BMO-ESTIMATION AND ALMOST EVERYWHERE EXPONENTIAL SUMMABILITY OF QUADRATIC PARTIAL SUMS OF DOUBLE FOURIER SERIES

U. GOGINAVA, L. GOGOLADZE AND G. KARAGULYAN

Abstract

It is proved a BMO-estimation for quadratic partial sums of two-dimensional Fourier series from which it is derived an almost everywhere exponential summability of quadratic partial sums of double Fourier series.

1. Introduction

Let $\mathbb{T}:=[-\pi, \pi)=\mathbb{R} / 2 \pi$ and $\mathbb{R}:=(-\infty, \infty)$. We denote by $L_{1}(\mathbb{T})$ the class of all measurable functions f on \mathbb{R} that are 2π-periodic and satisfy

$$
\|f\|_{1}:=\int_{\mathbb{T}}|f|<\infty
$$

The Fourier series of the function $f \in L_{1}(\mathbb{T})$ with respect to the trigonometric system is the series

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} \widehat{f}(n) e^{i n x} \tag{1}
\end{equation*}
$$

where

$$
\widehat{f}(n):=\frac{1}{2 \pi} \int_{\mathbb{T}} f(x) e^{-i n x} d x
$$

are the Fourier coefficients of f.
Denote by $S_{n}(x, f)$ the partial sums of the Fourier series of f and let

$$
\sigma_{n}(x, f)=\frac{1}{n+1} \sum_{k=0}^{n} S_{k}(x, f)
$$

be the $(C, 1)$ means of (11). Fejér [1] proved that $\sigma_{n}(f)$ converges to f uniformly for any 2π-periodic continuous function. Lebesgue in [15] established

[^0]almost everywhere convergence of $(C, 1)$ means if $f \in L_{1}(\mathbb{T})$. The strong summability problem, i.e. the convergence of the strong means
\[

$$
\begin{equation*}
\frac{1}{n+1} \sum_{k=0}^{n}\left|S_{k}(x, f)-f(x)\right|^{p}, \quad x \in \mathbb{T}, \quad p>0 \tag{2}
\end{equation*}
$$

\]

was first considered by Hardy and Littlewood in [11]. They showed that for any $f \in L_{r}(\mathbb{T})(1<r<\infty)$ the strong means tend to 0 a.e., if $n \rightarrow \infty$. The trigonometric Fourier series of $f \in L_{1}(\mathbb{T})$ is said to be (H, p)-summable at $x \in T$, if the values (2) converge to 0 as $n \rightarrow \infty$. The (H, p)-summability problem in $L_{1}(\mathbb{T})$ has been investigated by Marcinkiewicz [17] for $p=2$, and later by Zygmund [26] for the general case $1 \leq p<\infty$. K. I. Oskolkov in [19] proved the following

Theorem A. Let $f \in L_{1}(\mathbb{T})$ and let Φ be a continuous positive convex function on $[0,+\infty)$ with $\Phi(0)=0$ and

$$
\begin{equation*}
\ln \Phi(t)=O(t / \ln \ln t) \quad(t \rightarrow \infty) \tag{3}
\end{equation*}
$$

Then for almost all x

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n+1} \sum_{k=0}^{n} \Phi\left(\left|S_{k}(x, f)-f(x)\right|\right)=0 \tag{4}
\end{equation*}
$$

It was noted in 19 that V. Totik announced the conjecture that (4) holds almost everywhere for any $f \in L_{1}(\mathbb{T})$, provided

$$
\begin{equation*}
\ln \Phi(t)=O(t) \quad(t \rightarrow \infty) \tag{5}
\end{equation*}
$$

In 20] V.Rodin proved
Theorem B. Let $f \in L_{1}(\mathbb{T})$. Then for any $A>0$

$$
\lim _{n \rightarrow \infty} \frac{1}{n+1} \sum_{k=0}^{n}\left(\exp \left(A\left|S_{k}(x, f)-f(x)\right|\right)-1\right)=0
$$

for a. e. $x \in \mathbb{T}$.
G. Karagulyan [12] proved that the following is true.

Theorem C. Suppose that a continuous increasing function $\Phi:[0, \infty) \rightarrow$ $[0, \infty), \Phi(0)=0$, satisfies the condition

$$
\limsup _{t \rightarrow+\infty} \frac{\log \Phi(t)}{t}=\infty
$$

Then there exists a function $f \in L_{1}(\mathbb{T})$ for which the relation

$$
\limsup _{n \rightarrow \infty} \frac{1}{n+1} \sum_{k=0}^{n} \Phi\left(\left|S_{k}(x, f)\right|\right)=\infty
$$

holds everywhere on \mathbb{T}.

In fact, Rodin in [20] has obtained a BMO estimate for the partial sums of Fourier series and his theorem stated above is obtained from that estimate by using John-Nirenberg theorem. Recall the definition of BMO $[0,1]$ space. It is the Banach space of functions $f \in L_{1}[0,1]$ with the norm

$$
\|f\|_{\text {Вмо }}=\mathfrak{R}(f)+\left|\int_{0}^{1} f(t) d t\right|
$$

where

$$
\mathfrak{R}(f)=\sup _{I}\left(\left|f-f_{I}\right|\right)_{I}, f_{I}=\frac{1}{|I|} \int_{I} f(t) d t
$$

and the supremum is taken over all intervals $I \subset[0,1]$ ([4], chap. 6). Let $\left\{\xi_{n}: n=0,1,2, \ldots\right\}$ be an arbitrary sequence of numbers. Taking $\delta_{k}^{n}=$ $[k /(n+1),(k+1) /(n+1)]$, we define

$$
\mathrm{BMO}\left[\xi_{n}\right]=\sup _{0 \leq n<\infty}\left\|\sum_{k=0}^{n} \xi_{k} \mathbb{I}_{k}^{n}(t)\right\|_{\mathrm{BMO}}
$$

where $\mathbb{I}_{\delta_{k}^{n}}(t)$ is the characteristic function of δ_{k}^{n}. Notice that the expressions

$$
\begin{equation*}
\operatorname{BMO}\left[\widetilde{S}_{n}(x, f)\right], \quad \operatorname{BMO}\left[S_{n}(x, f)\right], \quad f \in L_{1}(\mathbb{T}), x \in \mathbb{T} \tag{6}
\end{equation*}
$$

define a sublinear operators, where $\widetilde{S}_{n}(x, f)$ is the conjugate partial sum. The following theorem is proved by Rodin in [20].

Theorem D. The operators (6) are of weak type $(1,1)$, i.e. the inequalities

$$
\begin{equation*}
\left|\left\{x \in \mathbb{T}: \operatorname{BMO}\left[S_{n}(x, f)\right]>\lambda\right\}\right| \leq \frac{c}{\lambda} \int_{\mathbb{T}}|f(t)| d t \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\left\{x \in \mathbb{T}: \operatorname{BMO}\left[\widetilde{S}_{n}(x, f)\right]>\lambda\right\}\right| \leq \frac{c}{\lambda} \int_{\mathbb{T}}|f(t)| d t \tag{8}
\end{equation*}
$$

hold for any $f \in L_{1}(\mathbb{T})$.
In this paper we study the question of exponential summability of quadratic partial sums of double Fourier series. Let $f \in L_{1}\left(\mathbb{T}^{2}\right)$, be a function with Fourier series

$$
\begin{equation*}
\sum_{m, n=-\infty}^{\infty} \widehat{f}(m, n) e^{i(m x+n y)} \tag{9}
\end{equation*}
$$

where

$$
\widehat{f}(m, n)=\frac{1}{4 \pi^{2}} \iint_{\mathbb{T}^{2}} f(x, y) e^{-i(m x+n y)} d x d y
$$

are the Fourier coefficients of the function f. The rectangular partial sums of (9) are defined as follows:

$$
S_{M N}(x, y, f)=\sum_{m=-M}^{M} \sum_{n=-N}^{N} \widehat{f}(m, n) e^{i(m x+n y)}
$$

We denote by $L \log L\left(\mathbb{T}^{2}\right)$ the class of measurable functions f, with

$$
\iint_{\mathbb{T}^{2}}|f| \log ^{+}|f|<\infty
$$

where $\log ^{+} u:=\mathbb{I}_{(1, \infty)} \log u$. For quadratic partial sums of two-dimensional trigonometric Fourier series Marcinkiewicz [18] has proved, that if $f \in L \log L\left(\mathbb{T}^{2}\right)$, then

$$
\lim _{n \rightarrow \infty} \frac{1}{n+1} \sum_{k=0}^{n}\left(S_{k k}(x, y, f)-f(x, y)\right)=0
$$

for a. e. $(x, y) \in \mathbb{T}^{2}$. L. Zhizhiashvili 24 improved this result showing that class $L \log L\left(\mathbb{T}^{2}\right)$ can be replaced by $L_{1}\left(\mathbb{T}^{2}\right)$.

From a result of S . Konyagin [14] it follows that for every $\varepsilon>0$ there exists a function $f \in L \log ^{1-\varepsilon}\left(\mathbb{T}^{2}\right)$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n+1} \sum_{k=0}^{n}\left|S_{k k}(x, y, f)-f(x, y)\right| \neq 0 \quad \text { for a. e. } \quad(x, y) \in \mathbb{T}^{2} \tag{10}
\end{equation*}
$$

The main result of the present paper is the following.
Theorem 1. If $f \in L \log L\left(\mathbb{T}^{2}\right)$, then

$$
\begin{align*}
& \left|\left\{(x, y) \in \mathbb{T}^{2}: \operatorname{BMO}\left[S_{n n}(f, x, y)\right]>\lambda\right\}\right| \tag{11}\\
\leq & \left.\left.\frac{c}{\lambda}\left(1+\iint_{\mathbb{T}^{2}}|f| \log ^{+} \mid f\right) \right\rvert\,\right)
\end{align*}
$$

for any $\lambda>0$, where c is an absolute positive constant.
The following theorem shows that the quadratic sums of two-dimensional Fourier series of a function $f \in L \log L\left(\mathbb{T}^{2}\right)$ are almost everywhere exponentially summable to the function f. It will be obtained from the previous theorem by using John-Nirenberg theorem.
Theorem 2. Suppose that $f \in L \log L\left(\mathbb{T}^{2}\right)$. Then for any $A>0$

$$
\lim _{m \rightarrow \infty} \frac{1}{m+1} \sum_{n=0}^{m}\left(\exp \left(A\left|S_{n n}(x, y, f)-f(x, y)\right|\right)-1\right)=0
$$

for a. e. $(x, y) \in \mathbb{T}^{2}$.
According to a Lemma of L. D. Gogoladze [9], this theorem can be formulated in more general settings.

Theorem 3. Let $\psi:[0, \infty) \rightarrow[0, \infty)$ be a increasing function, satisfying the conditions

$$
\lim _{u \rightarrow 0} \psi(u)=\psi(0)=0, \limsup _{u \rightarrow \infty} \frac{\log \psi(u)}{u}<\infty .
$$

Then for any $f \in L \log L\left(\mathbb{T}^{2}\right)$ we have

$$
\lim _{m \rightarrow \infty} \frac{1}{m+1} \sum_{n=0}^{m} \psi\left(\left|S_{n n}(x, y, f)-f(x, y)\right|\right)=0
$$

almost everywhere on \mathbb{T}^{2}.
The results on Marcinkiewicz type strong summation for the Fourier series have been investigated in [2, 3, 10, 6, 7, 5, 8, 16, 23, 27, 28, 24]

2. Notations and lemmas

The relation $a \lesssim b$ bellow stands for $a \leq c \cdot b$, where c is an absolute constant. The conjugate function of a given $f \in L_{1}(\mathbb{T})$ is defined by

$$
\tilde{f}(x)=\text { p.v. } \frac{1}{\pi} \int_{\mathbb{T}} \frac{f(x+t)}{2 \tan (t / 2)} d t=\lim _{\varepsilon \rightarrow 0} \frac{1}{\pi} \int_{\varepsilon<|t|<\pi} \frac{f(x+t)}{2 \tan (t / 2)} d t .
$$

According to Kolmogorov's and Zygmund's inequalities (see [26], chap. 7), we have

$$
\begin{array}{r}
|\{x \in \mathbb{T}:|\tilde{f}(x)|>\lambda\}| \lesssim \frac{\|f\|_{L_{1}(\mathbb{T})}}{\lambda}, \\
\int_{\mathbb{T}}|\tilde{f}(x)| d x \lesssim 1+\int_{\mathbb{T}}|f(x)| \log ^{+}|f(x)| d x . \tag{13}
\end{array}
$$

It will be used two simple properties of BMO norm below. First one says, if $\xi_{n}=c, n=1,2, \ldots$, then BMO $\left[\xi_{n}\right]=|c|$. The second one is, the bound

$$
\mathrm{BMO}\left[\xi_{n}\right] \leq 3 \sup _{n}\left|\xi_{n}\right| .
$$

We shall consider the operators

$$
U_{n}(x, f)=\text { p.v. } \frac{1}{\pi} \int_{\mathbb{T}} \frac{\cos n t}{2 \tan (t / 2)} f(x+t) d t
$$

The following lemma is an immediate consequence of Theorem D.
Lemma 1. The inequality

$$
\left|\left\{x \in \mathbb{T}: \operatorname{BMO}\left[U_{n}(x, f)\right]>\lambda\right\}\right| \lesssim \frac{\|f\|_{L_{1}(\mathbb{T})}}{\lambda}
$$

holds for any $f \in L_{1}(\mathbb{T})$.

Proof. For the conjugate Dirichet kernel we have

$$
\begin{align*}
\tilde{D}_{n}(t) & =\frac{\cos (t / 2)-\cos (n+1 / 2) t}{2 \sin (t / 2)} \tag{14}\\
& =\frac{1}{2 \tan (t / 2)}+\frac{\sin n t}{2}-\frac{\cos n t}{2 \tan (t / 2)}
\end{align*}
$$

and we get

$$
\begin{aligned}
\tilde{S}_{n}(x, f) & =\frac{1}{\pi} \int_{\mathbb{T}} \tilde{D}_{n}(t) f(x+t) d t \\
& =\tilde{f}(x)+\frac{1}{2 \pi} \int_{\mathbb{T}} f(x+t) \sin n t d t-U_{n}(x, f)
\end{aligned}
$$

Thus, applying simple properties of BMO norm, we obtain

$$
\mathrm{BMO}\left[U_{n}(x, f)\right] \leq|\tilde{f}(x)|+\frac{1}{2 \pi} \int_{\mathbb{T}}|f(t)| d t+\operatorname{BMO}\left[\tilde{S}_{n}(x, f)\right]
$$

Applying the bound (12) and Theorem D, the last inequality completes the proof of lemma.

We consider the square partial sums

$$
\begin{equation*}
S_{n n}(x, y, f)=\frac{1}{\pi^{2}} \iint_{\mathbb{T}^{2}} \frac{\sin (n+1 / 2) t \sin (n+1 / 2) s}{4 \sin (t / 2) \sin (s / 2)} f(x+t, y+s) d t d s \tag{15}
\end{equation*}
$$

and their modification, defined by

$$
S_{n n}^{*}(x, y, f)=\frac{1}{\pi^{2}} \iint_{\mathbb{T}^{2}} \frac{\sin n t \sin n s}{4 \tan (t / 2) \tan (s / 2)} f(x+t, y+s) d t d s
$$

Lemma 2. If $f \in L \log L\left(\mathbb{T}^{2}\right)$, then

$$
\iint_{\mathbb{T}^{2}} \sup _{n}\left|S_{n n}(x, y, f)-S_{n n}^{*}(x, y, f)\right| d x d y \lesssim 1+\iint_{\mathbb{T}^{2}}|f| \log ^{+}|f|
$$

Proof. Substituting the expression for Dirichlet kernel

$$
D_{n}(t)=\frac{\sin (n+1 / 2) t}{2 \sin t / 2}=\frac{\sin n t}{2 \tan (t / 2)}+\frac{\cos n t}{2}
$$

in (15), we get

$$
\begin{aligned}
S_{n n}(x, y, f) & -S_{n n}^{*}(x, y, f) \\
& =\frac{1}{\pi^{2}} \iint_{\mathbb{T}^{2}} \frac{\sin n t \cdot \cos n s}{4 \tan (t / 2)} f(x+t, y+s) d t d s \\
& +\frac{1}{\pi^{2}} \iint_{\mathbb{T}^{2}} \frac{\cos n t \cdot \sin n s}{4 \tan (s / 2)} f(x+t, y+s) d t d s \\
& +\frac{1}{4 \pi^{2}} \iint_{\mathbb{T}^{2}} \cos n t \cdot \cos n s \cdot f(x+t, y+s) d t d s \\
& =S_{n n}^{(1)}(x, y, f)+S_{n n}^{(2)}(x, y, f)+S_{n n}^{(3)}(x, y, f) .
\end{aligned}
$$

It is clear, that

$$
\begin{equation*}
\left|S_{n n}^{(3)}(x, y, f)\right| \lesssim\|f\|_{L^{1}\left(\mathbb{T}^{2}\right)} \lesssim 1+\iint_{\mathbb{T}^{2}}|f| \log ^{+}|f| \tag{16}
\end{equation*}
$$

Everywhere below the notation

$$
\text { p.v. } \iint_{\mathbb{T}^{2}} f(t, s) d t d s
$$

stands for either

$$
\text { p.v. } \int_{\mathbb{T}}\left(\text { p.v. } \int_{\mathbb{T}} f(t, s) d t\right) d s, \text { or p.v. } \int_{\mathbb{T}}\left(\text { p.v. } \int_{\mathbb{T}} f(t, s) d s\right) d t
$$

and in each cases we have equality of these two iterated integrals. To observe that we will need just the fact that $f \in L \log L(\mathbb{T})$ implies $\tilde{f} \in L_{1}(\mathbb{T})$. Hence,
making simple transformations and then changing the variables, we get

$$
\begin{align*}
S_{n n}^{(1)} & (x, y, f) \tag{17}\\
& =\mathrm{p} \cdot \mathrm{v} \cdot \frac{1}{2 \pi^{2}} \iint_{\mathbb{T}^{2}} \frac{\sin n(t+s)}{2 \tan (t / 2)} f(x+t, y+s) d s d t \\
& +\mathrm{p} \cdot \mathrm{v} \cdot \frac{1}{2 \pi^{2}} \iint_{\mathbb{T}^{2}} \frac{\sin n(t-s)}{2 \tan (t / 2)} f(x+t, y+s) d s d t \\
& =\mathrm{p} \cdot \mathrm{v} \cdot \frac{1}{2 \pi^{2}} \iint_{\mathbb{T}^{2}} \frac{\sin n u \cdot f(x+v, y+u-v)}{2 \tan (v / 2)} d v d u \quad(u=t+s, v=t) \\
& + \text { p.v. } \frac{1}{2 \pi^{2}} \iint_{\mathbb{T}^{2}} \frac{\sin n u \cdot f(x+v, y+v-u)}{2 \tan (v / 2)} d v d u \quad(u=t-s, v=t) \\
& =\frac{1}{2 \pi} \int_{\mathbb{T}} \sin n u\left(\text { p.v. } \frac{1}{\pi} \int_{\mathbb{T}} \frac{f(x+v, y+u-v)}{2 \tan (v / 2)} d v\right) d u \\
& +\frac{1}{2 \pi} \int_{\mathbb{T}} \sin n u\left(\text { p.v. } \frac{1}{\pi} \int_{\mathbb{T}} \frac{f(x+v, y+v-u)}{2 \tan (v / 2)} d v\right) d u .
\end{align*}
$$

Observe, that the functions

$$
\begin{aligned}
& F_{1}(x, y, u)=\text { p.v. } \frac{1}{\pi} \int_{\mathbb{T}} \frac{f(x+v, y+u-v)}{2 \tan (v / 2)} d v \\
& F_{2}(x, y, u)=\text { p.v. } \frac{1}{\pi} \int_{\mathbb{T}} \frac{f(x+v, y+v-u)}{2 \tan (v / 2)} d v
\end{aligned}
$$

are defined for almost all triples (x, y, u). Moreover, we shall prove that

$$
\begin{equation*}
\iiint_{\mathbb{T}^{3}}\left|F_{i}(x, y, u)\right| d x d y d u \lesssim 1+\iint_{\mathbb{T}^{2}}|f| \log ^{+}|f|, \quad i=1,2 \tag{18}
\end{equation*}
$$

Consider the function $h(t, s, u):=f(t+s, t+u-s)$. Substituting $x=t+s$ and $y=t-s$ in the expression of F_{1}, we get

$$
F_{1}(t+s, t-s, u)=\mathrm{p} \cdot \mathrm{v} \cdot \frac{1}{\pi} \int_{\mathbb{T}} \frac{h(t, s+v, u)}{2 \tan (v / 2)} d v
$$

Thus, first using the inequality (13) for variable s, then integrating by t and u, we obtain

$$
\iiint_{\mathbb{T}^{3}}\left|F_{1}(t+s, t-s, u)\right| d s d t d u \lesssim 1+\iiint_{\mathbb{T}^{3}}|h(t, s, u)|\left|\log ^{+}\right| h(t, s, u) \mid d t d s d u .
$$

After the change of variables $t=(x+y) / 2$ and $s=(x-y) / 2$ in the integrals, we get (18) in the case $i=1$. The case $i=2$ may be proved similarly. On the other hand, from (17) it follows that

$$
\left|S_{n n}^{(1)}(x, y, f)\right| \leq \frac{1}{2 \pi} \int_{\mathbb{T}}\left|F_{1}(x, y, u)\right| d u+\frac{1}{2 \pi} \int_{\mathbb{T}}\left|F_{2}(x, y, u)\right| d u
$$

Combining this inequality with (18), we obtain

$$
\begin{equation*}
\iint_{\mathbb{T}^{2}} \sup _{n}\left|S_{n n}^{(1)}(x, y, f)\right| d x d y \lesssim 1+\iint_{\mathbb{T}^{2}}|f| \log ^{+}|f| \tag{19}
\end{equation*}
$$

Similarly we can get the same bound for $S_{n n}^{(2)}(x, y, f)$, which together with (16) completes the proof of lemma.

3. Proof of Theorems

Proof of Theorem 1. From Lemma 2 we obtain

$$
\left|S_{n n}(x, y, f)-S_{n n}^{*}(x, y, f)\right| \leq \phi(x, y), \quad n=1,2, \ldots
$$

where the function $\phi(x, y) \geq 0$ satisfies the bound

$$
\iint_{\mathbb{T}^{2}} \phi(x, y) d x d y \lesssim 1+\iint_{\mathbb{T}^{2}}|f| \log ^{+}|f|
$$

Thus we get

$$
\mathrm{BMO}\left[S_{n n}(x, y, f)\right] \leq \mathrm{BMO}\left[S_{n n}^{*}(x, y, f)\right]+3 \phi(x, y)
$$

Hence, the theorem will be proved, if we obtain BMO weak $(1,1)$ estimate for modified partial sums. We have

$$
\begin{aligned}
& S_{n n}^{*}(x, y, f) \\
& \quad=\frac{1}{2 \pi^{2}} \iint_{\mathbb{T}^{2}} \frac{\cos n(t-s) \cdot f(x+t, y+s)}{4 \tan (t / 2) \tan (s / 2)} d t d s \\
& \quad-\frac{1}{2 \pi^{2}} \iint_{\mathbb{T}^{2}} \frac{\cos n(t+s) \cdot f(x+t, y+s)}{4 \tan (t / 2) \tan (s / 2)} d t d s \\
& \quad=\frac{1}{2 \pi^{2}} \iint_{\mathbb{T}^{2}} \frac{\cos n u \cdot f(x+u+v, y+v)}{4 \tan ((u+v) / 2) \tan (v / 2)} d u d v \quad(u=t-s, v=s) \\
& \\
& -\frac{1}{2 \pi^{2}} \iint_{\mathbb{T}^{2}} \frac{\cos n u \cdot f(x+u+v, y-v)}{4 \tan ((u+v) / 2) \tan (v / 2)} d u d v \quad(u=t+s, v=-s) \\
& \quad=I_{n}(x, y, f)-J_{n}(x, y, f)
\end{aligned}
$$

Using a simple and an important identity

$$
\begin{align*}
& \frac{1}{\tan ((u+v) / 2) \tan (v / 2)}= \tag{20}\\
& \qquad \frac{1}{\tan (u / 2) \tan (v / 2)}-\frac{1}{\tan (u / 2) \tan ((u+v) / 2)}-1
\end{align*}
$$

we obtain

$$
\begin{aligned}
& I_{n}(x, y, f) \\
& =\mathrm{p} \cdot \mathrm{v} \cdot \frac{1}{2 \pi^{2}} \iint_{\mathbb{T}^{2}} \frac{\cos n u \cdot f(x+u+v, y+v)}{4 \tan (u / 2) \tan (v / 2)} d u d v \\
& -\mathrm{p} \cdot \mathrm{v} \cdot \frac{1}{2 \pi^{2}} \iint_{\mathbb{T}^{2}} \frac{\cos n u \cdot f(x+u+v, y+v)}{4 \tan (u / 2) \tan ((u+v) / 2)} d u d v \\
& -\frac{1}{2 \pi^{2}} \iint_{\mathbb{T}^{2}} f(x+t, y+s) d t d s \\
& =\mathrm{p} . \mathrm{v} \cdot \frac{1}{2 \pi} \int_{\mathbb{T}} \frac{\cos n u}{2 \tan (u / 2)}\left(\mathrm{p} . \mathrm{v} \cdot \frac{1}{\pi} \int_{\mathbb{T}} \frac{f(x+u+v, y+v)}{2 \tan (v / 2)} d v\right) d u \\
& \text {-p.v. } \frac{1}{2 \pi} \int_{\mathbb{T}} \frac{\cos n u}{2 \tan (u / 2)}\left(\text { p.v. } \frac{1}{\pi} \int_{\mathbb{T}} \frac{f(x+u+v, y+v)}{2 \tan ((u+v) / 2)} d v\right) d u \\
& -\frac{1}{2 \pi^{2}} \iint_{\mathbb{T}^{2}} f(t, s) d t d s=I_{n}^{(1)}(x, y, f)-I_{n}^{(2)}(x, y, f)-I^{(0)},
\end{aligned}
$$

where

$$
\begin{equation*}
\left|I^{(0)}\right|=\frac{1}{2 \pi^{2}}\left|\iint_{\mathbb{T}^{2}} f(t, s) d t d s\right| \lesssim 1+\iint_{\mathbb{T}^{2}}|f(x, y)| \log ^{+}|f(x, y)| d x d y \tag{21}
\end{equation*}
$$

Observe that

$$
I_{n}^{(1)}(x, y, f)=\frac{1}{2} \cdot U_{n}(x, A(\cdot, y))
$$

where

$$
A(x, y)=\mathrm{p} \cdot \mathrm{v} \cdot \frac{1}{\pi} \int_{\mathbb{T}} \frac{f(x+v, y+v)}{2 \tan (v / 2)} d v
$$

Denoting $g(t, s):=f(t+s, t-s)$ and substituting $x=t+s$ and $y=t-s$ we get

$$
A(t+s, t-s)=\mathrm{p} \cdot \mathrm{v} \cdot \frac{1}{\pi} \int_{\mathbb{T}} \frac{g(t+v, s)}{2 \tan (v / 2)} d v
$$

Using the inequality (13) for variable t and then integrating by s, we obtain

$$
\iint_{\mathbb{T}^{2}}|A(t+s, t-s)| d s d t \lesssim 1+\iint_{\mathbb{T}^{2}}|g(t, s)|\left|\log ^{+}\right| g(t, s) \mid d t d s
$$

After the changing back of variables $t=(x+y) / 2$ and $s=(x-y) / 2$ we get

$$
\begin{equation*}
\iint_{\mathbb{T}^{2}}|A(x, y)| d x d y \lesssim 1+\iint_{\mathbb{T}^{2}}|f(x, y)| \log ^{+}|f(x, y)| d x d y \tag{22}
\end{equation*}
$$

Hence, applying the Lemma 1 , we conclude

$$
\begin{align*}
& \left|\left\{(x, y) \in \mathbb{T}^{2}: \operatorname{BMO}\left[I_{n}^{(1)}(x, y, f)\right]>\lambda\right\}\right| \tag{23}\\
& \quad \lesssim \frac{1}{\lambda}\left(1+\iint_{\mathbb{T}^{2}}|f(x, y)| \log ^{+}|f(x, y)| d x d y\right)
\end{align*}
$$

After the changing of variable $u+v \rightarrow \nu$ in the inner integral of the expression of $I_{n}^{(2)}(x, y, f)$ we get

$$
I_{n}^{(2)}(x, y, f)=\text { p.v. } \frac{1}{2 \pi} \int_{\mathbb{T}} \frac{\cos n u}{2 \tan (u / 2)}\left(\text { p.v. } \frac{1}{\pi} \int_{\mathbb{T}} \frac{f(x+\nu, y+\nu-u)}{2 \tan (\nu / 2)} d \nu\right) d u
$$

and then analogously we can prove that

$$
\begin{align*}
& \left|\left\{(x, y) \in \mathbb{T}^{2}: \operatorname{BMO}\left[I_{n}^{(2)}(x, y, f)\right]>\lambda\right\}\right| \tag{24}\\
& \quad \lesssim \frac{1}{\lambda}\left(1+\iint_{\mathbb{T}^{2}}|f(x, y)| \log ^{+}|f(x, y)| d x d y\right)
\end{align*}
$$

Hence, using (21), (23) and (24), we obtain

$$
\begin{aligned}
\mid\left\{(x, y) \in \mathbb{T}^{2}: \operatorname{BMO}\left[I_{n}(x, y, f)\right]\right. & >\lambda\} \mid \\
& \lesssim \frac{1}{\lambda}\left(1+\iint_{\mathbb{T}^{2}}|f(x, y)| \log ^{+}|f(x, y)| d x d y\right)
\end{aligned}
$$

Using the absolutely same process we may get the analogous estimate for $J_{n}(x, y, f)$ and therefore for $S_{n n}^{*}(x, y, f)$. The theorem is proved.

Let X be either $[0,1]$ or \mathbb{T}^{2} and $L_{M}=L_{M}(X)$ is the Orlicz space of functions on X, generated by Young function M, i. e. M is convex continuous even function such that $M(0)=0$ and

$$
\lim _{t \rightarrow 0+} \frac{M(t)}{t}=\lim _{t \rightarrow \infty} \frac{t}{M(t)}=0 .
$$

It is well known that L_{M} is a Banach space with respect to Luxemburg norm

$$
\|f\|_{(M)}:=\inf \left\{\lambda: \lambda>0, \int_{X} M\left(\frac{|f|}{\lambda}\right) \leq 1\right\}<\infty .
$$

We will need some basic properties of Orlicz spaces (see [13]).

1) According to a theorem from (13], chap. 2, theorem 9.5) we have

$$
\begin{equation*}
\|f\|_{(M)} \leq 1 \Rightarrow \int_{X} M(|f|) \leq\|f\|_{(M)}, \tag{25}
\end{equation*}
$$

2) From this fact we may deduce, that

$$
\begin{equation*}
0,5\left(1+\int_{X} M(|f|)\right) \leq\|f\|_{(M)} \leq 1+\int_{X} M(|f|) \tag{26}
\end{equation*}
$$

provided $\|f\|_{(M)}=1$.
3) From the definition of norm $\|\cdot\|_{(M)}$ immediately follows that $|f(x)| \leq$ $|g(x)|$ implies $\|f\|_{(M)} \leq\|g\|_{(M)}$. Besides, for any measurable set E we have

$$
\left\|\mathbb{I}_{E}\right\|_{(M)}=o(1) \text { as }|E| \rightarrow 0 \quad([13],(9.23)) .
$$

4) If M satisfies Δ_{2}-condition, that is

$$
M(2 t) \leq c M(t), t>t_{0},
$$

and $X=\mathbb{T}^{2}$, then the set of two variable trigonometric polynomials on \mathbb{T}^{2} is dense in $L_{M}([13, \S 10)$.
5) From (25) it follows that for any sequence of functions f_{n} the condition $\left\|f_{n}\right\|_{(M)} \rightarrow 0$ implies $\int_{X} M\left(\left|f_{n}\right|\right) \rightarrow 0$.

Proof of Theorem [2. We will deal with two M-functions

$$
\begin{gathered}
\Phi(t)=t \log ^{+} t \\
\Psi(t)=\exp t-1
\end{gathered}
$$

We consider two Orlicz spaces $L_{\Phi}=L_{\Phi}\left(\mathbb{T}^{2}\right)$ and $L_{\Psi}=L_{\Psi}(0,1)$. Combining (26) with Theorem 1, we may obtain

$$
\begin{equation*}
\left\lvert\,\left\{(x, y) \in \mathbb{T}^{2}: \operatorname{BMO}\left[S_{n n}(x, y, f)\right]>\lambda\right\} \lesssim \frac{\|f\|_{(\Phi)}}{\lambda}\right. \tag{27}
\end{equation*}
$$

Indeed, at first we deduce the case when $\|f\|_{(\Phi)}=1$, then, using a linearity principle, we get the inequality in the general case.

The inequality

$$
\begin{equation*}
\|f\|_{(\Psi)} \lesssim\|f\|_{\text {BMO }} \tag{28}
\end{equation*}
$$

proved in [20]. It is an immediate consequence of the John-Nirenberg theorem. Denote

$$
\begin{equation*}
\mathcal{B} f(x, y)=\sup _{0 \leq n<\infty}\left\|\sum_{k=0}^{n} S_{k k}(x, y, f) \mathbb{I}_{\delta_{k}^{n}}(t)\right\|_{(\Psi)} \tag{29}
\end{equation*}
$$

Notice, that by the definition we have

$$
\mathrm{BMO}\left[S_{n n}(f, x, y)\right]=\sup _{0 \leq n<\infty}\left\|\sum_{k=0}^{n} S_{k k}(x, y, f) \mathbb{I}_{\delta_{k}^{n}}(t)\right\|_{\mathrm{BMO}}
$$

So, taking into account (27) and (28) we obtain

$$
\begin{equation*}
\left\lvert\,\left\{(x, y) \in \mathbb{T}^{2}: \mathcal{B} f(x, y)>\lambda\right\} \lesssim \frac{\|f\|_{(\Phi)}}{\lambda}\right. \tag{30}
\end{equation*}
$$

On the other hand we have

$$
\begin{aligned}
& \frac{1}{n+1} \sum_{k=0}^{n}\left(\exp A\left|S_{k k}(x, y, f)-f(x, y)\right|-1\right) \\
& =\frac{1}{n+1} \sum_{k=0}^{n} \Psi\left(A\left|S_{k k}(x, y, f)-f(x, y)\right|\right) \\
& =\int_{0}^{1} \Psi\left(A \sum_{k=0}^{n}\left|S_{k k}(x, y, f)-f(x, y)\right| \mathbb{I}_{\delta_{k}^{n}}(t)\right) d t
\end{aligned}
$$

Thus, according the property 5) of Orlicz spaces, to prove the theorem it is enough to prove that

$$
\begin{equation*}
\left\|\sum_{k=0}^{n}\left(S_{k k}(x, y, f)-f(x, y)\right) \mathbb{I}_{\delta_{k}^{n}}(t)\right\|_{(\Psi)} \rightarrow 0 \tag{31}
\end{equation*}
$$

almost everywhere on \mathbb{T}^{2} as $n \rightarrow \infty$, for any $f \in L_{\Phi}$. It is easy to observe, that (31) holds if f is a real trigonometric polynomial in two variables. Indeed, if $P(x, y)$ is a polynomial of degree m, then we have

$$
S_{k k}(x, y, P)-P(x, y) \equiv 0, \quad k \geq m
$$

Therefore, if $n \geq m$, then we get

$$
\left|\sum_{k=0}^{n}\left(S_{k k}(x, y, P)-P(x, y)\right) \mathbb{I}_{\delta_{k}^{n}}(t)\right| \leq C \cdot \mathbb{I}_{[0, m /(n+1)]}(t)
$$

where C is a constant, depending on P. Then, applying the property 3) of Orlicz spaces, we conclude that (31) holds if $f=P$. To prove the general
case, we consider the set

$$
\begin{align*}
& G_{\lambda}=\left\{(x, y) \in \mathbb{T}^{2}:\right. \tag{32}\\
&\left.\limsup _{n \rightarrow \infty}\left\|\sum_{k=0}^{n}\left(S_{k k}(x, y, f)-f(x, y)\right) \mathbb{I}_{\delta_{k}^{n}}(t)\right\|_{(\Psi)}>\lambda\right\}
\end{align*}
$$

To complete the proof of theorem, it enough to prove that $\left|G_{\lambda}\right|=0$ if $\lambda>0$. It is easy to check that $\Phi(t)$ satisfies the Δ_{2}-condition. Therefore, according the property 4), we may chose a polynomial $P(x, y)$ such that $\|f-P\|_{(\Phi)}<\varepsilon$. Using the definition of (Φ)-norm, we get

$$
\int_{\mathbb{T}^{2}} \Phi\left(\left|\frac{f-P}{\varepsilon}\right|\right)<1
$$

From Chebishev's inequality, one can easily deduce

$$
\left|\left\{(x, y) \in \mathbb{T}^{2}:|f(x, y)-P(x, y)|>\lambda\right\}\right| \leq \frac{1}{\Phi(\lambda / \varepsilon)}, \quad \lambda>0
$$

Thus, using (30) for any $\lambda>0$ we get

$$
\begin{aligned}
& \left|G_{\lambda}\right|=\mid\left\{(x, y) \in \mathbb{T}^{2}:\right. \\
& \left.\quad \limsup _{n \rightarrow \infty}\left\|\sum_{k=0}^{n}\left(S_{k k}(x, y, f-P)-f(x, y)+P(x, y)\right) \mathbb{I}_{\delta_{k}^{n}}(d t)\right\|_{(\Psi)}>\lambda\right\} \mid \\
& \quad \leq|\{\mathcal{B}(f-P)(x, y)+c|f(x, y)-P(x, y)|>\lambda\}| \\
& \quad \\
& \quad \frac{\|f-P\|_{(\Phi)}}{\lambda}+\frac{1}{\Phi(\lambda / \varepsilon)} \leq \frac{\varepsilon}{\lambda}+\frac{1}{\Phi(\lambda / \varepsilon)}
\end{aligned}
$$

Since $\varepsilon>0$ may be taken sufficiently small, we conclude $\left|G_{\lambda}\right|=0$ if $\lambda>$ 0 .

Acknowledgement. The authors would like to thank the referees for helpful suggestions.

REFERENCES

[1] Fejér L., Untersuchungen uber Fouriersche Reihen, Math. Annalen, 58 (1904), 501569.
[2] Fridli S., Schipp F., Strong summability and Sidon type inequalities. Acta Sci. Math. (Szeged) 60 (1995), no. 1-2, 277-289.
[3] Gabisonia O. D., On strong summability points for Fourier series, Mat. Zametki. 5, 14 (1973), 615-626.
[4] Garnett J. B., Bounded analitic functions, 1981. translated in Russian.
[5] Gát G., Goginava U., Tkebuchava G., Convergence in measure of logarithmic means of quadratical partial sums of double Walsh-Fourier series. J. Math. Anal. Appl. 323 (2006), no. 1, 535-549.
[6] Glukhov V. A., Summation of multiple Fourier series in multiplicative systems. (Russian) Mat. Zametki 39 (1986), no. 5, 665-673.
[7] Goginava U., Gogoladze L., Strong approximation by Marcinkiewicz means of twodimensional Walsh-Fourier series. Constr. Approx. 35 (2012), no. 1, 1-19.
[8] Goginava U., The weak type inequality for the maximal operator of the Marcinkiewicz-Fejér means of the two-dimensional Walsh-Fourier series. J. Approx. Theory 154 (2008), no. 2, 161-180.
[9] Gogoladze L. D., On strong summability almost everywhere. (Russian) Mat. Sb. (N.S.) 135(177) (1988), no. 2, 158-168, 271; translation in Math. USSR-Sb. 63 (1989), no. 1, 153-16
[10] Gogoladze L. D., Strong means of Marcinkiewicz type. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 102 (1981), no. 2, 293-295.
[11] Hardy G. H., Littlewood J. E., Sur la series de Fourier d'une fonction a carre sommable, Comptes Rendus (Paris) 156 (1913), 1307-1309.
[12] Karagulyan G. A., Everywhere divergent Φ-means of Fourier series. (Russian) Mat. Zametki 80 (2006), no. 1, 50-59; translation in Math. Notes 80 (2006), no. 1-2, 47-56
[13] Krasnoselski M. A., Rutitski Ya. B., Convex functions and Orlicz spaces, Moscow, 1958.(Russian)
[14] Konyagin S. V., On the divergence of subsequences of partial sums of multiple trigonometric Fourier series, Trudy MIAN 190 (1989), 102-116.
[15] Lebesgue H., Recherches sur la sommabilite forte des series de Fourier, Math. Annalen 61 (1905), 251-280.
[16] Leindler L., Strong approximation by Fourier series, Akademiai Kiado, Budapest, 1985.
[17] Marcinkiewicz J., Sur la sommabilité forte de séries de Fourier. (French) J. London Math. Soc. 14, (1939).162-168.
[18] Marcinkiewicz J., Sur une methode remarquable de sommation des series doublefes de Fourier. Ann. Scuola Norm. Sup. Pisa, 8(1939), 149-160.
[19] Oskolkov K. I., Strong summability of Fourier series. (Russian) Studies in the theory of functions of several real variables and the approximation of functions. Trudy Mat. Inst. Steklov. 172 (1985), 280-290.
[20] Rodin, V. A., The space BMO and strong means of Fourier series. Anal. Math. 16 (1990), no. 4, 291-302.
[21] Schipp F., On the strong summability of Walsh series. Dedicated to Professors Zoltán Daróczy and Imre Kátai. Publ. Math. Debrecen 52 (1998), no. 3-4, 611-633.
[22] Sjölin P., Convergence almost everywhere of certain singular integrals and multiple Fourier series. Ark. Mat. 9, 65-90. (1971).
[23] Totik V., On the strong approximation of Fourier series. Acta Math. Acad. Sci. Hungar. 35 (1980), no. 1-2, 151-172.
[24] Zhizhiashvili L. V., Generalization of a theorem of Marcinkiwicz, Izvest.AN USSR, ser. matem. 32(1968), 1112-1122 (Russian).
[25] Zygmund A., On the convergence and summability of power series on the circle of convergence II., Proc. London Math Soc. 47 (1941), 326-350.
[26] Zygmund A., Trigonometric series. Cambridge University Press, Cambridge, 1959.
[27] Wang, Kun Yang. Some estimates for the strong approximation of continuous periodic functions of the two variables by their sums of Marcinkiewicz type. (Chinese) Beijing Shifan Daxue Xuebao 1981, no. 1, 7-22.
[28] Weisz F., Strong Marcinkiewicz summability of multi-dimensional Fourier series. Ann. Univ. Sci. Budapest. Sect. Comput. 29 (2008), 297-317.
U. Goginava, Department of Mathematics, Faculty of Exact and Natural Sciences, Iv. Javakhishvili Tbilisi State University, Chavchavadze str. 1, Tbilisi 0128, Georgia

E-mail address: zazagoginava@gmail.com
L. Gogoladze, Department of Mathematics, Faculty of Exact and Natural Sciences, Iv. Javakhishvili Tbilisi State University, Chavchavadze str. 1, Tbilisi 0128, Georgia

E-mail address: lgogoladze1@hotmail.com
G. Karagulyan, Institue of Mathematics of Armenian National Academy of Science, Bughramian Ave. 24/5, 375019, Yerevan, Armenia

E-mail address: g.karagulyan@yahoo.com

[^0]: ${ }^{0} 2010$ Mathematics Subject Classification: 40F05, 42B08
 Key words and phrases: Fourier series, Strong Summability, Quadratic sums.
 The research of U. Goginava was supported by Shota Rustaveli National Science Foundation grant no.31/48 (Operators in some function spaces and their applications in Fourier analysis)

