Skip to main content
Log in

Convective and diffusive surfactant transfer in multiphase liquid systems

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Laser interferometry was used to investigate diffusive and convective mass transfer in a multicomponent fluid mixture with a liquid–liquid or liquid–gas interface. For this purpose, an immobile gas bubble or insoluble fluid droplet, having the shape of a short cylinder with a free lateral surface, was inserted into a thin liquid layer. In the case of non-uniform distribution of the dissolved surfactant component, the Marangoni convection near the drop/bubble was initiated by the surface tension inhomogeneities, depending on the surfactant concentration. The applied experimental techniques allowed us to study the structure and evolution of the convective flows and concentration fields in a liquid layer, which due to its small thickness were nearly two-dimensional. Making use of both the vertical and horizontal orientation of the liquid layer, we investigated the mass transfer process at different levels of the interaction between gravity and capillary forces. During the experiments, we detected new solutocapillary phenomena, which were found to be caused by oscillatory regimes of solutal convection occurring around air bubbles and chlorobenzene drops in heterogeneous aqueous solutions of alcohol with a vertical surfactant concentration gradient. The role of the oscillatory instability in the processes of drop saturation by the surfactant from its water solution and an inverse process of surfactant extraction from the drop into the surrounding homogeneous fluid (water) was determined. A reasonable explanation for the driving mechanisms of the discovered effects has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

d :

Bubble/drop diameter

f :

Frequency of oscillations

g :

Gravitational acceleration

h :

Layer thickness

n :

Refraction index

r :

Radial position of concentration front

t :

Time

β C :

Volume concentration expansion coefficient

σ :

Surface tension coefficient

ρ:

Solution density

η:

Solution dynamic viscosity

τ:

Time unit \( = {\frac{{\rho h^{2} }}{\eta }} \)

C :

Concentration

C 0 :

Initial concentration of surfactant in surrounding solution

C d :

Initial concentration of surfactant inside the drop

ΔC :

Concentration difference

D :

Surfactant diffusion coefficient

N :

Isoline sequence number

S :

Bubble/drop area

T :

Period of oscillations

Ma C :

Marangoni number, \( = {\frac{{h^{2} }}{\eta D}}\,{\frac{\partial \sigma }{\partial C}}\nabla C \)

Gr C :

Grashof number, \( = {\frac{{\rho^{2} g\beta_{C} h^{4} }}{{\eta^{2} }}}\nabla C \)

References

  • Arlabosse P (1997) Etude des transferts de chaleur et de masse par effet Marangoni: application à la compréhension du mécanisme d’ébullition en apesenteur. Ph.D. Thesis, University of Provence, France

  • Arlabosse P, Tadrist L, Tadrist H, Pantaloni J (2000) Experimental analysis of the heat transfer induced by thermocapillary convection around a bubble. Heat Transfer 122:66–73

    Article  Google Scholar 

  • Berg JC, Morig CR (1969) Density effects in interfacial convection. Chem Eng Sci 24(6):937–946

    Article  Google Scholar 

  • Betz J (1997) Strömung und Wärmeubergang bei thermokapillarer Konvektion an Gasblasen. Ph.D. Thesis, München Technical University, Germany

  • Betz J, Straub J (2001) Numerical and experimental study of the heat transfer and fluid flow by thermocapillary convection around gas bubbles. Heat Mass Transf 37:215–227

    Article  Google Scholar 

  • Birikh R, Rudakov R, Viviani A (2009) Convective auto-oscillations near drop-liquid interface in a horizontal rectangular channel. Int J Microgravity Sci Technol 21:67–72

    Article  Google Scholar 

  • Briskman VA, Kostarev KG, Viviani A (2001) Equilibrium instability, internal flows, motion and overturn of dissolving drop. In: ESA paper SP-454, 1st international symposium on migrogravity research & applications in physical sciences and biotechnology, 10–15 Sept 2000, Sorrento, Italy, pp 75–81

  • Briskman VA, Kostarev KG, Shmyrov AV (2002) High gravity as research tool in studying the nature of structure formation in polymers. Adv Space Res 29(4):599–607

    Article  Google Scholar 

  • Chun CH, Raake D, Hansmann G (1991) Oscillating convection modes in the surroundings of an air bubble under a horizontal heated wall. Exp Fluids 11:359–367

    Article  Google Scholar 

  • Gustafson SE, Kjellander RAE, Rolf AE (1968) An interferometer for direct recording of refractive index distributions. Z Naturforch 23a(2):242–246

    Google Scholar 

  • Jehring H, Viet HN, Horn E (1978) Current-oscillations caused by differences in surface tension at the mercury/liquid interface. J Electroanal Chem 88(2):265–268

    Article  Google Scholar 

  • Kao YS, Kenning DBR (1972) Thermocapillary flow near a hemispherical bubble on a heated wall. J Fluid Mech 53(4):715–735

    Article  MATH  Google Scholar 

  • Kassemi M, Rashidnia N (2000) Steady and oscillatory thermocapillary convection generated by a bubble. Phys Fluids 12:3133–3146

    Article  Google Scholar 

  • Kostarev KG (2005) The study of the extraction of surface-active component of a binary liquid from model (“cylindrical”) droplets. Colloid J 67(3):357–362

    Article  Google Scholar 

  • Kostarev KG, Briskman VA (2001) Dissolution of a drop with a high content of a surface-active substance. Dokl Phys 46(5):349–351

    Article  MathSciNet  Google Scholar 

  • Kostarev KG, Zuev AL, Viviani A (2004) Oscillatory Marangoni convection around the air bubble in a vertical surfactant stratification. J C R Mec 332(1):1–7

    Article  MATH  Google Scholar 

  • Kostarev KG, Viviani A, Zuev AL (2006) Thermal and concentrational Marangoni convection at liquid/air bubble interface. J Appl Mech (Trans. ASME) 73(1):66–71

    Article  MATH  Google Scholar 

  • Kostarev KG, Pisarevskaya NN, Viviani A, Zuev AL (2007) Oscillatory Marangoni convection around bubbles and drops in heterogeneous solutions of surfactants. Int J Microgravity Sci Technol 19(2):12–17

    Article  Google Scholar 

  • Kostarev KG, Levtov VL, Romanov VV, Shmyrov AV, Viviani A (2010) Experimental study of surfactant transfer in fluid systems in microgravity conditions. Acta Astronaut 66(3–4):427–433

    Article  Google Scholar 

  • Kovalchuk VI, Kamusewitz H, Vollhardt D, Kovalchuk NM (1999) Auto-oscillation of surface tension. Phys Rev E 60(2):2029–2036

    Article  Google Scholar 

  • Lewis JB, Pratt HRC (1953) Oscillating droplets. Nature 171:1155

    Article  Google Scholar 

  • Marsters GF, Advani AA (1973) A tilted plate interferometer for heat transfer studies. Rev Sci Instrum 44(8):1015–1018

    Article  Google Scholar 

  • Monti R (ed) (2001) Physics of fluids in microgravity. Taylor & Francis, London

    Google Scholar 

  • Myshkis AD, Babskii VG, Kopachevskii ND, Slobozhanin LA, Tyuptsov AD (1987) Low-gravity fluid mechanics. Springer, Amsterdam 583 p

    Google Scholar 

  • Raake D, Siekmann J, Chun CH (1989) Temperature and velocity fields due to surface tension driven flow. Exp Fluids 7:164–172

    Article  Google Scholar 

  • Rashidnia N (1997) Bubble dynamics on a heated surface. J Thermophys 11:477–480

    Article  Google Scholar 

  • Reynard C, Santini R, Tadrist L (2001) Experimental study of the gravity influence on the periodic thermocapillary convection around a bubble. Heat Transfer 122:66–73

    Google Scholar 

  • Reynard C, Santini R, Tadrist L (2003) Experimental study of fluid-wall heat transfer induced by thermocapillary convection: influence of the Prandtl number. C R Mec 331(3):237–244

    Article  Google Scholar 

  • Vazquez G, Alvarez E, Navaza JM (1995) Surface-tension of alcohol plus water from 20-degrees-C to 50-degrees-C. J Chem Eng Data 40(3):611–614

    Article  Google Scholar 

  • Vazquez G, Alvarez E, Sanchez-Vilas M, Sanjurjo B, Navaza JM (1997) Surface tension of organic acids + water binary mixtures from 20°C to 50°C. J Chem Eng Data 42(5):957–960

    Article  Google Scholar 

  • Verschueren K (1977) Handbook of environmental data on organic chemicals. Van Nostrand Rehinold Company, New York

    Google Scholar 

  • Viviani A, Kostarev KG, Shmyrov AV, Zuev AL, Levtov VL, Romanov VV (2007) Experimental investigation of mass transfer in fluid systems in migrogravity conditions. In: IAC paper no. 07-A2.4.06, 58th international astronautical congress, Hyderabad, India, 24–28 Sept 2007

  • Wozniak K (1991) Experimentelle Untersuchung der thermokapillarer Konvektion einer Blase mittels “Particle-Image-Velocimetry” under Anwendung eines neuen Auswertealgoritmus. Ph.D. Thesis, Universitat-GH-Essen, Germany

  • Wozniak K, Wozniak G, Rösgen T (1990) Particle-image-velocimetry applied to thermocapillary convection. Exp Fluids 10:12–16

    Article  Google Scholar 

  • Wozniak K, Balasubramaniam R, Hadland PH, Subramanian RS (2001) Temperature fields in a liquid due to the thermocapillary motion of bubbles and drops. Exp Fluids 31:84–89

    Article  Google Scholar 

  • Zuev AL, Kostarev KG (2006) Oscillation of the convective flow around an air bubble in a vertically stratified surfactant solution. J Exp theor phys 103(2):317–323

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the joint project of SB, UB and F-EB of RAS No.116/09-C-1-1005 and also by the Russian Foundation for Basic Research (RFBR) Grants No. 09-01-00484 and No. 10-01-96028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Viviani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostarev, K.G., Shmyrov, A.V., Zuev, A.L. et al. Convective and diffusive surfactant transfer in multiphase liquid systems. Exp Fluids 51, 457–470 (2011). https://doi.org/10.1007/s00348-011-1063-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-011-1063-9

Keywords

Navigation