Skip to main content
Log in

Arbuscular Mycorrhizal Fungi in Conferring Tolerance to Biotic Stresses in Plants

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Mycorrhiza is a symbiotic association between the roots of plants with fungi. Among the various types of mycorrhizal fungi, arbuscular mycorrhizal fungi (AMF) are the most prominent as they are obligate symbionts with a wide host range, and they play a major role in shaping ecosystems and associated productivity. Approximately 71% of vascular plant species are able to form symbiotic association with AMF. AMF primarily rely on the host for photosynthates but give much more in return for the well-being of the host plant. Most importantly they are able to improve tolerance of host plants against various biotic stresses, such as—bacterial, fungal, viral, nematode phytopathogens and herbivores. The underlying mechanism includes—competition for nutrients, space, and host photosynthates, rhizosphere alteration and host defense induction. The effectiveness of an AM association in conferring biotic stress tolerance is context dependent, affected by various biotic and abiotic factors. This review describes various mechanisms involved in AMF mediated biotic stress tolerance in plant and the biotic and abiotic factors which influences the performance of AM association.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AMF:

Arbuscular mycorrhizal fungi

AM:

Arbuscular mycorrhiza

PPN:

Plant pathogenic nematodes

MAMP:

Microbe associated molecular patterns

MTI:

MAMP triggered immunity

ETI:

Effector triggered immunity

PGPR:

Plant growth promoting rhizobacteria

References

  • Ahammed GJ, Mao Q, Yan Y, Wu M, Wang Y, Ren J, Guo P, Liu A, Chen S (2020) Role of melatonin in arbuscular mycorrhizal fungi-induced resistance to Fusarium wilt in cucumber. Phytopathology 110:999–1009

    Article  CAS  PubMed  Google Scholar 

  • Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17:73–90

    Article  CAS  PubMed  Google Scholar 

  • Alban R, Guerrero R, Toro M (2013) Interactions between a root-knot nematode (Meloidogyne exigua) and arbuscular mycorrhizae in coffee plant development (Coffea arabica). Am J Plant Sci 4:19–23

    Article  Google Scholar 

  • Atilano RA, Menge JA, Gundy SD (1981) Interaction between Meloidogyne arenaria and Glomus fascicuqlatus in grape. J Nematol 13:52–57

    CAS  PubMed  PubMed Central  Google Scholar 

  • Azcon-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens—an overview of the mechanisms involved. Mycorrhiza 6:457–464

    Article  Google Scholar 

  • Baetz U, Martinoia E (2014) Root exudates: the hidden part of plant defense. Trends Plant Sci 19:90–98

    Article  CAS  PubMed  Google Scholar 

  • Bago B, Azcon-Aguilar C (1997) Changes in the rhizosphere pH induced by arbuscular mycorrhiza formation in onion (Allium cepa). Z Pflanzenernaehr Bodenk 160:333–339

    Article  CAS  Google Scholar 

  • Bago B, Pfeffer P, Shachar-Hill Y (2000) Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol 124:949–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballhorn DJ, Younginger BS, Kautz S (2014) An aboveground pathogen inhibits belowground rhizobia and arbuscular mycorrhizal fungi in Phaseolus vulgaris. BMC Plant Biol 14:321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bansal M, Mukerji KG (1994) Positive correlation between VAM induced changes in root exudation and mycorrhizosphere mycoflora. Mycorrhiza 5:39–44

    Article  Google Scholar 

  • Barber NA, Kiers ET, Hazzard RV, Adler LS (2013) Context-dependency of arbuscular mycorrhizal fungi on plant-insect interactions in an agroecosystem. Front Plant Sci 4:338

    Article  PubMed  PubMed Central  Google Scholar 

  • Benhamou N, Fortin JA, Hamel C, St-Arnaud M, Shatilla A (1994) Resistance responses of mycorrhizal Ri T-DNA-transformed carrot roots to infection by Fusarium oxysporum f. sp chrysanthemi. Phytopathology 84:958–968

    Article  CAS  Google Scholar 

  • Bernaola L, Stout MJ (2021) The effect of mycorrhizal seed treatments on rice growth, yield, and tolerance to insect herbivores. J Pest Sci 94:375–392

    Article  Google Scholar 

  • Berruti A, Borriello R, Orgiazzi A, Barbera AC, Lumini E, Bianciotto V (2014) Arbuscular mycorrhizal fungi and their value for ecosystem management. Biodiversity: the dynamic balance of the planet, vol 8. InTech, Rijeta, pp 159–191

    Google Scholar 

  • Besserer A, Puech-Pages V, Kiefer P, Gómez-Roldán V, Jauneau A, Roy S, Portais JC, Roux C, Bécard G, Séjalon-Delmas N (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4:226

    Article  CAS  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  CAS  PubMed  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat Commun 27:1–11

    Google Scholar 

  • Bonfante P, Genre A (2015) Arbuscular mycorrhizal dialogues: do you speak ‘plantish’ or ‘fungish’? Trends Plant Sci 20:150–154

    Article  CAS  PubMed  Google Scholar 

  • Cameron D, Neal A, van Wees S, Ton J (2013) Mycorrhiza-induced resistance: more than the sum of its parts? Trends Plant Sci 18:539–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campo S, Martín-Cardoso H, Olivé M, Pla E, Catala-Forner M, Martínez-Eixarch M, San Segundo B (2020) Effect of root colonization by arbuscular mycorrhizal fungi on growth, productivity and blast resistance in Rice. Rice 13:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Carling DE, Roncadori RW, Hussey RS (1995) Interactions of arbuscular mycorrhizae, Meloidogyne arenaria, and phosphorus fertilization on peanut. Mycorrhiza 6:9–13

    Article  Google Scholar 

  • Castellanos-Morales V, Keiser C, Cardenas-Navarro R, Grausgruber H, Glauninger J, Garcia- Garrido JM, Steinkellner S, Sampedro I, Hage-Ahmed K, Illana A, Ocampo JA, Vierheilig H (2011) The bioprotective effect of AM root colonization against the soil-borne fungal pathogen Gaeumannomyces graminis var. tritici in barley depends on the barley variety. Soil Biol Biochem 43:831–834

    Article  CAS  Google Scholar 

  • Ceustermans A, Van Hemelrijck W, Van Campenhout J, Bylemans D (2018) Effect of arbuscular mycorrhizal fungi on Pratylenchus penetrans infestation in apple seedlings under greenhouse conditions. Pathogens 7:76–76

    Article  CAS  PubMed Central  Google Scholar 

  • Chen M, Bruisson S, Bapaume L, Darbon G, Glauser G, Schorderet M, Reinhardt D (2020) VAPYRIN attenuates defence by repressing PR gene induction and localised lignin accumulation during arbuscular mycorrhizal symbiosis of Petunia hybrida. New Phytol 226:3481–3496

    Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    Article  CAS  PubMed  Google Scholar 

  • Citernesi AS, Fortuna P, Filippi C, Bagnoli G, Giovannetti M (1996) The occurrence of antagonistic bacteria in Glomus mosseae pot cultures. Agronomie 16:671–677

    Article  Google Scholar 

  • Cordier C, Pozo MJ, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (1998) Cell defense responses associated with localized and systemic resistance to Phytophthora induced in tomato by an arbuscular mycorrhizal fungus. Mol Plant Microbe Interact 11:1017–1028

    Article  CAS  Google Scholar 

  • Daft MJ, Okusanya BO (1973) Effect of endogone-mycorrhiza on plant-growth. v. influence of infection on multiplication of viruses in tomato, petunia and strawberry. New Phytol 72:975–983

    Article  Google Scholar 

  • Dangl JL, Horvath DM, Staskawicz BJ (2013) Pivoting the plant immune system from dissection to deployment. Science 341:746–751

    Article  CAS  PubMed  Google Scholar 

  • de la Fuente Canto C, Simonin M, King E, Moulin L, Bennett MJ, Castrillo G, Laplaze L (2020) An extended root phenotype: the rhizosphere, its formation and impacts on plant fitness. Plant J 103:951–964

    Article  PubMed  CAS  Google Scholar 

  • de la Porte A, Schmidt R, Yergeau É, Constant P (2020) A gaseous milieu: extending the boundaries of the rhizosphere. Trends Microbiol 28:536–542

    Article  PubMed  CAS  Google Scholar 

  • de Oliveira IF, Simeone MLF, de Guimarães CC, Garcia NS, Schaffert RE, de Sousa SM (2020) Sorgoleone concentration influences mycorrhizal colonization in sorghum. Mycorrhiza 31(2):259–264

    Article  PubMed  CAS  Google Scholar 

  • Declerck S, Risede JM, Rufyikiri G, Delvaux B (2002) Effects of arbuscular mycorrhizal fungi on the severity of root rot of bananas caused by Cylindrocladium spathiphylli. Plant Pathol 51:109–115

    Article  Google Scholar 

  • Deja-Sikora E, Kowalczyk A, Trejgell A, Szmidt-Jaworska A, Baum C, Mercy L, Hrynkiewicz K (2020) Arbuscular mycorrhiza changes the impact of Potato Virus Y on growth and stress tolerance of Solanum tuberosum L. in vitro. Front Microbiol 10:2971–2971

    Article  PubMed  PubMed Central  Google Scholar 

  • De-la-Peña C, Loyola-Vargas VM (2014) Biotic interactions in the rhizosphere: a diverse cooperative enterprise for plant productivity. Plant Physiol 166:701–719

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delaux P, Séjalon-Delmas N, Bécard G, Ané J (2013) Evolution of the plant–microbe symbiotic ‘toolkit.’ Trends Plant Sci 18:298–304

    Article  CAS  PubMed  Google Scholar 

  • Diedhiou PM, Hallmann J, Oerke EC, Dehne HW (2003) Effects of arbuscular mycorrhizal fungi and a non-pathogenic Fusarium oxysporum on Meloidogyne incognita infestation of tomato. Mycorrhiza 13:199–204

    Article  CAS  PubMed  Google Scholar 

  • Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11:539–548

    Article  CAS  PubMed  Google Scholar 

  • Ebrahimi S, Eini O, Koolivand D (2020) Arbuscular mycorrhizal symbiosis enhances virus accumulation and attenuates resistance-related gene expression in tomato plants infected with Beet curly top Iran virus. J Plant Dis Prot 127:341–348

    Article  Google Scholar 

  • Elsen A, Beeterens R, Swennen R, De Waele D (2003) Effects of an arbuscular mycorrhizal fungus and two plant-parasitic nematodes on Musa genotypes differing in root morphology. Biol Fertil Soils 38:367–376

    Article  Google Scholar 

  • Elsen A, Gervacio D, Swennen R, De Waele D (2008) AMF-induced biocontrol against plant parasitic nematodes in Musa sp.: a systemic effect. Mycorrhiza 18:251–256

    Article  CAS  PubMed  Google Scholar 

  • Elsharkawy MM, Shimizu M, Takahashi H, Hyakumachi M (2012) The plant growth-promoting fungus Fusarium equiseti and the arbuscular mycorrhizal fungus Glomus mosseae induce systemic resistance against Cucumber mosaic virus in cucumber plants. Plant Soil 361:397–409

    Article  CAS  Google Scholar 

  • Felix G, Regenass M, Boller T (1993) Specific perception of subnanomolar concentrations of chitin fragments by tomato cells: induction of extracellular alkalinization, changes in protein phosphorylation, and establishment of a refractory state. Plant J 4:307–316

    Article  CAS  Google Scholar 

  • Fernández I, Cosme M, Stringlis IA, Yu K, de Jonge R, van Wees S, Pozo MJ, Pieterse CMJ, van der Heijden MGA (2019) Molecular dialogue between arbuscular mycorrhizal fungi and the nonhost plant Arabidopsis thaliana switches from initial detection to antagonism. New Phytol 223:867–881

    Article  PubMed  CAS  Google Scholar 

  • Fiorilli V, Catoni M, Francia D, Cardinale F, Lanfranco L (2011) The arbuscular mycorrhizal symbiosis reduces disease severity in tomato plants infected by Botrytis cinerea. J Plant Pathol 93:237–242

    Google Scholar 

  • Fiorilli V, Vannini C, Ortolani F, Garcia-Seco D, Chiapello M, Novero M, Domingo G, Terzi V, Morcia C, Bagnaresi P, Moulin L, Bracale M, Bonfante P (2018) Omics approaches revealed how arbuscular mycorrhizal symbiosis enhances yield and resistance to leaf pathogen in wheat. Sci Rep 8(1):9625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frederickson ME (2017) Mutualisms are not on the verge of breakdown. Trends Ecol Evol 32:727–734

    Article  PubMed  Google Scholar 

  • French KE (2017) Engineering mycorrhizal symbioses to alter plant metabolism and improve crop health. Front Microbiol 8:1403

    Article  PubMed  PubMed Central  Google Scholar 

  • Frew A, Price JN (2019) Mycorrhizal mediated plant-herbivore interactions in a high CO2 world. Funct Ecol 33:1376–1385

    Article  Google Scholar 

  • Fritz M, Jakobsen I, Lyngkjaer MF, Thordal-Christensen H, Pons-Kühnemann J (2006) Arbuscular mycorrhiza reduces susceptibility of tomato to Alternaria solani. Mycorrhiza 16:413–419

    Article  PubMed  Google Scholar 

  • Fusconi A (2014) Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation? Ann Bot 13:19–33

    Article  CAS  Google Scholar 

  • Gadkar V, David-Schwartz R, Kunik T, Kapulnik Y (2001) Arbuscular mycorrhizal fungal colonization. Factors involved in host recognition. Plant Physiol 127(4):1493–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, Guo H, Zhang Q, Guo H, Zhang L, Zhang C, Gou Z, Liu Y, Wei J, Chen A, Chu Z, Zeng F (2020) Arbuscular mycorrhizal fungi (AMF) enhanced the growth, yield, fiber quality and phosphorus regulation in upland cotton (Gossypium hirsutum L.). Sci Rep 10:2084–2084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garzo E, Rizzo E, Fereres A, Gomez SK (2020) High levels of arbuscular mycorrhizal fungus colonization on Medicago truncatula reduces plant suitability as a host for pea aphids (Acyrthosiphon pisum). Insect Sci 27:99–112

    Article  CAS  PubMed  Google Scholar 

  • Gernns H, Von Alten H, Poehling HM (2001) Arbuscular mycorrhiza increased the activity of a biotrophic leaf pathogen-is a compensation possible? Mycorrhiza 11:237–243

    Article  CAS  Google Scholar 

  • Goicoechea N (2020) Mycorrhizal fungi as bioprotectors of crops against Verticillium wilt-a hypothetical scenario under changing environmental conditions. Plants 9(11):1468

    Article  CAS  PubMed Central  Google Scholar 

  • Gorka S, Dietrich M, Mayerhofer W, Gabriel R, Wiesenbauer J, Martin V, Zheng Q, Imai B, Prommer J, Weidinger M, Schweiger P, Eichorst SA, Wagner M, Richter A, Schintlmeister A, Woebken D, Kaiser C (2019) Rapid transfer of plant photosynthates to soil bacteria via ectomycorrhizal hyphae and its interaction with nitrogen availability. Front Microbiol 10:168–168

    Article  PubMed  PubMed Central  Google Scholar 

  • Gough C, Cullimore J (2011) Lipo-chitooligosaccharide signaling in endosymbiotic plant–microbe interactions. Mol Plant Microbe Interact 24:867–878

    Article  CAS  PubMed  Google Scholar 

  • Goverde M, van der Heijden M, Wiemken A, Sanders I, Erhardt A (2000) Arbuscular mycorrhizal fungi influence life history traits of a lepidopteran herbivore. Oecologia 125:362–369

    Article  CAS  PubMed  Google Scholar 

  • Hao Z, Fayolle L, van Tuinen D, Chatagnier O, Xiaolin L, Gianinazzi S, Gianinazzi-Pearson V (2012) Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defence gene responses in grapevine. J Exp Bot 63:3657–3672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao Z, van Tuinen D, Fayolle L, Chatagnier O, Li X, Chen B, Gianinazzi S, Gianinazzi-Pearson V (2018) Arbuscular mycorrhiza affects grapevine fanleaf virus transmission by the nematode vector Xiphinema index. Appl Soil Ecol 129:107–111

    Article  Google Scholar 

  • Hao Z, Xie W, Chen B (2019) Arbuscular mycorrhizal symbiosis affects plant immunity to viral infection and accumulation. Viruses 11:534

    Article  CAS  PubMed Central  Google Scholar 

  • Harrison MJ (2012) Cellular programs for arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 15:691–698

    Article  CAS  PubMed  Google Scholar 

  • Hempel S, Stein C, Unsicker SB, Renker C, Auge H, Weisser WW, Buscot F (2009) Specific bottom-up effects of arbuscular mycorrhizal fungi across a plant-herbivore-parasitoid system. Oecologia 160:267–277

    Article  PubMed  PubMed Central  Google Scholar 

  • Henkes GJ, Kandeler E, Marhan S, Scheu S, Bonkowski M (2018) Interactions of mycorrhiza and protists in the rhizosphere systemically alter microbial community composition, plant shoot-to-root ratio and within-root system nitrogen allocation. Front Environ Sci 6:117

    Article  Google Scholar 

  • Hoffmann D, Vierheilig H, Riegler P, Schausberger P (2009) Arbuscular mycorrhizal symbiosis increases host plant acceptance and population growth rates of the two-spotted spider mite Tetranychus urticae. Oecologia 158:663–671

    Article  PubMed  Google Scholar 

  • Ibiang SR, Sakamoto K, Kuwahara N (2020) Performance of tomato and lettuce to arbuscular mycorrhizal fungi and Penicillium pinophilum EU0013 inoculation varies with soil, culture media of inoculum, and fungal consortium composition. Rhizosphere 16:100246

    Article  Google Scholar 

  • Idoia G, Nieves G, Jone A (2004) Plant phenology influences the effect of mycorrhizal fungi on the development of Verticillium-induced wilt in pepper. Eur J Plant Pathol 110:227–238

    Article  Google Scholar 

  • Ismail Y, McCormick S, Hijri M (2013) The arbuscular mycorrhizal fungus, Glomus irregulare, controls the mycotoxin production of Fusarium sambucinum in the pathogenesis of potato. Fems Microbiol Lett 384:46–51

    Article  CAS  Google Scholar 

  • Jaiti F, Kassami M, Meddich A, El Hadrami I (2008) Effect of arbuscular mycorrhization on the accumulation of hydroxycinnamic acid derivatives in date palm seedlings challenged with Fusarium oxysporum f. sp. albedinis. J Phytopathol 156:641–646

    Article  CAS  Google Scholar 

  • Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–664

    Article  CAS  PubMed  Google Scholar 

  • Kamińska M, Klamkowski K, Berniak H, Sowik I (2010) Response of mycorrhizal periwinkle plants to aster yellows phytoplasma infection. Mycorrhiza 20:161–166

  • Kareem TA, Hassan MS (2014) Evaluation of Glomus mosseae as biocontrol agents against Rhizoctonia solani on tomato. J Biol Agric Healthc 4:15–19

    Google Scholar 

  • Kempel A, Schädler M, Chrobock T, Fischer M, Kleunen MV (2011) Tradeoffs associated with constitutive and induced plant resistance against herbivory. Proc Natl Acad Sci 108:5685–5689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khaosaad T, García-Garrido JM, Steinkellner S, Vierheilig H (2007) Take-all disease is systemically reduced in roots of mycorrhizal barley plants. Soil Biol Biochem 39:727–734

  • Khoshkhatti N, Eini O, Koolivand D, Pogiatzis A, Klironomos JN, Pakpour S (2020) Differential response of mycorrhizal plants to Tomato bushy stunt virus and Tomato mosaic virus Infection. Microorganisms 8:E2038

    Article  PubMed  CAS  Google Scholar 

  • Kloppholz S, Kuhn H, Requena N (2011) A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr Biol 21:1204–1209

    Article  CAS  PubMed  Google Scholar 

  • Larose G, Chênevert R, Moutoglis P, Gagné S, Piché Y, Vierheilig H (2002) Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus. J Plant Physiol 159:1329–1339

    Article  CAS  Google Scholar 

  • Larsen J, Ravnskov S, Jakobsen I (2003) Combined effect of an arbuscular mycorrhizal fungus and a biocontrol bacterium against Pythium ultimum in soil. Folia Geobot 38:145–154

    Article  Google Scholar 

  • Lauressergues D, Delaux P, Formey D, Lelandais-Brière C, Fort S, Cottaz S, Bécard G, Niebel A, Roux C, Combier J (2012) The microRNA miR171 h modulates arbuscular mycorrhizal colonization of Medicago truncatula by targeting NSP2. Plant J 72:512–522

    Article  CAS  PubMed  Google Scholar 

  • Lee CS, Lee YJ, Jeun YC (2005) Observations of infection structures on the leaves of cucumber plants pre-treated with arbuscular mycorrhiza Glomus intraradices after challenge inoculation with Colletotrichum orbiculare. Plant Pathol J 21:237–243

    Article  Google Scholar 

  • Li HY, Yang GD, Shu HR, Yang YT, Ye BX, Nishida I, Zheng CC (2006) Colonization by the arbuscular mycorrhizal fungus Glomus versiforme induces a defense response against the rootknot nematode Meloidogyne incognita in the grapevine (Vitis amurensis Rupr), which includes transcriptional activation of the class III chitinase gene VCH3. Plant Cell Physiol 47:154–163

    Article  CAS  PubMed  Google Scholar 

  • Li HY, Yanagi A, Miyawaki Y, Okada T, Matsubara Y (2010) Disease tolerance and changes in antioxidative abilities in mycorrhizal strawberry plants. J Jpn Soc Hortic Sci 79:174–178

    Article  Google Scholar 

  • Linderman RG (1991) Mycorrhizal interactions in the rhizosphere. The rhizosphere and plant growth. Springer, Dordrecht, pp 343–348

    Chapter  Google Scholar 

  • Linderman RG (1994) Role of VAM fungi in biocontrol. In: Pfleger FL, Linderman RG (eds) Mycorrhizae and plant health. APS Press, St. Paul, MN, pp 1–26

  • Lioussanne L, Jolicoeur M, St-Arnaud M (2008) Mycorrhizal colonization with Glomus intraradices and development stage of transformed tomato roots significantly modify the chemotactic response of zoospores of the pathogen Phytophthora nicotianae. Soil Biol Biochem 40:2217–2224

    Article  CAS  Google Scholar 

  • Liu RJ (1995) Effect of vesicular-arbuscular mycorrhizal fungi on Verticillium wilt of cotton. Mycorrhiza 5:293–297

    Article  Google Scholar 

  • Liu W (2010) Do genetically modified plants impact arbuscular mycorrhizal fungi? Ecotoxicology 19:229–238

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529–544

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Chen J, Xie K, Tian Y, Yan A, Liu J, Huang Y, Wang S, Zhu Y, Chen A, Xu G (2020) A mycorrhiza-specific H+-ATPase is essential for arbuscule development and symbiotic phosphate and nitrogen uptake. Plant Cell Environ 43:1069–1083

    Article  CAS  PubMed  Google Scholar 

  • López-Ráez JA, Pozo MJ, García-Garrido JM (2011) Strigolactones: a cry for help in the rhizosphere. Bot Bot 89:513–522

    Article  Google Scholar 

  • Maffei G, Miozzi L, Fiorilli V, Novero M, Lanfranco L, Accotto GP (2014) The arbuscular mycorrhizal symbiosis attenuates symptom severity and reduces virus concentration in tomato infected by Tomato yellow leaf curl Sardinia virus (TYLCSV). Mycorrhiza 24(3):179–186

    Article  CAS  PubMed  Google Scholar 

  • Maillet F, Poinsot V, Andre O, Puech-Pages V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, Martinez EA, Driguez H, Bécard G, Dénarié J (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–64

    Article  CAS  PubMed  Google Scholar 

  • Malik RJ, Dixon MH, Bever JD (2016) Mycorrhizal composition can predict foliar pathogen colonization in soybean. Biol Control 103:46–53

    Article  CAS  Google Scholar 

  • Marquez N, Giachero ML, Gallou A, Debat HJ, Cranenbrouck S, Di Rienzo JA, Pozo MJ, Ducasse DA, Declerck S (2018) Transcriptional changes in mycorrhizal and nonmycorrhizal soybean plants upon infection with the fungal pathogen Macrophomina phaseolina. Mol Plant Microbe Interact 31(8):842–855

    Article  PubMed  Google Scholar 

  • Marro N, Lax P, Cabello M, Doucet ME, Becerra AG (2014) Use of the arbuscular mycorrhizal fungus Glomus intraradices as biological control agent of the nematode Nacobbus aberrans parasitizing tomato. Braz Arch Biol Technol 57:668–675

    Article  Google Scholar 

  • McDowell JM (2019) Focus on activation, regulation, and evolution of MTI and ETI. Mol Plant Microbe Interact 32:5–5

    Article  PubMed  Google Scholar 

  • Meier AR, Hunter MD (2019) Mycorrhizae alter constitutive and herbivore-induced volatile emissions by milkweeds. J Chem Ecol 45:610–625

    Article  CAS  PubMed  Google Scholar 

  • Miozzi L, Catoni M, Fiorilli V, Mullineaux PM, Accotto GP, Lanfranco L (2011) Arbuscular mycorrhizal symbiosis limits foliar transcriptional responses to viral infection and favors long-term virus accumulation. Mol Plant Microbe Interact 24:1562–1572

    Article  CAS  PubMed  Google Scholar 

  • Miozzi L, Vaira AM, Catoni M, Fiorilli V, Accotto GP, Lanfranco L (2019) Arbuscular mycorrhizal symbiosis: plant friend or foe in the fight against viruses? Front Microbiol 10:1238

    Article  PubMed  PubMed Central  Google Scholar 

  • Miozzi L, Vaira AM, Brilli F, Casarin V, Berti M, Ferrandino A, Nerva L, Accotto GP, Lanfranco L (2020) Arbuscular mycorrhizal symbiosis primes tolerance to Cucumber Mosaic Virus in tomato. Viruses 12:675

    Article  CAS  PubMed Central  Google Scholar 

  • Mur LA, Kenton P, Lloyd AJ, Ougham H, Prats E (2008) The hypersensitive response; the centenary is upon us but how much do we know? J Exp Bot 59:501–520

    Article  CAS  PubMed  Google Scholar 

  • Nair A, Kolet SP, Thulasiram HV, Bhargava S (2015) Systemic jasmonic acid modulation in mycorrhizal tomato plants and its role in induced resistance against Alternaria alternata. Plant Biol 17:625–631

    Article  CAS  PubMed  Google Scholar 

  • Nemec S, Mvhre D (1984) Virus-Glomus etunicatum interactions in Citrus rootstocks. Plant Dis 68:311–314

    Article  Google Scholar 

  • Norman JR, Hooker JE (2000) Sporulation of Phytophthora fragariae shows greater stimulation by exudates of non-mycorrhizal than by mycorrhizal strawberry roots. Mycol Res 104:1069–1073

    Article  Google Scholar 

  • Ozgonen H, Erkilic A (2007) Growth enhancement and Phytophthora blight (Phytophthora capsica L.) control by arbuscular mycorrhizal fungal inoculation in pepper. Crop Prot 26:1682–1688

    Article  Google Scholar 

  • Pandey R (2005) Field application of bio-organics in the management of Meloidogyne incognita in Mentha arvensis. Nematol Mediterr 33:51–54

    CAS  Google Scholar 

  • Pham TT, Giang BL, Nguyen NH, Yen P, Hoang V, Ha B, Le N (2020) Combination of mycorrhizal symbiosis and root grafting effectively controls nematode in replanted coffee soil. Plants 9:555

    Article  CAS  PubMed Central  Google Scholar 

  • Pineda A, Zheng SJ, van Loon JJA, Pieterse CMJ, Dicke M (2010) Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends Plant Sci 15:507–514

    Article  CAS  PubMed  Google Scholar 

  • Poveda J, Hermosa R, Monte E, Nicolás C (2019) Trichoderma harzianum favours the access of arbuscular mycorrhizal fungi to non-host Brassicaceae roots and increases plant productivity. Sci Rep 9:11650

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Poveda J, Abril-Urias P, Escobar C (2020) Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma, mycorrhizal and endophytic fungi. Front Microbiol 11:992

    Article  PubMed  PubMed Central  Google Scholar 

  • Powell JR, Rillig MC (2018) Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytol 220:1059–1075

    Article  PubMed  Google Scholar 

  • Pozo MJ, Azcon-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Cordier C, Dumas-Gaudot E, Gianinazzi S, Barea JM, Azcon-Aguilar C (2002) Localized verses systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. J Exp Bot 53:525–534

    Article  CAS  PubMed  Google Scholar 

  • Priyadharsini P, Rojamala K, Ravi RK, Muthuraja R, Nagaraj K, Muthukumar T (2016) Mycorrhizosphere: the extended rhizosphere and its significance. In: Choudhury D, Varma A, Tuteja N (ed) Plant-microbe interaction: an approach to sustainable agriculture. Springer, Singapore, pp 97–124

    Chapter  Google Scholar 

  • Real-Santillán RO, Del-Val E, Cruz-Ortega R, Contreras-Cornejo HÁ, González-Esquivel CE, Larsen J (2019) Increased maize growth and P uptake promoted by arbuscular mycorrhizal fungi coincide with higher foliar herbivory and larval biomass of the Fall Armyworm Spodoptera frugiperda. Mycorrhiza 29:615–622

    Article  PubMed  CAS  Google Scholar 

  • Richter J, Baltruschat H, Kabrodt K, Schellenberg I (2011) Impact of arbuscular mycorrhiza on the St. John’s wort (Hypericum perforatum) wilt disease induced by Colletotrichum cf. gloeosporioides. J Plant Dis Prot 118:109–118

    Article  Google Scholar 

  • Sankaranarayanan C, Sundarababu R (2010) Influence of application methods of arbuscular mycorrhiza Glomus mosseae in the bio-management of root knot nematode, Meloidogyne incognita on black gram (Vigna mungo L.) Hepper. J Biol Control 24:51–57

    Google Scholar 

  • Sanmartin N, Sanchez-Bel P, Pastor V, Pastor-Fernandez J, Mateu D, Jose Pozo M, Cerezo M, Flors V (2020) Root-to-shoot signalling in mycorrhizal tomato plants upon Botrytis cinerea infection. Plant Sci 298:110595

    Article  CAS  PubMed  Google Scholar 

  • Scheffknecht S, Mammerler R, Steinkellner S, Vierheilig H (2006) Root exudates of mycorrhizal tomato plants exhibit a different effect on microconidia germination of Fusarium oxysporum f. sp. lycopersici than root exudates from non-mycorrhizal tomato plants. Mycorrhiza 16:365–370

    Article  CAS  PubMed  Google Scholar 

  • Schoenherr AP, Rizzo E, Jackson N, Manosalva P, Gomez SK (2019) Mycorrhiza-induced resistance in potato involves priming of defense responses against cabbage looper (Noctuidae: Lepidoptera). Environ Entomol 48:370–381

    Article  CAS  PubMed  Google Scholar 

  • Schouteden N, De Waele D, Panis B, Vos CM (2015) Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: a review of the mechanisms involved. Front Microbiol 6:1280

    Article  PubMed  PubMed Central  Google Scholar 

  • Selvaraj A, Thangavel K, Uthandi S (2020) Arbuscular mycorrhizal fungi (Glomus intraradices) and diazotrophic bacterium (Rhizobium BMBS) primed defense in blackgram against herbivorous insect (Spodoptera litura) infestation. Microbiol Res 231:126355

    Article  CAS  PubMed  Google Scholar 

  • Sharma G, Mathur V (2020) Modulation of insect-induced oxidative stress responses by microbial fertilizers in Brassica juncea. FEMS Microbiol Ecol 96:fiaa040

    Article  CAS  PubMed  Google Scholar 

  • Shaul O, Galili S, Volpin H, Ginzberg I, Elad Y, Chet I, Kapulnik Y (1999) Mycorrhiza-induced changes in disease severity and PR protein expression in tobacco leaves. Mol Plant Microbe interact 12:1000–1007

    Article  CAS  PubMed  Google Scholar 

  • Siasou E, Standing D, Killham K, Johnson D (2009) Mycorrhizal fungi increase biocontrol potential of Pseudomonas fluorescens. Soil Biol Biochem 41:1341–1343

    Article  CAS  Google Scholar 

  • Siddiqui ZA, Akhtar MS (2006) Biological control of root-rot disease complex of chickpea by AM fungi. Archiv Phytopathol Plant Prot 39:389–395

    Article  Google Scholar 

  • Siddiqui ZA, Mahmood I (1996) Biological control of Heterodera cajani and Fusarium udum on pigeonpea by Glomus mosseae, Trichoderma harzianum and Verticillium chlamydosporium. Isr J Plant Sci 44:49–56

    Article  Google Scholar 

  • Singh I (2017) Antimicrobials in higher plants: classification, mode of action and bioactivities. Chem Biol Lett 4:48–62

    CAS  Google Scholar 

  • Singh M, Mishra M, Srivastava DK, Singh PK (2020) Biological control of Fusarium wilt of tomato by arbuscular mycorrhizal fungi with intercropping. Plant Pathol Quar 10:1–9

    Article  Google Scholar 

  • Sipahioglu MH, Demir S, Usta M, Akkopru A (2009) Biological relationship of potato virus Y and arbuscular mycorrhizal fungus Glomus intraradices in potato. Pest Tec 3:63–66

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Q Rev Biol 3:273–281

    Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystems scales. Annu Rev Plant Biol 63:227–250

  • Solaiman ZM, Abbott LK, Murphy DV (2019) Biochar phosphorus concentration dictates mycorrhizal colonisation, plant growth and soil phosphorus cycling. Sci Rep 9:5062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song YY, Zeng RS, Xu JF, Li J, Shen X, Yihdego WG (2010) Interplant communication of tomato plants through underground common mycorrhizal networks. PLoS ONE 5:e13324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song YY, Ye M, Li CY, Wang RL, Wei XC, Luo SM, Zeng RS (2013) Priming of anti-herbivore defense in tomato by arbuscular mycorrhizal fungus and involvement of the jasmonate pathway. J Chem Ecol 39:1036–1044

    Article  PubMed  CAS  Google Scholar 

  • Song Y, Chen D, Lu K, Sun Z, Zeng R (2015) Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus. Front Plant Sci 6:786

    Article  PubMed  PubMed Central  Google Scholar 

  • Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, Bonito G, Corradi N, Grigoriev I, Gryganskyi A, James TY, O’Donnell K, Roberson RW, Taylor TN, Uehling J, Vilgalys R, White MM, Stajich JE (2016) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108:1028–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugiura Y, Akiyama R, Tanaka S, Yano K, Kameoka H, Marui S, Saito M, Kawaguchi M, Akiyama K, Saito K (2020) Myristate can be used as a carbon and energy source for the asymbiotic growth of arbuscular mycorrhizal fungi. Proc Natl Acad Sci 117:25779–25788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiem D, Szmidt-Jaworska A, Baum C, Muders K, Niedojadło K, Hrynkiewicz K (2014) Interactive physiological response of potato (Solanum tuberosum L.) plants to fungal colonization and Potato virus Y (PVY) infection. Acta Mycol 49:291–303

    Article  Google Scholar 

  • Thomma BP, Nurnberger T, Joosten MH (2011) Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23:4–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian L, Chang C, Ma L, Nasir F, Zhang J, Li W, Tran LP, Tian C (2019) Comparative study of the mycorrhizal root transcriptomes of wild and cultivated rice in response to the pathogen Magnaporthe oryzae. Rice 12:35

    Article  PubMed  PubMed Central  Google Scholar 

  • Tiénébo EO, Harrison K, Abo K, Brou YC, Pierson LS 3rd, Tamborindeguy C, Pierson EA, Levy JG (2019) Mycorrhization Mitigates Disease Caused by "Candidatus Liberibacter solanacearum" in Tomato. Plants (Basel) 8:507

    Article  CAS  PubMed Central  Google Scholar 

  • Vos C, Schouteden N, Tuinen D, Chatagnier O, Elsen A, De Waele D, Panis B, Gianinazzi-Pearson V (2013) Mycorrhiza-induced resistance against the root-knot nematode Meloidogyne incognita involves priming of defense gene responses in tomato. Soil Biol Biochem 60:45–54

    Article  CAS  Google Scholar 

  • Waceke JW, Waudo SW, Sikora R (2001) Suppression of Meloidogyne hapla by arbuscular mycorrhiza fungi (AMF) on pyrethrum in Kenya. Int J Pest Manag 47:135–140

    Article  Google Scholar 

  • Wang B, Qiu Y (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Ding T, Li Y, Guo Y, Li Y, Duan T (2020a) Dual inoculation of alfalfa (Medicago sativa L.) with Funnelliformis mosseae and Sinorhizobium medicae can reduce Fusarium wilt. J Appl Microbiol 129:665–679

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Feng H, Wang Y, Wang M, Xie X, Chang H, Wang L, Qu J, Sun K, He W, Wang C, Dai C, Chu Z, Tian C, Yu N, Zhang X, Liu H, Wang E (2020b) Mycorrhizal symbiosis modulates the rhizosphere microbiota to promote rhizobia-legume symbiosis. Mol Plant S1674–2052(20):30433

    Google Scholar 

  • Wheatley RM, Poole PS (2018) Mechanisms of bacterial attachment to roots. FEMS Microbiol Rev 42:448–461

    CAS  PubMed  Google Scholar 

  • Yadav R, Ror P, Rathore P, Kumar S, Ramakrishna W (2020) Bacillus subtilis CP4, isolated from native soil in combination with arbuscular mycorrhizal fungi promotes biofortification, yield and metabolite production in wheat under field conditions. J Appl Microbiol. https://doi.org/10.1111/jam.14951

    Article  PubMed  Google Scholar 

  • Yang H, Zhang Q, Dai Y, Liu Q, Tang J, Bian X, Chen X (2015) Effects of arbuscular mycorrhizal fungi on plant growth depend on root system: a meta-analysis. Plant Soil 389:361–374

    Article  CAS  Google Scholar 

  • Yao M, Tweddell R, Desilets H (2002) Effect of two vesicular-arbuscular mycorrhizal fungi on the growth of micropropagated potato plantlets and on the extent of disease caused by Rhizoctonia solani. Mycorrhiza 12:235–242

    Article  CAS  PubMed  Google Scholar 

  • Yeh CM, Chung K, Liang CKT, Sai WC (2019) New insights into the symbiotic relationship between orchids and fungi. Appl Sci 9:585

    Article  CAS  Google Scholar 

  • Yuanjing L, Zhilei L, Hongyan H, Hong L, Xiancan Z, Xuhui L, Chunjie T (2013) Arbuscular mycorrhizal fungi-enhanced resistance against Phytophthora sojae infection on soybean leaves is mediated by a network involving hydrogen peroxide, jasmonic acid, and the metabolism of carbon and nitrogen. Acta Physiol Plant 35:3465–3475

    Article  CAS  Google Scholar 

  • Zhang H, Wu X, Li G, Qin P (2011) Interactions between arbuscular mycorrhizal fungi and phosphate-solubilizing fungus (Mortierella sp.) and their effects on Kostelelzkya virginica growth and enzyme activities of rhizosphere and bulk soils at different salinities. Biol Fertil Soils 47:543

    Article  CAS  Google Scholar 

  • Zhu HH, Yao Q (2004) Localized and systemic increase of phenols in tomato roots induced by Glomus versiforme inhibits Ralstonia solanacearum. J Phytopathol 152:537–542

    Article  CAS  Google Scholar 

Download references

Acknowledgements

NA would like to acknowledge Department of Science and Technology-Science and Engineering Research Board (DST-SERB) for providing Early Career Research Award Grant (ECR/2017/000710). We sincerely apologise to our contemporaries whose work could not be discussed in this article due to space restrictions.

Funding

Department of Science and Technology-Science and Engineering Research Board (DST-SERB) Early Career Research Award Grant (ECR/2017/000710), University Grants Commission (Grant No F30.-386/2017) and Scheme for promoting research among young faculty (GU/Acad/YFPGC/50/2018/1738-79/05) provide to NA Gauhati University.

Author information

Authors and Affiliations

Authors

Contributions

NA had the idea for the article, NA and BD carried out the literature search, BD wrote the manuscript, NA and SSG critically revised the manuscript.

Corresponding author

Correspondence to Niraj Agarwala.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Handling Editor: Rhonda Peavy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dowarah, B., Gill, S.S. & Agarwala, N. Arbuscular Mycorrhizal Fungi in Conferring Tolerance to Biotic Stresses in Plants. J Plant Growth Regul 41, 1429–1444 (2022). https://doi.org/10.1007/s00344-021-10392-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-021-10392-5

Keywords

Navigation