tallman DE, Pae Y, Bierwagen GP (2000) Corrosion 56:401

    Article  CAS  Google Scholar 

  10. Ferreira CA, Domenech SC, Lacaze PC (2001) J Appl Electrochem 31:49

    Article  CAS  Google Scholar 

  11. Kathirgamanathan P (1991) In: Fawcett AH (ed) High value polymers. Royal Society of Chemistry, Cambridge, pp 174–205

  12. Omastová M, Košina S, Pionteck J, Janke A, Pavlinec J (1996) Synth Met 81:49

    Article  Google Scholar 

  13. Maeda S, Armes SP (1993) J Colloid Interface Sci 159:257

    Article  CAS  Google Scholar 

  14. Perruchot C, Chehimi MM, Delamar M, Fievet F (1998) Surf Interface Anal 26:689

    Article  CAS  Google Scholar 

  15. Cho G, Glatzhofer DT, Fung BM, Yuan W-L, O'Rear EA (2000) Langmuir 16:4424

    Article  CAS  Google Scholar 

  16. Ruckenstein E, Wang S (1993) Polymer 34:4655

    Article  CAS  Google Scholar 

  17. Armes SP, Vincent B (1987) J Chem Soc Chem Commun 288

  18. Yassar A, Roncali J, Garnier F (1987) Polym Commun 28:103

    Article  CAS  Google Scholar 

  19. Wiersma AE, Steeg LMA, Jongeling TJM (1995) Synth Met 71:2269

    Article  CAS  Google Scholar 

  20. Khan MA, Armes SP (2000) Adv Mater 12:671

    Article  CAS  Google Scholar 

  21. Omastová M, Pavlinec J, Pionteck J, Simon F, Kosina S (1998) Polymer 39:6559

    Article  Google Scholar 

  22. Omastová M, Simon F (2000) J Mater Sci 35:1743

    Article  Google Scholar 

  23. Bousalem S, Yassar A, Basinska T, Miksa B, Slomkowski S, Azioune A, Chehimi MM (2003) Polym Adv Technol (in press)

  24. Ouyang M, Chan CM (1998) Polymer 39:1857

    Article  CAS  Google Scholar 

  25. Abel M-L, Chehimi MM (1994) Synth Met 66:225

    Article  CAS  Google Scholar 

  26. Chehimi MM, Abel M-L, Saoudi B, Delamar M, Jammul N, Watts JF, Zhdan PA (1996) Polimery 41:75

    CAS  Google Scholar 

  27. Chehimi MM, Abel M-L, Fricker F, Delamar M, Jada A, Brown AM, Watts JF (1998) J Chim Phys 95:1282

    Article  CAS  Google Scholar 

  28. Abel M-L, Chehimi MM, Fricker F, Delamar M, Brown AM, Watts JF (2002) J Chromatogr A 969:273

    Article  CAS  Google Scholar 

  29. Perruchot C, Chehimi MM, Delamar M, Lascelles SF, Armes SP (1996) Langmuir 12:3245

    Article  CAS  Google Scholar 

  30. Cairns DB, Armes SP, Chehimi MM, Perruchot C, Delamar M (1999) Langmuir 15:8059

    Article  CAS  Google Scholar 

  31. Barthet C, Armes SP, Chehimi MM, Bilem C, Omastova M (1998) Langmuir 14:5032

    Article  CAS  Google Scholar 

  32. Khan MA, Armes SP, Perruchot C, Ouamara H, Chehimi MM, Greaves SJ, Watts JF (2000) Langmuir 16:4171

    Article  CAS  Google Scholar 

  33. Azioune A, Chehimi MM, Miksa B, Basinska T, Slomkowski S (2002) Langmuir 18:1150

    Article  CAS  Google Scholar 

  34. Perruchot C, Chehimi MM, Delamar M, Cabet-Deliry E, Miksa B, Slomkowski S, Khan MA, Armes SP (2000) Colloid Polym Sci 278:1139

    Article  CAS  Google Scholar 

  35. Armes SP, Aldissi M (1990) Polymer 31:569

    Article  CAS  Google Scholar 

  36. (a) Chehimi MM, Abel M-L, Sahraoui Z, Fraoua K, Lascelles SF, Armes SP (1997) Int J Adhes Adhes 17:1; (b) Chehimi MM, Abdeljalil E (2002) Paper presented at Modification, degradation and stabilisation of polymers (MODEST 2002) conference, Budapest, Hungary; (c) Chehimi MM, Abdeljalil E Polym Degrad Stab (submitted)

    Article  Google Scholar 

  37. Armes SP (1987) Synth Met 20:365

    Article  CAS  Google Scholar 

  38. Kang ET, Neoh KG, Tan KL (1993) Adv Polym Sci 106:135

    Article  CAS  Google Scholar 

  39. Perruchot C (2000) PhD thesis. University Paris 7–Denis Diderot

  40. Beamson G, Briggs D (eds) (1992) High resolution XPS of organic polymers. The Scienta ESCA300 database. Wiley, Chichester

  41. Briggs D, Seah MP (eds) (1990) Practical surface analysis, 2nd edn, vol 1. Auger and X-ray photoelectron spectroscopy. Wiley, Chichester, p 209

  42. Carney TJ, Tsakiropoulos P, Watts JF, Castle JE (1990) Int J Rapid Solid 5:189

    CAS  Google Scholar 

Download references

Acknowledgements

A.B. is indebted to the University of Paris VII and the EGIDE institution for financial support through a professorship and research training scheme, respectively. All coauthors thank Pascal Bargiela for technical assistance with XPS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed M. Chehimi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben Slimane, A., Chehimi, M.M. & Vaulay, MJ. Polypyrrole-coated poly(vinyl chloride) powder particles: surface chemical and morphological characterisation by means of X-ray photoelectron spectroscopy and scanning electron microscopy. Colloid Polym Sci 282, 314–323 (2004). https://doi.org/10.1007/s00396-003-0934-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-003-0934-x

Keywords

Navigation