Skip to main content
Log in

Analysis of DNA Polymerase λ Activity and Gene Expression in Response to Salt and Drought Stress in Oryza sativa Indica Rice Cultivars

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The plants are constantly subjected to varying degree of environmental stress. These stresses results in severe damage to the DNA of the plants, which if not repaired can lead to the impairment of their genetic material, and can prove fatal for the plants. The present work studies the damage to the genomic DNA in response to salinity and drought stress on the indica rice cultivars. The comet assay results showed that maximum DNA damage was seen in the IR29 cultivar, whereas, the Nonabokra cultivar showed minimal DNA damage. The gene expression profiling of DNA polymerase λ (OsPolλ), the only X family DNA polymerase in rice which is involved in the repair of DNA damage, shows that the gene is up-regulated in all the rice cultivars irrespective of their degree of tolerance to the environmental stresses. Further the enzymatic activity of the OsPolλ protein was studied in the three rice cultivars and it was revealed that the OsPolλ activity increases in response to stresses in all the rice cultivars, however, the salinity-susceptible IR29 showed a more prominent increases in the activity of OsPolλ than Nonabokra (salinity tolerant) and N22 (drought tolerant) cultivars. The study on the upstream regions of the OsPolλ gene to identify the different cis acting upstream elements effecting the gene expression showed the presence of unique stress responsive regulatory elements was detected in the upstream region of OsPolλ gene. The present study suggest that the OsPolλ gene expression and enzymatic activity is enhanced in response to these abiotic stress, thus, playing an important role in the repair of salinity and drought induced DNA damages in indica rice cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

cv:

Cultivar

ddNTP:

Dideoxynucleotidetriphosphate

PEG 6000:

Polyethylene glycol 6000

PMSF:

Phenylmethanesulfonyl fluoride

PVDF:

Polyvinylidenedifluoride

References

  • Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9:1859–1868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Agrawal L, Gupta S, Mishra SK et al (2016) Elucidation of complex nature of PEG induced drought-stress response in rice root using comparative proteomics approach. Front Plant Sci 7:1466

    Article  PubMed  PubMed Central  Google Scholar 

  • Akerfelt M, Morimoto RI, Sistonen L (2010) Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 11:545–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amirjani MdR (2010) Effect of NaCl on some physiological parameters of rice. Eur J Biol Sci 3:6–16

    Google Scholar 

  • Ashraf M, Akram NA, Arteca RN, Foolad MR (2010) The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Crit Rev Plant Sci 29:162–190

    Article  CAS  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Basu S, Roychoudhury A, Saha PP, Sengupta DN (2010) Comparative analysis of some biochemical responses of three indica rice varieties during polyethylene glycol-mediated water stress exhibits distinct varietal differences. Acta Physiol Plant 32:551–563

    Article  CAS  Google Scholar 

  • Basu S, Roychoudhury A, Sengupta DN (2014) Deciphering the Role of various cis-acting regulatory elements in controlling SamDC gene expression in Rice. Plant Signal Behav 9:3

    Article  CAS  Google Scholar 

  • Behnam B, Iuchi S, Fujita M, Fujita Y, Takasaki H et al (2013) Characterization of the promoter region of an Arabidopsis gene for 9-cis-epoxycarotenoid dioxygenase involved in dehydration-inducible transcription. DNA Res 20(4):315–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouzroud S, Gouiaa S, Hu N, Bernadac A, Mila I, Bendaou N et al (2018) Auxin Response Factors (ARFs) are potential mediators of auxin action in tomato response to biotic and abiotic stress (Solanum lycopersicum). PLoS One 13(2):e0193517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boyko A, Golubov A, Bilichak A, Kovalchuk I (2010) Chlorine ions but not sodium ions alter genome stability of Arabidopsis thaliana. Plant Cell Physiol 51(6):1066–1078

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-Dye Binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Canter LW (2018) Environmental impact of agricultural production activities. CRC Press, Broken Sound Parkway NW

    Book  Google Scholar 

  • Chen W et al (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14:559–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K (2007) Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought and salt stress in transgenic Arabidopsis. Plant Physiol 143:1739–1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datta K, Tuteja N, Datta SK (2008) Transgenic research on plant abiotic stress and nutrition improvement of food derived from plants. In: RiveraDominguez M, Rojas RT, Tiznado-Hernandez ME (eds) A transgenic approach in plant biochemistry and physiology, vol 81. Signpost, Trivandrum, p 215

    Google Scholar 

  • de Los Reyes BG, Mohanty B, Yun SJ, Park MR, Lee DY (2015) Upstream regulatory architecture of rice genes: summarizing the baseline towards genus-wide comparative analysis of regulatory networks and allele mining. Rice (New York, NY) 8:14

    Google Scholar 

  • Dietz KJ, Vogel MO, Viehhauser A (2010) AP2/EREBP transcription factors are part of gene regulatory networks and integrate metabolic, hormonal and environmental signals in stress acclimation and retrograde signalling. Protoplasma 245:3–14

    Article  CAS  PubMed  Google Scholar 

  • Dmitrieva NI, Burg MB (2005) Hypertonic stress response. Mutat Res 569:65–74

    Article  CAS  PubMed  Google Scholar 

  • Dona M, Macovei A, Fae M, Carbonera D, Balestrazzi A (2013) Plant hormone signalling and modulation of DNA repair under stressful conditions. Plant Cell Rep 32:1043–1052

    Article  CAS  PubMed  Google Scholar 

  • Ferreira LJ, Azevedo V, Maroco J, Oliveira MM, Santos AP (2015) Salt tolerant and sensitive rice varieties display differential methylome flexibility under salt stress. PLoS One 10(5):e0124060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Filichkin SA, Breton G, Priest HD, Dharmawardhana P, Jaiswal P et al (2011) Global profiling of rice and poplar transcriptomes highlights key conserved circadian-controlled pathways and cis-regulatory modules. PLoS One 6(6):e16907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Díaz M, Bebenek K, Kunkel TA, Blanco L (2001) Identification of an intrinsic 5’-deoxyribose-5-phosphate lyase activity in human DNA polymerase lambda: a possible role in base excision repair. J Biol Chem 276:34659–34663

    Article  PubMed  Google Scholar 

  • Gutha LR, Reddy AR (2008) Rice DREB1B promoter shows distinct stress-specific responses, and the overexpression of cDNA in tobacco confers improved abiotic and biotic stress tolerance. Plant Mol Biol 68:533

    Article  CAS  PubMed  Google Scholar 

  • Habib N, Ashraf M, Ahmad Md SA (2010) Enhancement in seed germinability of rice (Oryza sativa L.) by pre-sowing seed treatment with nitric oxide (NO) under salt stress. Pak J Bot 42:4071–4078

    Google Scholar 

  • Hatorangan MR, Sentausa E, Wijaya GY (2009) In silico identification of cis-regulatory elements of phosphate transporter genes in rice (Oryza sativa L.). J Crop Sci Biotechnol 12:25–30

    Article  Google Scholar 

  • Hettiarachchi GH, Reddy MK, Sopory SK, Chattopadhyay S (2005) Regulation of TOP2 by various abiotic stresses including cold and salinity in pea and transgenic tobacco plants. Plant Cell Physiol 46:1154

    Article  CAS  PubMed  Google Scholar 

  • Hien DT, Jacobs M, Angenon G, Hermans C, Thu TT, Son LV, Roosens NH (2003) Proline accumulation and Δ1 -pyrroline-5-carboxylate synthetase gene properties in three rice cultivars differing in salinity and drought tolerance. Plant Sci 165:1059–1068

    Article  CAS  Google Scholar 

  • Hu Y, Han Y-T, Wei W, Li Y-J et al (2015) Identification, isolation, and expression analysis of heat shock transcription factors in the diploid woodland strawberry Fragaria vesca. Front Plant Sci 6:736

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussain HA, Men S, Hussain S et al (2019) Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Sci Rep 9:3890

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ibraheem O, Botha CEJ, Bradley G (2010) In silico analysis of cis-acting regulatory elements in 5′ regulatory regions of sucrose transporter gene families in rice (Oryza sativa Japonica) and Arabidopsis thaliana. Comput Biol Chem 34(5–6):268–283

    Article  CAS  PubMed  Google Scholar 

  • Irarrazabal CE, Burg MB, Ward SG, Ferraris JD (2006) Phosphatidylinositol 3-kinase mediates activation of ATM by high NaCl and by ionizing radiation: role in osmoprotective transcriptional regulation. Proc Natl Acad Sci USA 103:8882–8887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur A, Pati PK, Pati AM, Nagpal AK (2017) In-silico analysis of cis-acting regulatory elements of pathogenesis-related proteins of Arabidopsis thaliana and Oryza sativa. PLoS One 12(9):e0184523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim C, Vo KTX, Nguyen CD et al (2016) Functional analysis of a cold-responsive rice WRKY gene, OsWRKY71. Plant Biotechnol Rep 10:13–23

    Article  CAS  Google Scholar 

  • Konca K, Lankoff A, Banasik A, Lisowska H, Lisowska T, Gozdz S et al (2003) A cross-platform public domain PC image-analysis program for the comet assay. Mutat Res 534:15–20

    Article  CAS  PubMed  Google Scholar 

  • Kozak J, West CE, White C, da Costa-Nunes JA, Angelis KJ (2009) Rapid repair of DNA double strand breaks in Arabidopsis thaliana is dependent on proteins involved in chromosome structure maintenance. DNA Repair 8:413–419

    Article  CAS  PubMed  Google Scholar 

  • Kumar GM, Mamidala P, Podile AR (2009) Regulation of polygalacturonase-inhibitory proteins is highly dependent on stress and light responsive elements. Plant Omics 2:238–249

    Google Scholar 

  • Lee JW, Blanco L, Zhou T, Garcia-Diaz M, Bebenek K, Kunkel TA, Wang Z, Povirk LF (2004) Implication of DNA polymerase lambda in alignment-based gap filling for nonhomologous DNA end joining in human nuclear extracts. J Biol Chem 279:805–811

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Hasanuzzaman M, Huili W, Zhang J, Peng T, Sun H, Zhao Q (2019) High temperature and drought stress cause abscisic acid and reactive oxygen species accumulation and suppress seed germination growth in rice. Protoplasma 256:1217–1227

    Article  CAS  PubMed  Google Scholar 

  • Longhurst T, Lee L, Hinde R, Brady C, Speirs J (1994) Structure of the tomato Adh2 gene and Adh 2 pseudogenes, and a study of Adh 2 gene expression in fruit. Plant Mol Biol 26:1073–1084

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Lu H, Tippin B, Goodman MF, Shimazaki N, Koiwai O, Hsieh CL, Schwarz K, Lieber MR (2004) A biochemically defined system for mammalian non-homologous DNA end joining. Mol Cell 16:701–713

    Article  CAS  PubMed  Google Scholar 

  • Maga G, Villani G, Crespan E, Wimmer U, Ferrari E, Bertocci B, Hübscher U (2007) 8-oxo-guanine bypass by human DNA polymerases in the presence of auxiliary proteins. Nature 447:606–6088

    Article  CAS  PubMed  Google Scholar 

  • Maruyama K, Todaka D, Mizoi J et al (2012) Identification of cis-acting promoter elements in cold- and dehydration-induced transcriptional pathways in Arabidopsis, rice, and soybean. DNA Res 19(1):37–49

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negrão S, Courtois B, Ahmadi N, Abreu I, Saibo N, Oliveira MM (2011) Recent updates on salinity stress in rice: from physiological to molecular responses. Crit Rev Plant Sci 30:329–377

    Article  CAS  Google Scholar 

  • Raquel SG, Hsing Y, Segundo BS (2018) The polycistronic miR166k-166h positively regulates rice immunity via post-transcriptional control of EIN2. Front Plant Sci 9:337

    Article  Google Scholar 

  • Roy S, Das KP (2017) Homologous recombination defective Arabidopsis mutants exhibit enhanced sensitivity to abscisic acid. PLos One 12(1):e0169294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roy S, Roy Choudhury S, Singh SK, Das KP (2011) AtPolλ, a homologue of mammalian DNA Polymeraseλ in Arabidopsis thaliana, is involved in the repair of UV-B induced DNA damage through dark repair pathway. Plant Cell Physiol 52:448–467

    Article  CAS  PubMed  Google Scholar 

  • Roy S, Roy Choudhury S, Das KP (2013a) The interplay of DNA polymerase λ in diverse DNA damage repair pathways in higher plant genome in response to environmental and genotoxic stress factors. Plant Signal Behav 8:e22715-113-114

    Article  CAS  Google Scholar 

  • Roy S, Roy Choudhury S, Sengupta DN, Das KP (2013b) Involvement of AtPol λ in repair of high salt and DNA cross linking agent induced double strand breaks in Arabidopsis thaliana. Plant Physiol 162:1195–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy S, Banerjee V, Das KP (2015) Understanding the physical and molecular basis of stability of Arabidopsis DNA Pol λ under UV-B and high NaCl stress. PLos One 10:e0133843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saha P, Mukherjee A, Biswas AK (2015) Modulation of NaCl induced DNA damage and oxidative stress in mungbean by pretreatment with sublethal dose. Biol Plant 59:139–146

    Article  CAS  Google Scholar 

  • Sanan-Mishra N, Pham XH, Sopory SK, Tuteja N (2005) Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proc Natl Acad Sci USA 102:509–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanath Kumar M, Ghosh B, Sengupta DN (1996) Isolation of mammalian pol β type DNA polymerase from the shoot tips of germinated seedlings of IR-8 rice (Oryza sativa L.). Int J Biochem Mol Biol 39:117–136

    CAS  Google Scholar 

  • Sarkar SN, Bakshi S, Mokkapati SK, Roy S, Sengupta DN (2004) Dideoxynucleoside triphosphate-sensitive DNA polymerase from rice is involved in base excision repair and immunologically similar to mammalian DNA pol β. Biochem Biophys Res Commun 320:145–155

    Article  CAS  PubMed  Google Scholar 

  • Sarvestani ZT, Pirdashti H, Sanavy SA, Balouchi H (2008) Study of water stress effects in different growth stages on yield and yield components of different rice (Oryza sativa L.) cultivars. Pak J Biol Sci 11:1303–1309

    Article  PubMed  Google Scholar 

  • Schӧffl F, Rieping M, Baumann G, Bevan M, Angermüller S (1989) The function of heat shock promoter elements in the regulated expression of chimaeric genes in transgenic tobacco. Mol Genet Genomics 217:246–253

    Article  Google Scholar 

  • Serraj R, McNally KL, Slamet-Loedin I, Kohli A, Haefele SM, Atlin G, Kumar A (2011) Drought resistance improvement in rice: an integrated genetic and resource management strategy. Plant Prod Sci 14:1–14

    Article  Google Scholar 

  • Shankar R, Bhattacharjee A, Jain M (2016) Transcriptome analysis in different rice cultivars provides novel insights into desiccation and salinity stress responses. Sci Rep 6:23719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shariatipour N, Bahram H (2019) Meta-analysis of expression of the stress tolerance associated genes and uncover their cis-regulatory elements in rice (Oryza sativa L.). Open Bioinform J 13:39–49

    Article  Google Scholar 

  • Shimazaki N, Yoshida K, Kobayashi T, Toji S, Tamai K, Koiwai O (2002) Overexpression of human DNA polymerase lambda in E. coli and characterization of the recombinant enzyme. Genes Cells 7:639–651

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  CAS  PubMed  Google Scholar 

  • Sihi S, Bakshi S, Sengupta DN (2015) Detection of DNA polymerase λ activity during seed germination and enhancement after salinity stress and drought in the plumules of indica rice (Oryza sativa L.). Indian J Biochem Biophys 52:86–94

    CAS  PubMed  Google Scholar 

  • Sihi S, Maiti S, Bakshi S, Nayak A, Chaudhuri S, Sengupta DN (2017) Understanding the role of DNA polymerase λ gene in different growth and developmental stages of Oryza sativa L. indica rice cultivars. Plant Physiol Biochem 120:156–168

    Article  CAS  PubMed  Google Scholar 

  • Sikuku PA, Onyango JC, Netondo GW (2012) Physiological and biochemical responses of five nerica rice varieties (Oryza sativa L.) to water deficit at vegetative and reproductive stage. Agric Biol J N Am 3:93–104

    Article  CAS  Google Scholar 

  • Singha S, Choudhuri MA (1990) Effect of salinity (NaCl) stress on H2O2 metabolism in Vigna and Oryza seedlings. Biochem Physiol Pflanz 186:69–74

    Article  CAS  Google Scholar 

  • Tang Y, Bao X, Zhi Y, Wu Q, Guo Y, Yin X, Zeng L, Li J, Zhang J, He W, Liu W, Wang Q, Jia C, Li Z, Liu K (2019) Overexpression of a MYB family gene, OsMYB6, increases drought and salinity stress tolerance in transgenic rice. Front Plant Sci 10:168–180

    Article  PubMed  PubMed Central  Google Scholar 

  • Tran LSP, Nakashima K, Sakuma Y et al (2006) Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant J 49:46–63

    Article  CAS  Google Scholar 

  • Turner NC (1986) Adaptation to water deficits: a changing perspective. Aust J Plant Physiol 13:175–218

    Google Scholar 

  • Uchiyama Y, Kimura S, Yamamoto T, Ishibashi T, Sakaguchi K (2004) Plant DNA polymerase lambda, a DNA repair enzyme that functions in plant meristematic and meiotic tissues. Eur J Biochem 271:2799–2807

    Article  CAS  PubMed  Google Scholar 

  • Vendruscolo ECG, Schuster I, Pileggi M, Scapim CA, Molinari HBC, Marur CJ, Vieira LGE (2007) Stress induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J Plant Physiol 164:1367–1376

    Article  CAS  PubMed  Google Scholar 

  • Washida H, Wu CY, Suzuki A et al (1999) Identification of cis-regulatory elements required for endosperm expression of the rice storage protein glutelin gene GluB-1. Plant Mol Biol 40:1–12

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K, Pacher M, Dukowic S, Schubert V, Puchta H, Schubert I (2009) The structural maintenance of chromosomes 5/6 complex promotes sister chromatid alignment and homologous recombination after DNA damage in Arabidopsis thaliana. Plant Cell 21:2688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Windhövel A, Hein I, Dabrowa R, Stockhaus J (2001) Characterization of a novel class of plant homeodomain proteins that bind to the C4 phosphoenolpyruvate carboxylase gene of Flaveria trinervia. Plant Mol Biol 45:201–214

    Article  PubMed  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14(Suppl 1):S165–S183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Xing XJ, Tian YS et al (2015) Transgenic Arabidopsis plants expressing tomato glutathione S-transferase showed enhanced resistance to salt and drought stress. PLoS One 10(9):e0136960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low temperature, or high-salt stress. Plant Cell 6:251–264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zafar SA, Noor MA, Waqas MA, Wang X, Shaheen T, Raza M (2018) Temperature extremes in cotton production and mitigation strategies. In: Past, present and future trends in cotton breeding. IntechOpen, London

  • Zhang Y, Li J, Chen S et al (2020) An APETALA2/ethylene responsive factor, OsEBP89 knockout enhances adaptation to direct-seeding on wet land and tolerance to drought stress in rice. Mol Genet Genomics 295:941–956

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Chen M, Guo J, Wang Y et al (2020) Overexpression of soybean DREB1 enhances drought stress tolerance of transgenic wheat in the field. J Exp Bot 71(6):1842–1857

    Article  CAS  PubMed  Google Scholar 

  • Zörb C, Geilfus C-M, Dietz K-J (2019) Salinity and crop yield. Plant Biol 21:31–38

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors want to thank Dr. S.H. Wilson and Dr. R. Prasad, NIEHS, USA for the polyclonal antibody. Thanks to Mrs. Kaberi Ghosh, Mr. Jadab Ghosh (Divisional instrument facility, Main Campus) and Mr. Mrinal Das and Mr. Ashim Poddar (Centenary Building) for technical help. We are highly grateful to Dr. Vivek Arora (ARO, Israel) for his valuable suggestions during preparation of the manuscript. SS and SB acknowledge DST-INSPIRE and UGC Teacher fellowship.

Funding

We gratefully acknowledge the financial support received from the DST-SERB project (SR/SO/PS-66/2013) and the Director, Bose Institute (Financed by DST, Government of India, New Delhi).

Author information

Authors and Affiliations

Authors

Contributions

SS and DNS designed the experiments. SS conducted the experiments with the help from SB, SM and AN. SS, SB and DNS wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dibyendu Narayan Sengupta.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Handling Editor: Rhonda Peavy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

344_2021_10390_MOESM1_ESM.jpg

Fig.S.1 Photographs of (A) IR29 (B) Nonabokra (C) N22 seedlings from three different indica rice cultivars under salt, and drought stressfor 4 hours and 8 hours. (a) 8-d old control seedlings, (b) 8-d old seedlings under 4 h of 250mM NaCl, (c) 8-d old seedlings under 8 h of 250mM NaCl, (d) 8-d old seedlings under 4 h of 20% PEG-6000, (e) 8-d old seedlings under 8 h of 20% PEG-6000 (f) 12-d old control seedlings, (g) 12-d old seedlings under 4 h of 250mM NaCl, (h) 12-d old seedlings under 8 h of 250mM NaCl, (i) 12-d old seedlings under 4 h of 20% PEG-6000, (j) 12-d old seedlings under 8 h of 20% PEG-6000 (JPG 256 kb)

344_2021_10390_MOESM2_ESM.jpg

Fig. S.2 Equal amount (10 µg) of proteins from 8-d old seedlings of IR29 (a) , Nonabokra (b), N22 (c), and 12-d old seedlings of IR29 (d), Nonabokra (e), N22 (f) loaded as shown in coomassie brilliant blue R250 stained 10% SDS PAGE. Lanes represent- M- Marker, CS- Control Shoot, CR- Control Root, N4S- 4 h of 250mM NaCl Shoot, N4R- 4 h of 250mM NaCl Root, N8S- 8 h of 250mM NaCl Shoot, N8R- 8 h of 250mM NaCl Root, P4S- 4 h of 20% PEG-6000 Shoot, P4R- 4 h of 20% PEG-6000 Root, P8S- 4 h of 20% PEG-6000 Shoot and P8R- 8 h of 20% PEG-6000 Root (JPG 188 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sihi, S., Bakshi, S., Maiti, S. et al. Analysis of DNA Polymerase λ Activity and Gene Expression in Response to Salt and Drought Stress in Oryza sativa Indica Rice Cultivars. J Plant Growth Regul 41, 1499–1515 (2022). https://doi.org/10.1007/s00344-021-10390-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-021-10390-7

Keywords

Navigation