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BMO-ESTIMATION AND ALMOST EVERYWHERE

EXPONENTIAL SUMMABILITY OF QUADRATIC

PARTIAL SUMS OF DOUBLE FOURIER SERIES

U. GOGINAVA, L. GOGOLADZE AND G. KARAGULYAN

Abstract. It is proved a BMO -estimation for quadratic partial sums
of two-dimensional Fourier series from which it is derived an almost
everywhere exponential summability of quadratic partial sums of double
Fourier series.

1. Introduction

Let T := [−π, π) = R/2π and R := (−∞,∞). We denote by L1 (T) the
class of all measurable functions f on R that are 2π-periodic and satisfy

‖f‖1 :=

∫

T

|f | <∞.

The Fourier series of the function f ∈ L1 (T) with respect to the trigonomet-
ric system is the series

(1)

∞∑

n=−∞

f̂ (n) einx,

where

f̂ (n) :=
1

2π

∫

T

f (x) e−inxdx

are the Fourier coefficients of f .
Denote by Sn(x, f) the partial sums of the Fourier series of f and let

σn(x, f) =
1

n+ 1

n∑

k=0

Sk(x, f)

be the (C, 1) means of (1). Fejér [1] proved that σn(f) converges to f uni-
formly for any 2π-periodic continuous function. Lebesgue in [15] established
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almost everywhere convergence of (C, 1) means if f ∈ L1(T). The strong
summability problem, i.e. the convergence of the strong means

(2)
1

n+ 1

n∑

k=0

|Sk (x, f)− f (x)|p , x ∈ T, p > 0,

was first considered by Hardy and Littlewood in [11]. They showed that for
any f ∈ Lr(T) (1 < r <∞) the strong means tend to 0 a.e., if n→ ∞. The
trigonometric Fourier series of f ∈ L1(T) is said to be (H, p)-summable at
x ∈ T , if the values (2) converge to 0 as n → ∞. The (H, p)-summability
problem in L1(T) has been investigated by Marcinkiewicz [17] for p = 2, and
later by Zygmund [26] for the general case 1 ≤ p < ∞. K. I. Oskolkov in
[19] proved the following

Theorem A. Let f ∈ L1(T) and let Φ be a continuous positive convex
function on [0,+∞) with Φ (0) = 0 and

(3) ln Φ (t) = O (t/ ln ln t) (t→ ∞) .

Then for almost all x

(4) lim
n→∞

1

n+ 1

n∑

k=0

Φ (|Sk (x, f)− f (x)|) = 0.

It was noted in [19] that V. Totik announced the conjecture that (4) holds
almost everywhere for any f ∈ L1(T), provided

(5) ln Φ (t) = O (t) (t→ ∞) .

In [20] V.Rodin proved

Theorem B. Let f ∈ L1(T). Then for any A > 0

lim
n→∞

1

n+ 1

n∑

k=0

(exp (A |Sk (x, f)− f (x)|)− 1) = 0

for a. e. x ∈ T.

G. Karagulyan [12] proved that the following is true.

Theorem C. Suppose that a continuous increasing function Φ : [0,∞) →
[0,∞),Φ (0) = 0, satisfies the condition

lim sup
t→+∞

log Φ (t)

t
= ∞.

Then there exists a function f ∈ L1(T) for which the relation

lim sup
n→∞

1

n+ 1

n∑

k=0

Φ (|Sk (x, f)|) = ∞

holds everywhere on T.
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In fact, Rodin in [20] has obtained a BMO estimate for the partial sums
of Fourier series and his theorem stated above is obtained from that estimate
by using John-Nirenberg theorem. Recall the definition of BMO [0, 1] space.
It is the Banach space of functions f ∈ L1[0, 1] with the norm

‖f‖BMO = R(f) +

∣∣∣∣
∫ 1

0
f(t)dt

∣∣∣∣

where

R(f) = sup
I
(|f − fI |)I , fI =

1

|I|

∫

I
f(t)dt

and the supremum is taken over all intervals I ⊂ [0, 1] ([4], chap. 6). Let
{ξn : n = 0, 1, 2, . . .} be an arbitrary sequence of numbers. Taking δnk =
[k/(n + 1), (k + 1)/(n + 1)], we define

BMO [ξn] = sup
0≤n<∞

∥∥∥∥∥

n∑

k=0

ξkIδn
k
(t)

∥∥∥∥∥
BMO

where Iδn
k
(t) is the characteristic function of δnk . Notice that the expressions

(6) BMO
[
S̃n (x, f)

]
, BMO [Sn (x, f)] , f ∈ L1 (T) , x ∈ T

define a sublinear operators, where S̃n (x, f) is the conjugate partial sum.
The following theorem is proved by Rodin in [20].

Theorem D. The operators (6) are of weak type (1, 1), i.e. the inequalities

(7) |{x ∈ T : BMO [Sn(x, f)] > λ}| ≤
c

λ

∫

T

|f(t)|dt

and

(8) |{x ∈ T : BMO [S̃n(x, f)] > λ}| ≤
c

λ

∫

T

|f(t)|dt

hold for any f ∈ L1(T).

In this paper we study the question of exponential summability of qua-
dratic partial sums of double Fourier series. Let f ∈ L1(T

2), be a function
with Fourier series

(9)
∞∑

m,n=−∞

f̂ (m,n) ei(mx+ny),

where

f̂ (m,n) =
1

4π2

∫∫

T2

f(x, y)e−i(mx+ny)dxdy
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are the Fourier coefficients of the function f . The rectangular partial sums
of (9) are defined as follows:

SMN (x, y, f) =

M∑

m=−M

N∑

n=−N

f̂ (m,n) ei(mx+ny).

We denote by L logL
(
T
2
)

the class of measurable functions f , with
∫∫

T2

|f | log+ |f | <∞,

where log+ u := I(1,∞) log u. For quadratic partial sums of two-dimensional

trigonometric Fourier series Marcinkiewicz [18] has proved, that if f ∈ L logL
(
T
2
)
,

then

lim
n→∞

1

n+ 1

n∑

k=0

(Skk (x, y, f)− f (x, y)) = 0

for a. e. (x, y) ∈ T
2. L. Zhizhiashvili [24] improved this result showing that

class L logL
(
T
2
)

can be replaced by L1

(
T
2
)
.

From a result of S. Konyagin [14] it follows that for every ε > 0 there
exists a function f ∈ L log1−ε

(
T
2
)

such that

(10) lim
n→∞

1

n+ 1

n∑

k=0

|Skk (x, y, f)− f (x, y)| 6= 0 for a. e. (x, y) ∈ T
2.

The main result of the present paper is the following.

Theorem 1. If f ∈ L logL
(
T
2
)
, then

∣∣{(x, y) ∈ T
2 : BMO [Snn(f, x, y)] > λ}

∣∣(11)

≤
c

λ


1 +

∫∫

T2

|f | log+ |f)|




for any λ > 0, where c is an absolute positive constant.

The following theorem shows that the quadratic sums of two-dimensional
Fourier series of a function f ∈ L logL

(
T
2
)

are almost everywhere expo-
nentially summable to the function f . It will be obtained from the previous
theorem by using John-Nirenberg theorem.

Theorem 2. Suppose that f ∈ L logL
(
T
2
)
. Then for any A > 0

lim
m→∞

1

m+ 1

m∑

n=0

(exp (A |Snn (x, y, f)− f (x, y)|)− 1) = 0

for a. e. (x, y) ∈ T
2.

According to a Lemma of L. D. Gogoladze [9], this theorem can be for-
mulated in more general settings.
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Theorem 3. Let ψ : [0,∞) → [0,∞) be a increasing function, satisfying the
conditions

lim
u→0

ψ (u) = ψ (0) = 0, lim sup
u→∞

logψ (u)

u
<∞.

Then for any f ∈ L logL
(
T
2
)

we have

lim
m→∞

1

m+ 1

m∑

n=0

ψ (|Snn (x, y, f)− f (x, y)|) = 0

almost everywhere on T
2.

The results on Marcinkiewicz type strong summation for the Fourier series
have been investigated in [2, 3, 10, 6, 7, 5, 8, 16, 23, 27, 28, 24]

2. Notations and lemmas

The relation a . b bellow stands for a ≤ c · b, where c is an absolute
constant. The conjugate function of a given f ∈ L1(T) is defined by

f̃(x) = p.v.
1

π

∫

T

f(x+ t)

2 tan(t/2)
dt = lim

ε→0

1

π

∫

ε<|t|<π

f(x+ t)

2 tan(t/2)
dt.

According to Kolmogorov’s and Zygmund’s inequalities (see [26], chap. 7),
we have

|{x ∈ T : |f̃(x)| > λ}| .
‖f‖L1(T)

λ
,(12)

∫

T

|f̃(x)|dx . 1 +

∫

T

|f(x)| log+ |f(x)|dx.(13)

It will be used two simple properties of BMO norm below. First one says,
if ξn = c, n = 1, 2, . . ., then BMO [ξn] = |c|. The second one is, the bound

BMO [ξn] ≤ 3 sup
n

|ξn|.

We shall consider the operators

Un(x, f) = p.v.
1

π

∫

T

cosnt

2 tan(t/2)
f(x+ t)dt.

The following lemma is an immediate consequence of Theorem D.

Lemma 1. The inequality

|{x ∈ T : BMO [Un(x, f)] > λ}| .
‖f‖L1(T)

λ

holds for any f ∈ L1(T).
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Proof. For the conjugate Dirichet kernel we have

(14)

D̃n(t) =
cos(t/2) − cos(n + 1/2)t

2 sin(t/2)

=
1

2 tan(t/2)
+

sinnt

2
−

cosnt

2 tan(t/2)

and we get

S̃n(x, f) =
1

π

∫

T

D̃n(t)f(x+ t)dt

= f̃(x) +
1

2π

∫

T

f(x+ t) sinntdt− Un(x, f).

Thus, applying simple properties of BMO norm, we obtain

BMO [Un(x, f)] ≤ |f̃(x)|+
1

2π

∫

T

|f(t)|dt+BMO
[
S̃n(x, f)

]

Applying the bound (12) and Theorem D, the last inequality completes the
proof of lemma. �

We consider the square partial sums
(15)

Snn (x, y, f) =
1

π2

∫∫

T2

sin (n+ 1/2) t sin (n+ 1/2) s

4 sin (t/2) sin (s/2)
f (x+ t, y + s) dtds

and their modification, defined by

S∗
nn (x, y, f) =

1

π2

∫∫

T2

sinnt sinns

4 tan (t/2) tan (s/2)
f (x+ t, y + s) dtds.

Lemma 2. If f ∈ L logL(T2), then

∫∫

T2

sup
n

|Snn(x, y, f)− S∗
nn(x, y, f)| dxdy . 1 +

∫∫

T2

|f | log+ |f |.

Proof. Substituting the expression for Dirichlet kernel

Dn(t) =
sin(n+ 1/2)t

2 sin t/2
=

sinnt

2 tan(t/2)
+

cosnt

2
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in (15), we get

Snn (x, y, f)− S∗
nn(x, y, f)

=
1

π2

∫∫

T2

sinnt · cosns

4 tan(t/2)
f (x+ t, y + s) dtds

+
1

π2

∫∫

T2

cosnt · sinns

4 tan(s/2)
f (x+ t, y + s) dtds

+
1

4π2

∫∫

T2

cosnt · cosns · f (x+ t, y + s) dtds

= S(1)
nn (x, y, f) + S(2)

nn (x, y, f) + S(3)
nn (x, y, f) .

It is clear, that

(16) |S(3)
nn (x, y, f)| . ‖f‖L1(T2) . 1 +

∫∫

T2

|f | log+ |f |.

Everywhere below the notation

p.v.

∫∫

T2

f(t, s)dtds

stands for either

p.v.

∫

T

(
p.v.

∫

T

f(t, s)dt

)
ds, or p.v.

∫

T

(
p.v.

∫

T

f(t, s)ds

)
dt

and in each cases we have equality of these two iterated integrals. To observe
that we will need just the fact that f ∈ L logL(T) implies f̃ ∈ L1(T). Hence,
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making simple transformations and then changing the variables, we get

(17)

S(1)
nn (x, y, f)

= p.v.
1

2π2

∫∫

T2

sinn(t+ s)

2 tan(t/2)
f (x+ t, y + s) dsdt

+ p.v.
1

2π2

∫∫

T2

sinn(t− s)

2 tan(t/2)
f (x+ t, y + s) dsdt

= p.v.
1

2π2

∫∫

T2

sinnu · f (x+ v, y + u− v)

2 tan(v/2)
dvdu (u = t+ s, v = t)

+ p.v.
1

2π2

∫∫

T2

sinnu · f (x+ v, y + v − u)

2 tan(v/2)
dvdu (u = t− s, v = t)

=
1

2π

∫

T

sinnu


p.v.

1

π

∫

T

f (x+ v, y + u− v)

2 tan(v/2)
dv


 du

+
1

2π

∫

T

sinnu


p.v.

1

π

∫

T

f (x+ v, y + v − u)

2 tan(v/2)
dv


 du.

Observe, that the functions

F1(x, y, u) = p.v.
1

π

∫

T

f (x+ v, y + u− v)

2 tan(v/2)
dv

F2(x, y, u) = p.v.
1

π

∫

T

f (x+ v, y + v − u)

2 tan(v/2)
dv

are defined for almost all triples (x, y, u). Moreover, we shall prove that
∫∫∫

T3

|Fi(x, y, u)|dxdydu . 1 +

∫∫

T2

|f | log+ |f |, i = 1, 2.(18)

Consider the function h(t, s, u) := f(t+ s, t+ u− s). Substituting x = t+ s
and y = t− s in the expression of F1, we get

F1(t+ s, t− s, u) = p.v.
1

π

∫

T

h (t, s+ v, u)

2 tan(v/2)
dv.

Thus, first using the inequality (13) for variable s, then integrating by t and
u, we obtain
∫∫∫

T3

|F1(t+ s, t− s, u)|dsdtdu . 1+

∫∫∫

T3

|h(t, s, u)|| log+ |h(t, s, u)|dtdsdu.
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After the change of variables t = (x+y)/2 and s = (x−y)/2 in the integrals,
we get (18) in the case i = 1. The case i = 2 may be proved similarly. On
the other hand, from (17) it follows that

|S(1)
nn (x, y, f) | ≤

1

2π

∫

T

|F1(x, y, u)|du +
1

2π

∫

T

|F2(x, y, u)|du.

Combining this inequality with (18), we obtain

(19)

∫∫

T2

sup
n

|S(1)
nn (x, y, f) |dxdy . 1 +

∫∫

T2

|f | log+ |f |

Similarly we can get the same bound for S
(2)
nn (x, y, f), which together with

(16) completes the proof of lemma. �

3. Proof of Theorems

Proof of Theorem 1. From Lemma 2 we obtain

|Snn(x, y, f)− S∗
nn(x, y, f)| ≤ φ(x, y), n = 1, 2, . . . ,

where the function φ(x, y) ≥ 0 satisfies the bound
∫∫

T2

φ(x, y)dxdy . 1 +

∫∫

T2

|f | log+ |f |.

Thus we get

BMO [Snn(x, y, f)] ≤ BMO [S∗
nn(x, y, f)] + 3φ(x, y).

Hence, the theorem will be proved, if we obtain BMO weak (1, 1) estimate
for modified partial sums. We have

S∗
nn (x, y, f)

=
1

2π2

∫∫

T2

cosn(t− s) · f (x+ t, y + s)

4 tan (t/2) tan (s/2)
dtds

−
1

2π2

∫∫

T2

cosn(t+ s) · f (x+ t, y + s)

4 tan (t/2) tan (s/2)
dtds

=
1

2π2

∫∫

T2

cosnu · f (x+ u+ v, y + v)

4 tan ((u+ v)/2) tan (v/2)
dudv (u = t− s, v = s)

−
1

2π2

∫∫

T2

cosnu · f (x+ u+ v, y − v)

4 tan ((u+ v)/2) tan (v/2)
dudv (u = t+ s, v = −s)

=In(x, y, f)− Jn(x, y, f).
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Using a simple and an important identity

(20)
1

tan((u+ v)/2) tan (v/2)
=

1

tan(u/2) tan(v/2)
−

1

tan(u/2) tan((u+ v)/2)
− 1,

we obtain

In(x, y, f)

=p.v.
1

2π2

∫∫

T2

cosnu · f (x+ u+ v, y + v)

4 tan(u/2) tan(v/2)
dudv

−p.v.
1

2π2

∫∫

T2

cosnu · f (x+ u+ v, y + v)

4 tan(u/2) tan((u+ v)/2)
dudv

−
1

2π2

∫∫

T2

f (x+ t, y + s) dtds

=p.v.
1

2π

∫

T

cosnu

2 tan(u/2)


p.v.

1

π

∫

T

f (x+ u+ v, y + v)

2 tan(v/2)
dv


 du

−p.v.
1

2π

∫

T

cosnu

2 tan(u/2)


p.v.

1

π

∫

T

f (x+ u+ v, y + v)

2 tan((u+ v)/2)
dv


 du

−
1

2π2

∫∫

T2

f (t, s) dtds = I(1)n (x, y, f)− I(2)n (x, y, f)− I(0),

where

(21) |I(0)| =
1

2π2

∣∣∣∣∣∣

∫∫

T2

f (t, s) dtds

∣∣∣∣∣∣
. 1 +

∫∫

T2

|f(x, y)| log+ |f(x, y)|dxdy.

Observe that

I(1)n (x, y, f) =
1

2
· Un(x,A(·, y))

where

A(x, y) = p.v.
1

π

∫

T

f (x+ v, y + v)

2 tan(v/2)
dv.

Denoting g(t, s) := f(t+ s, t− s) and substituting x = t+ s and y = t− s
we get

A(t+ s, t− s) = p.v.
1

π

∫

T

g (t+ v, s)

2 tan(v/2)
dv.
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Using the inequality (13) for variable t and then integrating by s, we obtain
∫∫

T2

|A(t+ s, t− s)|dsdt . 1 +

∫∫

T2

|g(t, s)|| log+ |g(t, s)|dtds.

After the changing back of variables t = (x+ y)/2 and s = (x− y)/2 we get

(22)

∫∫

T2

|A (x, y)| dxdy . 1 +

∫∫

T2

|f(x, y)| log+ |f(x, y)|dxdy.

Hence, applying the Lemma 1, we conclude

(23) |{(x, y) ∈ T
2 : BMO [I(1)n (x, y, f)] > λ}|

.
1

λ


1 +

∫∫

T2

|f(x, y)| log+ |f(x, y)|dxdy


 .

After the changing of variable u+v → ν in the inner integral of the expression

of I
(2)
n (x, y, f) we get

I(2)n (x, y, f) = p.v.
1

2π

∫

T

cosnu

2 tan(u/2)


p.v.

1

π

∫

T

f (x+ ν, y + ν − u)

2 tan(ν/2)
dν


 du,

and then analogously we can prove that

(24) |{(x, y) ∈ T
2 : BMO [I(2)n (x, y, f)] > λ}|

.
1

λ


1 +

∫∫

T2

|f(x, y)| log+ |f(x, y)|dxdy


 .

Hence, using (21), (23) and (24), we obtain

|{(x, y) ∈ T
2 : BMO [In(x, y, f)] > λ}|

.
1

λ


1 +

∫∫

T2

|f(x, y)| log+ |f(x, y)|dxdy


 .

Using the absolutely same process we may get the analogous estimate for
Jn(x, y, f) and therefore for S∗

nn(x, y, f). The theorem is proved. �

Let X be either [0, 1] or T2 and LM = LM (X) is the Orlicz space of func-
tions on X, generated by Young function M , i. e. M is convex continuous
even function such that M (0) = 0 and

lim
t→0+

M(t)

t
= lim

t→∞

t

M(t)
= 0.
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It is well known that LM is a Banach space with respect to Luxemburg norm

‖f‖(M) := inf



λ : λ > 0,

∫

X

M

(
|f |

λ

)
≤ 1



 <∞.

We will need some basic properties of Orlicz spaces (see [13] ).
1) According to a theorem from ([13], chap. 2, theorem 9.5) we have

(25) ‖f‖(M) ≤ 1 ⇒

∫

X

M (|f |) ≤ ‖f‖(M) ,

2) From this fact we may deduce, that

(26) 0, 5


1 +

∫

X

M (|f |)


 ≤ ‖f‖(M) ≤ 1 +

∫

X

M (|f |)

provided ‖f‖(M) = 1.

3) From the definition of norm ‖ · ‖(M) immediately follows that |f(x)| ≤
|g(x)| implies ‖f‖(M) ≤ ‖g‖(M). Besides, for any measurable set E we have

‖IE‖(M) = o (1) as |E| → 0 ([13], (9.23)).

4) If M satisfies ∆2-condition, that is

M (2t) ≤ cM (t) , t > t0,

and X = T
2, then the set of two variable trigonometric polynomials on T

2

is dense in LM ([13], §10).
5) From (25) it follows that for any sequence of functions fn the condition

‖fn‖(M) → 0 implies
∫
X

M (|fn|) → 0.

Proof of Theorem 2. We will deal with two M -functions

Φ(t) = t log+ t,

Ψ(t) = exp t− 1.

We consider two Orlicz spaces LΦ = LΦ(T
2) and LΨ = LΨ(0, 1). Combining

(26) with Theorem 1, we may obtain

(27) |{(x, y) ∈ T
2 : BMO [Snn(x, y, f)] > λ} .

‖f‖(Φ)

λ
.

Indeed, at first we deduce the case when ‖f‖(Φ) = 1, then, using a linearity
principle, we get the inequality in the general case.

The inequality

(28) ‖f‖(Ψ) . ‖f‖BMO
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proved in [20]. It is an immediate consequence of the John-Nirenberg theo-
rem. Denote

(29) Bf(x, y) = sup
0≤n<∞

∥∥∥∥∥

n∑

k=0

Skk(x, y, f)Iδn
k
(t)

∥∥∥∥∥
(Ψ)

.

Notice, that by the definition we have

BMO [Snn(f, x, y)] = sup
0≤n<∞

∥∥∥∥∥

n∑

k=0

Skk(x, y, f)Iδn
k
(t)

∥∥∥∥∥
BMO

.

So, taking into account (27) and (28) we obtain

(30) |{(x, y) ∈ T
2 : Bf(x, y) > λ} .

‖f‖(Φ)

λ
.

On the other hand we have

1

n+ 1

n∑

k=0

(expA|Skk(x, y, f)− f(x, y)| − 1)

=
1

n+ 1

n∑

k=0

Ψ(A|Skk(x, y, f)− f(x, y)|)

=

∫ 1

0
Ψ

(
A

n∑

k=0

|Skk(x, y, f)− f(x, y)|Iδn
k
(t)

)
dt.

Thus, according the property 5) of Orlicz spaces, to prove the theorem it is
enough to prove that

(31)

∥∥∥∥∥

n∑

k=0

(Skk(x, y, f)− f(x, y))Iδn
k
(t)

∥∥∥∥∥
(Ψ)

→ 0,

almost everywhere on T
2 as n → ∞, for any f ∈ LΦ. It is easy to observe,

that (31) holds if f is a real trigonometric polynomial in two variables.
Indeed, if P (x, y) is a polynomial of degree m, then we have

Skk(x, y, P )− P (x, y) ≡ 0, k ≥ m.

Therefore, if n ≥ m, then we get
∣∣∣∣∣

n∑

k=0

(Skk(x, y, P )− P (x, y))Iδn
k
(t)

∣∣∣∣∣ ≤ C · I[0,m/(n+1)](t),

where C is a constant, depending on P . Then, applying the property 3) of
Orlicz spaces, we conclude that (31) holds if f = P . To prove the general
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case, we consider the set

(32) Gλ = {(x, y) ∈ T
2 :

lim sup
n→∞

∥∥∥∥∥

n∑

k=0

(Skk(x, y, f)− f(x, y))Iδn
k
(t)

∥∥∥∥∥
(Ψ)

> λ}.

To complete the proof of theorem, it enough to prove that |Gλ| = 0 if λ > 0.
It is easy to check that Φ(t) satisfies the ∆2-condition. Therefore, according
the property 4), we may chose a polynomial P (x, y) such that ‖f−P‖(Φ) < ε.
Using the definition of (Φ)-norm, we get

∫

T2

Φ

(∣∣∣∣
f − P

ε

∣∣∣∣
)
< 1.

From Chebishev’s inequality, one can easily deduce

|{(x, y) ∈ T
2 : |f(x, y)− P (x, y)| > λ}| ≤

1

Φ(λ/ε)
, λ > 0.

Thus, using (30) for any λ > 0 we get

|Gλ| = |{(x, y) ∈ T
2 :

lim sup
n→∞

∥∥∥∥∥

n∑

k=0

(Skk(x, y, f − P )− f(x, y) + P (x, y))Iδn
k
(dt)

∥∥∥∥∥
(Ψ)

> λ}|

≤ |{B(f − P )(x, y) + c|f(x, y)− P (x, y)| > λ}|

.
‖f − P‖(Φ)

λ
+

1

Φ(λ/ε)
≤
ε

λ
+

1

Φ(λ/ε)
.

Since ε > 0 may be taken sufficiently small, we conclude |Gλ| = 0 if λ >
0. �
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