Skip to main content

Advertisement

Log in

Role of Phytohormones in Regulating Heat Stress Acclimation in Agricultural Crops

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Heat stress (HS) seriously affects crop growth, causing significant crop yield losses worldwide. The regulatory mechanisms controlling HS tolerance in plants are not well understood. Phytohormones are important molecules for coordinating myriad of phenomena related to plant growth and development. They are also essential endogenous signaling molecules that actively mediate numerous physiological responses under abiotic stress by triggering stress-responsive regulatory genes involved in plant growth. This review updates the central role of various phytohormones—indole acetic acid, gibberellic acid, abscisic acid, cytokinins, ethylene, salicylic acid, brassinosteroids, strigolactone, and jasmonic acid—in regulating the HS response so that plants can adapt to increasing temperature stress. We also reveal how these stress-responsive phytohormones switch on various regulatory gene(s) and genes encoding antioxidants and heat shock proteins (HSPs) to combat HS in various plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdelrahman M, El-Sayed M, Jogaiah S, Burritt DJ, Tran L-SP (2017) The “STAY- GREEN” trait and phytohormone signaling networks in plants under heat stress. Plant Cell Rep 36:1009–1025

    Article  CAS  PubMed  Google Scholar 

  • Ahanger MA, Ashraf M, Bajguz A, Ahmad P (2018) Brassinosteroids regulate growth in plants under stressful environments and crosstalk with other potential phytohormones. J Plant Growth Regul 37:1007–1024

    Article  CAS  Google Scholar 

  • Ahanger MA, Mir RA, Alyemeni MN, Ahmad P (2020) Combined effects of brassinosteroid and kinetin mitigates salinity stress in tomato through the modulation of antioxidant and osmolyte metabolism. Plant Physiol Biochem 147:31–42

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Alyemeni MN, Ahanger MA, Egamberdieva D, Wijaya L, Alam P (2018a) Salicylic acid (SA) induced alterations in growth, biochemical attributes and antioxidant enzyme activity in faba bean (Vicia faba L.) seedlings under NaCl toxicity. Russian J Plant Physiol 65:104–114

    Article  CAS  Google Scholar 

  • Ahmad P, Abd-Allah EF, Alyemeni MN, Wijaya L, Alam P, Bhardwaj R, Siddique KH (2018b) Exogenous application of calcium to 24-epibrassinosteroid pre-treated tomato seedlings mitigates NaCl toxicity by modifying ascorbate–glutathione cycle and secondary metabolites. Sci Rep 8:1–5

    Article  Google Scholar 

  • Ahmad P, Ahanger MA, Egamberdieva D, Alam P, Alyemeni MN, Ashraf M (2018c) Modification of osmolytes and antioxidant enzymes by 24-epibrassinolide in chickpea seedlings under mercury (Hg) toxicity. J Plant Growth Regul 37:309–322

    Article  CAS  Google Scholar 

  • Ahmad B, Zaid A, Sadiq Y, Bashir S, Wani SH (2019) Role of selective exogenous elicitors in plant responses to abiotic stress tolerance. Plant abiotic stress tolerance. Springer, Cham, pp 273–290

    Chapter  Google Scholar 

  • Albertos P, Wagner K, Poppenberger B (2019) Cold stress signalling in female reproductive tissues. Plant Cell Environ 42:846–853

    Article  CAS  PubMed  Google Scholar 

  • Ali MS, Baek KH (2020) Jasmonic acid signaling pathway in response to abiotic stresses in plants. Int J Mol Sci 21:621

    Article  CAS  PubMed Central  Google Scholar 

  • Alonso-Ramírez A, Rodríguez D, Reyes D, Jiménez JA, Nicolás G, López-Climent M, Gómez-Cadenas A, Nicolás C (2009) Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiol 150:1335–1344

    Article  PubMed  PubMed Central  Google Scholar 

  • An Y, Zhou P, Liang J (2014) Effects of exogenous application of abscisic acid on membrane stability, osmotic adjustment, photosynthesis and hormonal status of two lucerne (Medicago sativa L.) genotypes under high temperature stress and drought stress. Crop Pasture Sci 65:274–286

    Article  CAS  Google Scholar 

  • Anwar A, Liu Y, Dong R, Bai L, Yu X, Li Y (2018) The physiological and molecular mechanism of brassinosteroid in response to stress: a review. Biol Res 51:46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asthir B, Bhatia S (2014) In vivo studies on artificial induction of thermotolerance to detached panicles of wheat (Triticum aestivum L.) cultivars under heat stress. J Food Sci Technol 51:118–123

    Article  CAS  PubMed  Google Scholar 

  • Balfagón D, Sengupta S, Gómez-Cadenas A, Fritschi FB, Rajeev K (2019) Jasmonic acid is required for plant acclimation to a combination of high light and heat stress. Plant Physiol 181:1668–1682

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Banowetz GM, Ammar K, Chen DD (1999) Postanthesis temperatures influence cytokinin accumulation and wheat kernel weight. Plant Cell Environ 22:309–316

    Article  CAS  Google Scholar 

  • Bastam N, Baninasab B, Ghobadi C (2013) Improving salt tolerance by exogenous application of salicylic acid in seedlings of pistachio. Plant Growth Regul 69:275–284

    Article  CAS  Google Scholar 

  • Bheemanahalli R, Impa SM, Krassovskaya I, Vennapusa AR, Gill KS, Obata T, Jagadish SVK (2020) Enhanced N-metabolites, ABA and IAA-conjugate in anthers instigate heat sensitivity in spring wheat. Physiol Plant. https://doi.org/10.1111/ppl.13109

    Article  PubMed  Google Scholar 

  • Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273

    Article  PubMed  PubMed Central  Google Scholar 

  • Brewer PB, Koltai H, Beveridge CA (2013) Diverse roles of strigolactones in plant development. Mol Plant 6:18–28

    Article  CAS  PubMed  Google Scholar 

  • Browse J (2009) Jasmonate passes muster: a receptor and targets for the defence hormone. Annu Rev Plant Biol 60:183–205

    Article  CAS  PubMed  Google Scholar 

  • Campbell JL, Klueva NY, Zheng H, Nieto-Sotelo J, Ho THD, Nguyen HT (2001) Cloning of new members of heat shock protein HSP101 gene family in wheat (Triticum aestivum (L.) Moench) inducible by heat, dehydration, and ABA. Biochim Biophys Acta Gene Struct Expr 1517:270–277

    Article  CAS  Google Scholar 

  • Cao YY, Zhao H (2008) Protective roles of brassinolide in rice seedlings under heat stress. Rice Sci 15:63–68

    Article  Google Scholar 

  • Cecchetti V, Altamura MM, Falasca G, Costantino P, Cardarelli M (2008) Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell 20:1760–1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerny M, Jedelsky PL, Novak J, Schlosser A, Brzobohaty B (2014) Cytokinin modulates proteomic, transcriptomic and growth responses to temperature shocks in Arabidopsis. Plant Cell Environ 37:1641–1655. https://doi.org/10.1111/pce.12270

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarti N, Mukherji S (2003) Alleviation of NaCl stress by pretreatment with phytohormones in Vigna radiata. Biol Plant 46:589–594

    Article  CAS  Google Scholar 

  • Cheikh N, Jones RJ (1994) Disruption of maize kernel growth and development by heat stress (role of cytokinin/abscisic acid balance). Plant Physiol 106:45–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen T, Li G, Islam MR et al (2019) Abscisic acid synergizes with sucrose to enhance grain yield and quality of rice by improving the source-sink relationship. BMC Plant Biol 19:525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Zhao J (2008) Free IAA in stigmas and styles during pollen germination and pollen tube growth of Nicotiana tabacum. Physiol Plant 134:202–215

    Article  CAS  PubMed  Google Scholar 

  • Cheng C-Y, Lur H-S (1996) Ethylene may be involved in abortion of the maize caryopsis. Physiol Plant 98:245–252

    Article  CAS  Google Scholar 

  • Cheng MC, Liao PM, Kuo WW, Lin TP (2013) The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol 162:1566–1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho SH, Von Schwartzenberg K, Quatrano R (2018) The role of abscisic acid in stress tolerance. Ann Plant Rev 36:282–297

    Article  Google Scholar 

  • Clarke SM, Mur LA, Wood JE, Scott IM (2004) Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant J 38:432–447

    Article  CAS  PubMed  Google Scholar 

  • Clarke SM, Cristescu SM, Miersch O, Harren FJ, Wasternack C, Mur LA (2009) Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytol 182:175–187

    Article  CAS  PubMed  Google Scholar 

  • Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Ann Rev Plant Physiol Plant Mol Biol 49:427–451

    Article  CAS  Google Scholar 

  • Dang FF, Wang YN, Yu L, Eulgem T, Lai Y, Liu ZQ et al (2013) CaWRKY40, a WRKY protein of pepper, plays an important role in the regulation of tolerance to heat stress and resistance to Ralstonia solanacearum infection. Plant Cell Environ 36:757–774

    Article  CAS  PubMed  Google Scholar 

  • Dar TA, Uddin M, Khan MMA, Hakeem KR, Jaleel H (2015) Jasmonates counter plant stress: a review. Environ Exp Bot 115:49–57

    Article  CAS  Google Scholar 

  • Daszkowska-Golec A, Szarejko I (2013) Open or close the gate: stomata action under the control of phytohormones in drought stress conditions. Front Plant Sci 4:138

    Article  PubMed  PubMed Central  Google Scholar 

  • Dat JF, Foyer CH, Scott IM (1998a) Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiol 118:455–461

    Article  Google Scholar 

  • Dat JF, Lopez-Delgado H, Foyer CH, Scott IM (1998b) Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol 116:1351–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debbarma J, Sarki YN, Saikia B, Boruah HP, Singha DL, Chikkaputtaiah C (2019) Ethylene response factor (ERF) family proteins in abiotic stresses and CRISPR–Cas9 genome editing of ERFs for multiple abiotic stress tolerance in crop plants: a review. Mol Biotechnol 61:153–172

    Article  CAS  PubMed  Google Scholar 

  • Deokar AA, Kondawar V, Kohli D, Aslam M, Jain PK, Karuppayil SM, Varshney RK, Srinivasan R (2015) The CarERF genes in chickpea (Cicer arietinum L.) and the identification of CarERF116 as abiotic stress responsive transcription factor. Funct Integr Genomics 15:27–46

    Article  CAS  PubMed  Google Scholar 

  • Deryng D, Conway D, Ramankutty N, Price J, Warren R (2014) Global crop yield response to extreme heat stress under multiple climate change futures. Environ Res Lett 9:034011

    Article  Google Scholar 

  • De Block M, Van Lijsebettens M (2011) Energy efficiency and energy homeostasis as genetic and epigenetic components of plant performance and crop productivity. Curr Opin Plant Biol 14:275–282

    Article  PubMed  CAS  Google Scholar 

  • de Saint GA, Ligerot Y, Dun EA, Pillot JP, Ross JJ, Beveridge CA, Rameau C (2013) Strigolactones stimulate internode elongation independently of gibberellins. Plant Physiol 163:1012–1025

    Article  CAS  Google Scholar 

  • Dhaubhadel S, Browing KS, Gillic DR, Krishna P (2002) Brassinosteroid function to protect the translational machinery and heat shock protein synthesis following thermal stress. Plant J 29:681–691

    Article  CAS  PubMed  Google Scholar 

  • Dhaubhadel S, Chaudhary S, Dobinson KF et al (1999) Treatment with 24-epibrassinolide, a brassinosteroid, increases the basic thermotolerance of Brassica napus and tomato seedlings. Plant Mol Biol 40:333–342

    Article  CAS  PubMed  Google Scholar 

  • Ding W, Song L, Wang X, Bi Y (2010) Effect of abscisic acid on heat stress tolerance in the calli from two ecotypes of Phragmites communis. Biol Plant 54:607–613

    Article  CAS  Google Scholar 

  • Ding P, Ding Y (2020) Stories of salicylic acid: a plant defense hormone. Trend Plant Sci 25:549–565

    Article  CAS  Google Scholar 

  • Divi UK, Rahman T, Krishna P (2010) Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol 10:151–165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Easterling WE, Aggarwal PK, Batima P et al (2007) Food, fibre and forest products. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 273–313

    Google Scholar 

  • Fahad S, Bano A (2012) Effect of salicylic acid on physiological and biochemical characterization of maize grown in saline area. Pak J Bot 44:1433–1438

    Google Scholar 

  • Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, Huang J (2015a) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul. https://doi.org/10.1007/s10725-014-0013-y

    Article  Google Scholar 

  • Fahad S, Nie L, Chen Y, Wu C, Xiong D, Saud S, Hongyan L, Cui K, Huang J (2015b) Crop plant hormones and environmental stress. Sustain Agric Rev 15:371–400

    Article  Google Scholar 

  • FAO Report (2009) http://en.wikipedia.org/wiki/Climate_change_and_agriculture. Accessed 18 June 2020

  • Feng BH, Zhang CX, Chen TT, Zhang XF, Tao LX, Fu GF (2018) Salicylic acid reverses pollen abortion of rice caused by heat stress. BMC Plant Biol 18:245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Firon N, Pressman E, Meir S, Khoury R, Altahan L (2012) Ethylene is involved in maintaining tomato (Solanum lycopersicum) pollen quality under heat-stress conditions. AoB Plants. https://doi.org/10.1093/aobpla/pls024

    Article  PubMed  PubMed Central  Google Scholar 

  • Franklin KA, Sang HL, Patel D, Kumar SV, Spartz AK, Gu C, Ye S, Yu P, Breen G, Cohen JD, Wigge PA, Gray WM (2011) Phytochrome-interacting factor 4 (pif4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci 108:20231–20235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu G, Zhang C, Yang X, Yang Y, Chen T, Zhao X, Fu W, Feng B, Zhang X, Tao L, Jin Q (2015) Action mechanism by which SA alleviates high temperature induced inhibition to spikelet differentiation. Chin J Rice Sci 29:637–647

    CAS  Google Scholar 

  • Galani S, Hameed S, Ali MK (2016) Exogenous application of salicylic acid: inducing thermotolerance in cotton (Gossypium hirsutum L.) seedlings. Intl J Agric Food Res 5:9–18

    Google Scholar 

  • Ghanem ME, Albacete A, Smigocki AC, Frébort I, Pospísilová H, Martínez-Andújar C, Acosta M, Sánchez-Bravo J, Lutts S, Dodd IC, Pérez-Alfocea F (2011) Root-synthesized cytokinins improve shoot growth and fruit yield in salinized tomato (Solanum lycopersicum L.) plants. J Exp Bot 62:125–140

    Article  CAS  PubMed  Google Scholar 

  • Gong M, Li Y-J, Chen S-Z (1998) Abscisic acid-induced thermotolerance in maize seedlings is mediated by calcium and associated with antioxidant systems. J Plant Physiol 153:488–496

    Article  CAS  Google Scholar 

  • Gonzalez-Olmedo JL, Cordova A, Aragon CE, Pina D, Rivas M, Rodrıguez R (2005) Effect of an analogue of brassinosteroid on FHIA-18 plantlets exposed to thermal stress. InfoMusa 14:18–20

    Google Scholar 

  • Gourdji SM, Sibley AM, Lobell DB (2013) Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections. Environ Res Lett 8:024041

    Article  Google Scholar 

  • Gray WM, Ostin A, Sandberg G, Romano CP, Estelle M (1998) High temperature promotes auxin-mediated hypocotyls elongation in Arabidopsis. Proc Natl Acad Sci USA 95:7197–7202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grove MD, Spencer GF, Rohwedder WK, Mandava N et al (1979) Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281:216–217

    Article  CAS  Google Scholar 

  • Grubb CD, Zipp BJ, Ludwig-Müller J, Masuno MN, Molinski TF, Abel S (2004) Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis. Plant J 40:893–908

    Article  CAS  PubMed  Google Scholar 

  • Ha S, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Tran L-SP (2012) Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci 17:172–179

    Article  CAS  PubMed  Google Scholar 

  • Habben JE, Bao X, Bate NJ, DeBruin JL, Dolan D, Hasegawa D, Helentjaris TG, Lafitte RH, Lovan N, Mo H, Reimann K (2014) Transgenic alteration of ethylene biosynthesis increases grain yield in maize under field drought-stress conditions. Plant Biotechnol J 12:685–693

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam M, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Intl J Mol Sci 14:9643–9684

    Article  CAS  Google Scholar 

  • Hayat S, Masood A, Yusf M, Fariduddin Q, Ahmad A (2009) Growth of Indian mustard (Brassica juncea L.) in response to salicylic acid under high-temperature stress. Braz J Plant Physiol 21:187–195

    Article  Google Scholar 

  • Hayat S, Mori M, Fariduddin Q, Bajguz A, Ahmad A (2010) Physiological role of brassinosteroids: an update. Indian J Plant Physiol 15:99–109

    CAS  Google Scholar 

  • Hays DB, Do JH, Mason RE, Morgan G, Finlayson SA (2007) Heat stress induced ethylene production in developing wheat grains induces kernel abortion and increased maturation in a susceptible cultivar. Plant Sci 172:1113–1123

    Article  CAS  Google Scholar 

  • He P, Jin JY (1999) Relationships among hormone changes, transmembrane flux of Ca2+ and lipid peroxidation during leaf senescing in spring maize. Acta Bot Sin 41:1221–1225

    CAS  Google Scholar 

  • Hsu YT, Kao CH (2003) Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant Cell Environ 26:867–874

    Article  CAS  PubMed  Google Scholar 

  • Hu XJ, Chen D, Mclntyre CL, Dreccer MF, Zhang ZB, Drenth J, Sundaravelpandian K, Chang H, Xue GP (2018a) Heat shock factor C2a serves as a proactive mechanism for heat protection in developing grains in wheat via an ABA-mediated regulatory pathway. Plant Cell Environ 41:79–98

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Zhang S, Huang B (2018b) Strigolactones and interaction with auxin regulating root elongation in tall fescue under different temperature regimes. Plant Sci 271:34–39

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Zhang S, Huang B (2019) Strigolactones promote leaf elongation in tall fescue through upregulation of cell cycle genes and downregulation of auxin transport genes in tall fescue under different temperature regimes. Int J Mol Sci 20:1836

    Article  CAS  PubMed Central  Google Scholar 

  • Huang YC, Niu CY, Yang CR, Jinn TL (2016) The heat stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses. Plant Physiol 172:1182–1199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Sun MM, Ye Q, Wu XQ, Wu WH, Chen YF (2017) Abscisic acid modulates seed germination via ABA INSENSITIVE5-mediated PHOSPHATE1. Plant Physiol 175:1661–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Zhao X, Bürger M, Wang Y, Chory J (2020) Two interacting ethylene response factors regulate heat stress response. Plant Cell. https://doi.org/10.1093/plcell/koaa026

    Article  PubMed  PubMed Central  Google Scholar 

  • Huberman M, Riov J, Goldschmidt EE, Apelbaum A, Goren R (2013) The novel ethylene antagonist, 3-cyclopropyl-1-enyl-propanoic acid sodium salt (CPAS), increases grain yield in wheat by delaying leaf senescence. Plant Growth Regul 73:249–255

    Article  CAS  Google Scholar 

  • Hussain M, Khan TA, Yusuf M, Fariduddin Q (2019) Silicon-mediated role of 24-epibrassinolide in wheat under high-temperature stress. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-019-04938-0

    Article  Google Scholar 

  • Hwang I, Sheen J, Müller B (2012) Cytokinin signaling networks. Annu Rev Plant Biol 63:353–380

    Article  CAS  PubMed  Google Scholar 

  • Ivanov AG, Kitcheva MI, Christov AM, Popova LP (1992) Effects of abscisic acid treatment on the thermostability of the photosynthetic apparatus in barley chloroplasts. Plant Physiol 98:1228–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahan MS, Wang Y, Shu S, Zhong M, Chen Z, Wu J, Sun J, Guo S (2019) Exogenous salicylic acid increases the heat tolerance in tomato (Solanum lycopersicum L) by enhancing photosynthesis efficiency and improving antioxidant defense system through scavenging of reactive oxygen species. Sci Hortic 247:421–429

    Article  CAS  Google Scholar 

  • Jan S, Noman A, Kaya C, Ashraf M, Alyemeni MN, Ahmad P (2020) 24-Epibrassinolide alleviates the injurious effects of Cr (VI) toxicity in tomato plants: Insights into growth, physio-biochemical attributes, antioxidant activity and regulation of ascorbate–glutathione and glyoxalase cycles. J Plant Growth Regul 39:1587–1604

    Article  CAS  Google Scholar 

  • Janda T, Lejmel MA, Molnar AB, Majlath I, Pal M, Nguyen QT et al (2020) Interaction between elevated temperature and different types of Na-salicylate treatment in Brachypodium dystachion. PLoS ONE 15:e0227608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janeczko A, Oklešťková J, Pociecha E, Kościelniak J, Mirek M (2011) Physiological effects and transport of 24-epibrassinolide in heat-stressed barley. Acta Physiol Plant 33:1249–1259

    Article  CAS  Google Scholar 

  • Javid MG, Sorooshzadeh A, Moradi F, Sanavy SAMM, Allahdadi I (2011) The role of phytohormones in alleviating salt stress in crop plants. Aust J Crop Sci 5:726–734

    CAS  Google Scholar 

  • Jegadeesan S, Beery A, Altahan L et al (2018) Ethylene production and signaling in tomato (Solanum lycopersicum) pollen grains is responsive to heat stress conditions. Plant Reprod 31:367–383

    Article  CAS  PubMed  Google Scholar 

  • Jeon J, Kim NY, Kim S, KangNY NO, Ku SJ, Cho C, Lee DJ, Lee EJ, Strnad M, Kim JA (2010) subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. J Biol Chem 285:23371–23386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jha UC, Bohra A, Singh NP (2014) Heat stress in crop plants: its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breed 133:679–701

    Article  Google Scholar 

  • Jia KP, Luo Q, He SB, Lu XD, Yang HQ (2014) Strigolactone-regulated hypocotyl elongation is dependent on cryptochrome and phytochrome signaling pathways in Arabidopsis. Mol Plant 7:528–540

    Article  CAS  PubMed  Google Scholar 

  • Kang M, Lee S, Abdelmageed H, Reichert A, Lee HK, Fokar M, Mysore KS, Allen RD (2017) Arabidopsis stress associated protein 9 mediates biotic and abiotic stress responsive ABA signaling via the proteasome pathway. Plant Cell Environ 40:702–716

    Article  CAS  PubMed  Google Scholar 

  • Kaur P, Ghai N, Sangha MK (2009) Induction of thermotolerance through heat acclimation and salicylic acid in Brassica species. Afr J Biotech 8:619–625

    CAS  Google Scholar 

  • Kaur H, Sirhindi G, Bhardwaj R, Alyemeni MN, Siddique KH, Ahmad P (2018) 28-homobrassinolide regulates antioxidant enzyme activities and gene expression in response to salt-and temperature-induced oxidative stress in Brassica juncea. Sci Rep 8:1–3

    Article  Google Scholar 

  • Kaya C, Ashraf M, Wijaya L, Ahmad P (2019) The putative role of endogenous nitric oxide in brassinosteroid-induced antioxidant defence system in pepper (Capsicum annuum L.) plants under water stress. Plant Physiol Biochem 143:119–128

    Article  CAS  PubMed  Google Scholar 

  • Kaya C, Ashraf M, Alyemeni MN, Corpas FJ, Ahmad P (2020a) Salicylic acid-induced nitric oxide enhances arsenic toxicity tolerance in maize plants by upregulating the ascorbate-glutathione cycle and glyoxalase system. J Hazard Mater 399:123020

    Article  CAS  PubMed  Google Scholar 

  • Kaya C, Ashraf M, Alyemeni MN, Ahmad P (2020b) Nitrate reductase rather than nitric oxide synthase activity is involved in 24-epibrassinolide-induced nitric oxide synthesis to improve tolerance to iron deficiency in strawberry (Fragaria × annassa) by up-regulating the ascorbate-glutathione cycle. Plant Physiol Biochem 151:486–499

    Article  CAS  PubMed  Google Scholar 

  • Kazan K, Manners JM (2012) JAZ repressors and the orchestration of phytohormone crosstalk. Trends Plant Sci 17:22e31

    Article  CAS  Google Scholar 

  • Kazan K (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci 20:219–229

    Article  CAS  PubMed  Google Scholar 

  • Khan MI, Iqbal N, Masood A, Per TS, Khan NA (2013) Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signal Behav 8:e26374. https://doi.org/10.4161/psb.26374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan A, Bilal S, Khan AL, Imran M et al (2020) Silicon and gibberellins: synergistic function in harnessing aba signaling and heat stress tolerance in date palm (Phoenix dactylifera L.). Plants 9:620. https://doi.org/10.3390/plants9050620

    Article  CAS  PubMed Central  Google Scholar 

  • Khanna P, Kaur K, Gupta AK (2016) Salicylic acid induces differential anti-oxidant response in spring maize under high temperature stress. Indian J Exp Biol 54:386–393

    PubMed  Google Scholar 

  • Kim HB, Kwon M, Ryu H, Fujioka S, Takatsuto S, Yoshida S, An CS et al (2006) The regulation of DWARF4 expression is likely a critical mechanism in maintaining the homeostasis of bioactive brassinosteroids in Arabidopsis. Plant Physiol 140:548–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knox J, Hess T, Daccache A, Wheeler T (2012) Climate change impacts on crop productivity in Africa and South Asia. Environ Res Lett 7:034032

    Article  Google Scholar 

  • Ko CB, Woo YM, Lee DJ, Lee MC, Kim CS (2007) Enhanced tolerance to heat stress in transgenic plants expressing the GASA4 gene. Plant Physiol Biochem 45:722–728

    Article  CAS  PubMed  Google Scholar 

  • Kohli SK, Handa N, Sharma A, Gautam V, Arora S, Bhardwaj R, Wijaya L, Alyemeni MN, Ahmad P (2018a) Interaction of 24-epibrassinolide and salicylic acid regulates pigment contents, antioxidative defense responses, and gene expression in Brassica juncea L. seedlings under Pb stress. Environ Sci Pollut Res 25:15159–15173

    Article  CAS  Google Scholar 

  • Kohli SK, Handa N, Sharma A, Gautam V, Arora S, Bhardwaj R, Alyemeni MN, Wijaya L, Ahmad P (2018b) Combined effect of 24-epibrassinolide and salicylic acid mitigates lead (Pb) toxicity by modulating various metabolites in Brassica juncea L. seedlings. Protoplasma 255:11–24

    Article  CAS  PubMed  Google Scholar 

  • Kohli SK, Bali S, Tejpal R, Bhalla V, Verma V, Bhardwaj R, Alqarawi AA, Abd-Allah EF, Ahmad P (2019) In-situ localization and biochemical analysis of bio-molecules reveals Pb-stress amelioration in Brassica juncea L. by co-application of 24-epibrassinolide and salicylic acid. Sci Rep 9:1–5

    Article  Google Scholar 

  • Kousar R, Qureshi R, Jalal-Ud-Din MM, Shabbir G (2018) Salicylic acid mediated heat stress tolerance in selected bread wheat genotypes of Pakistan. Pak J Bot 50:2141–2146

    CAS  Google Scholar 

  • Krishna P (2003) Brassinosteroid-mediated stress responses. J Plant Growth Regul 22:289–297

    Article  CAS  PubMed  Google Scholar 

  • Kucharik CJ, Serbin SP (2008) Impacts of recent climate change on Wisconsin corn and soybean yield trends. Environ Res Lett 3:034003

    Article  Google Scholar 

  • Kumar S, Kaushal N, Nayyar H, Gaur P (2012) Abscisic acid induces heat tolerance in chickpea (Cicer arietinum L.) seedlings by facilitated accumulation of osmoprotectants. Acta Physiol Plant 34:1651–1658

    Article  CAS  Google Scholar 

  • Kumar RR, Sharma SK, Goswami S, Verma P, Singh K, Dixit N, Pathak H, Viswanathan C, Rai RD (2015) Salicylic acid alleviates the heat stress-induced oxidative damage of starch biosynthesis pathway by modulating the expression of heat-stable genes and proteins in wheat (Triticum aestivum). Acta Physiol Plant 37:1–12

    Article  CAS  Google Scholar 

  • Kwon C-T, Paek N-C (2016) Gibberellic acid: a key phytohormone for spikelet fertility in rice grain production. Intl J Mol Sci 17:794

    Article  CAS  Google Scholar 

  • Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128:682–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkindale J, Huang B (2004) Thermotolerance and antioxidant systems in Agrostis stolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J Plant Physiol 161:405–413

    Article  CAS  PubMed  Google Scholar 

  • Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138:882–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeBlanc C, Zhang F, Mendez J, Lozano Y, Chatpar K, Irish VF, Jacob Y (2018) Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress. Plant J 93:377–386

    Article  CAS  PubMed  Google Scholar 

  • Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529:84–87

    Article  CAS  PubMed  Google Scholar 

  • Li S, Zhou X, Chen L, Huang W, Yu D (2010) Functional characterization of Arabidopsis thaliana WRKY39 in heat stress. Mol Cells 29:475–483

    Article  CAS  PubMed  Google Scholar 

  • Li H, Liu SS, Yi CY, Wang F, Zhou J, Xia XJ, Shi K, Zhou YH, Yu JQ (2014) Hydrogen peroxide mediates abscisic acid-induced hsp70 accumulation and heat tolerance in grafted cucumber plants. Plant Cell Environ 37:2768–2780

    Article  CAS  PubMed  Google Scholar 

  • Li Z-G, Xie L-R, Li X-J (2015) Hydrogen sulfide acts as a downstream signal molecule in salicylic acid-induced heat tolerance in maize (Zea mays L.) seedlings. J Plant Physiol 177:121–127. https://doi.org/10.1016/j.jplph.2014.12.018

    Article  CAS  PubMed  Google Scholar 

  • Li ZG (2015) Synergistic effect of antioxidant system and osmolyte in hydrogen sulfide and salicylic acid crosstalk-induced heat tolerance in maize (Zea mays L.) seedlings. Plant Signal Behav 10:e105-1278

    Article  Google Scholar 

  • Li GY, Zhang CX, Zhang GH, Fu WM, Feng BH, Chen TT et al (2020) Abscisic acid negatively modulates heat tolerance in rolled leaf rice by increasing leaf temperature and regulating energy homeostasis. Rice 13:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu XZ, Huang BR (2002) Cytokinin effects on creeping bentgrass response to heat stress: II. leaf senescence and antioxidant metabolism. Crop Sci 42:466–472

    CAS  Google Scholar 

  • Liu ZM, Yue MM, Yang DY, Zhu SB, Ma NN, Meng QW (2017) Over-expression of SlJA2 decreased heat tolerance of transgenic tobacco plants via salicylic acid pathway. Plant Cell Rep 36:529–542

    Article  CAS  PubMed  Google Scholar 

  • Lobell DB, Field CB (2007) Global scale climate–crop yield relationships and the impacts of recent warming. Environ Res Lett 2:014002

    Article  Google Scholar 

  • Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319:607–610

    Article  CAS  PubMed  Google Scholar 

  • Lobell DB, Banziger M, Magorokosho C, Vivek B (2011) Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat Clim Chang 1:42–45

    Article  Google Scholar 

  • Lopez-Delgado H, Dat JF, Foyer CH, Scott IM (1998) Induction of thermotolerance in potato microplants by acetylsalicylic acid and H2O2. J Exp Bot 49:713–720

    Article  CAS  Google Scholar 

  • Lozano-Durán R, Zipfel C (2015) Trade-off between growth and immunity: role of brassinosteroids. Trends Plant Sci 20:12–19

    Article  PubMed  CAS  Google Scholar 

  • Luo Q (2011) Temperature thresholds and crop production: a review. Clim Chang 109:583–598

    Article  Google Scholar 

  • Maharjan PM, Choe S (2011) High temperature stimulates DWARF4 (DWF4) expression to increase hypocotyl elongation in Arabidopsis. J Plant Biol 54:425–429

    Article  CAS  Google Scholar 

  • Macková H, Hronková M, Dobrá J, Turečková V, Novák O, Lubovská Z, Motyka V, Haisel D, Hájek T, Prášil IT, Gaudinová A (2013) Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression. J Expt Bot 64:2805–2815

    Article  CAS  Google Scholar 

  • Makarova S, Makhotenko A, Spechenkova N, Love AJ, Kalinina NO, Taliansky M (2018) Interactive responses of potato (Solanum tuberosum L.) plants to heat stress and infection with potato virus Y. Front Microbiol 9:2582

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazorra LM, Holton N, Bishop GJ, Núñez M (2011) Heat shock response in tomato brassinosteroid mutants indicates that thermotolerance is independent of brassinosteroid homeostasis. Plant Physiol Biochem 49:1420–1428

    Article  CAS  PubMed  Google Scholar 

  • Mei C, Qi M, Sheng G, Yang Y (2006) Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. Mol Plant Microbe Interact 19:1127–1137

    Article  CAS  PubMed  Google Scholar 

  • Min L, Li Y, Hu Q, Zhu L, Gao W, Wu Y et al (2014) Sugar and auxin signaling pathways respond to high-temperature stress during anther development as revealed by transcript profiling analysis in cotton. Plant Physiol 164:1293–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  CAS  PubMed  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:86–96

    Article  CAS  PubMed  Google Scholar 

  • Muller M, Munne-Bosch S (2015) Ethylene response factors: a key regulatory hub in hormone and stress signaling. Plant Physiol 169:32–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakaya M, Tsukaya H, Murakami N, Kato M (2002) Brassinosteroids control the proliferation of leaf cells of Arabidopsis thaliana. Plant Cell Physiol 43:239

    Article  CAS  PubMed  Google Scholar 

  • Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34:137–148

    Article  CAS  PubMed  Google Scholar 

  • Navneet K, Jagmeet K, Kaur GS, Inderjit S (2019) Effect of heat stress on antioxidative defense system and its amelioration by heat acclimation and salicylic acid pre-treatments in three pigeonpea genotypes. Indian J Agric Biochem 32:106–110

    Article  CAS  Google Scholar 

  • Neill EM, Byrd MCR, Billman T et al (2019) Plant growth regulators interact with elevated temperature to alter heat stress signaling via the unfolded protein response in maize. Sci Rep 9:10392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nolan T, Chen J, Yin Y (2017) Cross-talk of brassinosteroid signaling in controlling growth and stress responses. Biochem J 474:2641–2661

    Article  CAS  PubMed  Google Scholar 

  • Nolan T, Vukasinovic N, Liu D, Russinova E, Yin Y (2020) Brassinosteroids: multi-dimensional regulators of plant growth, development, and stress responses. Plant Cell. https://doi.org/10.1105/tpc.19.00335

    Article  PubMed  Google Scholar 

  • Northey JGB, Liang S, Jamshed M, Deb S, Foo E, Reid JB et al (2016) Farnesylation mediates brassinosteroid biosynthesis to regulate abscisic acid responses. Nat Plants 2:16114

    Article  CAS  PubMed  Google Scholar 

  • Ogweno JO, Song XS, Shi K, Hu WH, Mao WH, Zhou YH, Yu JQ, Nogués S (2007) Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. J Plant Growth Regul 27:49–57

    Article  CAS  Google Scholar 

  • Ogweno JO, Hu WH, Song XS, Shi K, Mao WH, Zhou YH, Yu JQ (2010) Photoinhibition-induced reduction in photosynthesis is alleviated by abscisic acid, cytokinin and brassinosteroid in detached tomato leaves. Plant Growth Regul 60:175–182

    Article  CAS  Google Scholar 

  • Oshino T, Miura S, Kikuchi S, Hamada K, Yano K, Watanabe M, Higashitani A (2011) Auxin depletion in barley plants under high-temperature conditions represses DNA proliferation in organelles and nuclei via transcriptional alterations. Plant Cell Environ 34:284–290

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Seymour GB, Lu C, Hu Z, Chen X, Chen G (2012) An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. Plant Cell Rep 31:349–360

    Article  CAS  PubMed  Google Scholar 

  • Pan C, Zhang H, Ma Q et al (2019) Role of ethylene biosynthesis and signaling in elevated CO2-induced heat stress response in tomato. Planta 250:563–572

    Article  CAS  PubMed  Google Scholar 

  • Pareek A, Sigla SL, Grover A (1998) Protein alterations associated with salinity, desiccation, high and low temperature stresses and abscisic acid application in seedlings of Pusa 169, a high-yielding rice (Oryza sativa L.) cultivar. Curr Sci 75:1023–1035

    CAS  Google Scholar 

  • Pazhamala LT, Chaturvedi P, Bajaj P, Srikanth S, Ghatak A, Chitikineni A, Bellaire A, Hingane A, Kumar CS, Saxena KB, Weckwerth W (2020) Multiomics approach unravels fertility transition in a pigeonpea line for a two-line hybrid system. Plant Genome 13:e20028

    Article  CAS  PubMed  Google Scholar 

  • Per TS, Khan MIR, Anjum NA, Masood A, Hussain SJ, Khan NA (2018) Jasmonates in plants under abiotic stresses: crosstalk with other phytohormones matters. Environ Exp Bot 145:104–120

    Article  CAS  Google Scholar 

  • Pirnajmedin F, Majidi MM, Taleb H et al (2020) Amelioration of high temperature stress by exogenously applied salicylic acid: genotype-specific response of physiological traits. Agron J. https://doi.org/10.1002/agj2.20150

    Article  Google Scholar 

  • Prerostova S, Dobrev PI, Kramna B et al (2020) Heat acclimation and inhibition of cytokinin degradation positively affect heat stress tolerance of Arabidopsis. Front Plant Sci 11:87

    Article  PubMed  PubMed Central  Google Scholar 

  • Raza A, Charagh S, Zahid Z, Mubarik MS, Javed R, Siddiqui MH, Hasanuzzaman M (2020) Jasmonic acid: a key frontier in conferring abiotic stress tolerance in plants. Plant Cell Rep. https://doi.org/10.1007/s00299-020-02614-z

    Article  PubMed  Google Scholar 

  • Reguera M, Peleg Z, Abdel-Tawab YM, Tumimbang EB, Delatorre CA, Blumwald E (2013) Stress-induced cytokinin synthesis increases drought tolerance through the coordinated regulation of carbon and nitrogen assimilation in rice. Plant Physiol 163:1609–1622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rezaul IM, Baohua F, Tingting C, Weimeng F, Caixia Z, Longxing T et al (2019) Abscisic acid prevents pollen abortion under high-temperature stress by mediating sugar metabolism in rice spikelets. Physiol Plant 165:644–663

    Article  CAS  PubMed  Google Scholar 

  • Rezaul IM, Baohua F, Tingting C, Longxing T, Guanfu F (2018) Role of abscisic acid in thermal acclimation of plants. J Plant Biol 61:255–264

    Article  CAS  Google Scholar 

  • Rivero RM, Gimeno J, VanDeynze A, Walia H, Blumwald E (2010) Enhanced cytokinin synthesis in tobacco plants expressing PSARK::IPT prevents the degradation of photosynthetic protein complexes during drought. Plant Cell Physiol 51:1929–1941

    Article  CAS  PubMed  Google Scholar 

  • Robertson AJ, Ishikawa M, Gusta LV, MacKenzie SL (1994) Abscisic acid-induced heat tolerance in Bromus inermis leyss cell-suspension cultures. Heat-stable, abscisic acid-responsive polypeptides in combination with sucrose confer enhanced thermostability. Plant Physiol 105:181–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubio S, Noriega X, Pérez FJ (2018) Abscisic acid (ABA) and low temperatures synergistically increase the expression of CBF/DREB1 transcription factors and cold-hardiness in grapevine dormant buds. Ann Bot 20:1–9

    Google Scholar 

  • Sadiq Y, Zaid A, Khan MM (2020) Adaptive physiological responses of plants under abiotic stresses: role of phytohormones. Plant ecophysiology and adaptation under climate change: mechanisms and perspectives. Springer, Singapore, pp 797–824

    Google Scholar 

  • Sadura I, Pociecha E, Dziurka M et al (2019) Mutations in the HvDWARF, HvCPD and HvBRI1 genes-involved in brassinosteroid biosynthesis/signalling: altered photosynthetic efficiency, hormonal homeostasis and tolerance to high/low temperatures in barley. J Plant Growth Regul 38:1062–1081

    Article  CAS  Google Scholar 

  • Sahni S, Prasad BD, Liu Q, Grbic V, Sharpe A, Singh SP, Krishna P (2016) Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance. Sci Reps 6:1–4

    CAS  Google Scholar 

  • Sakakibara H (2010) Cytokinin biosynthesis and metabolism. In: Davies PJ (ed) The plant hormones: biosynthesis, signal transduction, action, 3rd edn. Springer, Dordrecht, pp 95–114

    Chapter  Google Scholar 

  • Sakata T, Oshino T, Miura S, Tomabechi M, Tsunaga Y, Higashitani N, Miyazawa Y, Takahashi H, Watanabe M, Higashitani A (2010) Auxins reverse plant male sterility caused by high temperatures. Proc Natl Acad Sci USA 107:8569–8574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saleh AAH, Abdel-Kader DZ, El Elish AM (2007) Role of heat shock and salicylic acid in antioxidant homeostasis in mungbean (Vigna radiata L.) plant subjected to heat stress. Am J Plant Physiol 2:344–355

    Article  CAS  Google Scholar 

  • Sarkar S, Perras MR, Falk DE, Zhang R, Pharis RP, Fletcher RA (2004) Relationship between gibberellins, height, and stress tolerance in barley (Hordeum vulgare L.) seedlings. J Plant Growth Regul 42:125–135

    Article  CAS  Google Scholar 

  • Sarwar M, Saleem MF, Ullah N, Rizwan M, Ali S, Shahid MR, Alamri SA, Alyemeni MN, Ahmad P (2018) Exogenously applied growth regulators protect the cotton crop from heat-induced injury by modulating plant defense mechanism. Sci Rep 8:17086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Savchenko TV, Rolletschek H, Dehesh K (2019) Jasmonates-mediated rewiring of central metabolism regulates adaptive responses. Plant Cell Physiol 60:2613–2620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlenker W, Roberts MJ (2009) Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc Natl Acad Sci USA 106:15594–15598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahzad R, Waqas M, Khan AL, Hamayun M, Kang S-M, Lee I-J (2015) Foliar application of methyl jasmonate induced physio- hormonal changes in Pisum sativum under diverse temperature regimes. Plant Physiol Biochem 96:406–416

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Laxmi A (2016) Jasmonates: emerging players in controlling temperature stress tolerance. Front Plant Sci 6:1129

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma L, Dalal M, Verma RK, Kumar SVV, Yadav SK, Pushkar S, Kushwaha SR, Bhowmik A, Chinnusamy V (2018) Auxin protects spikelet fertility and grain yield under drought and heat stresses in rice. Environ Expt Bot 150:9–24

    Article  CAS  Google Scholar 

  • Sharma L, Priya M, Kaushal N, Bhandhari K, Chaudhary S, Dhankher PO, Vara Prasad PV, Siddique HMK, Nayyar H (2019) Plant growth regulating molecules as thermoprotectants: functional relevance and prospects for improving heat tolerance in food crops. J Exp Bot 71:569–594

    Google Scholar 

  • Sharma A, Thakur S, Kumar V, Kanwar MK, Kesavan AK, Thukral AK, Bhardwaj R, Alam P, Ahmad P (2016) Pre-sowing seed treatment with 24-epibrassinolide ameliorates pesticide stress in Brassica juncea L. through the modulation of stress markers. Front Plant Sci 7:1569

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh I, Shono M (2005) Physiological and molecular effects of 24-epibrassinolide, a brassinosteroid on thermotolerance of tomato. Plant Growth Regul 47:111–119

    Article  CAS  Google Scholar 

  • Singh A, Breja P, Khurana JP, Khurana P (2016) Wheat brassinosteroid-insensitive1 (TaBRI1) interacts with members of TaSERK gene gamily and cause early flowering and seed yield enhancement in Arabidopsis. PLoS ONE 11:e0153273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh G, Sarkar NK, Grover A (2021) Tango between Ethylene and HSFA2 Settles Heat Tolerance. Trends in Plant Science. Trends Plant Sci S1360–1385:00062–5

    Google Scholar 

  • Skalák J, Černý M, Jedelský P, Dobrá J, Ge E, Novák J, Hronková M, Dobrev P, Vanková R, Brzobohatý B (2016) Stimulation of ipt overexpression as a tool to elucidate the role of cytokinins in high temperature responses of Arabidopsis thaliana. J Expt Bot 67:2861–2873

    Article  CAS  Google Scholar 

  • Song G, Wang M, Zeng B, Zhang J, Jiang C, Hu Q, Geng G, Tang C (2015) Anther response to high-temperature stress during development and pollen thermotolerance heterosis as revealed by pollen tube growth and in vitro pollen vigor analysis in upland cotton. Planta 241:1271–1285

    Article  CAS  PubMed  Google Scholar 

  • Stavang JA, Gallego-Bartolomé J, Gómez MD, Yoshida S, Asami T, Olsen JE, García-Martínez JL, Alabadí D, Blázquez MA (2009) Hormonal regulation of temperature-induced growth in Arabidopsis. Plant J 60:589–601

    Article  CAS  PubMed  Google Scholar 

  • Sun TP, Gubler F (2004) Molecular mechanism of gibberellin signaling in plants. Annu Rev Plant Biol 55:197–223

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Qi L, Li Y, Chu J, Li C (2012) PIF4–mediated activation of YUCCA8, expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth. PLoS Genet 8:e1002594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki N, Bajad S, Shuman J et al (2008) The transcriptional co-activator MBF1c is a key regulator of thermotolerance in Arabidopsis thaliana. J Biol Chem 283:9269–9275

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Bassil E, Hamilton JS, Inupakutika MA, Zandalinas SI, Tripathy D et al (2016) ABA is required for plant acclimation to a combination of salt and heat stress. PLoS ONE 11:e0147625. https://doi.org/10.1371/journal.pone.0147625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swaminathan MS, Kesavan PC (2012) Agricultural research in an era of climate change. Agric Res 1:3–11

    Article  Google Scholar 

  • Tang RS, Zheng JC, Jin ZQ, Zhang DD, Huang YH, Chen LG (2008) Possible correlation between high temperature-induced floret sterility and endogenous levels of IAA, GAs and ABA in rice (Oryza sativa L.). Plant Growth Regul 54:37–43

    Article  CAS  Google Scholar 

  • Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859

    Article  CAS  PubMed  Google Scholar 

  • Teixeira EI, Fischer G, van Velthuizen H, Walter C, Ewert F (2013) Global hot-spots of heat stress on agricultural crops due to climate change. Agric Forest Meteor 170:206–215

    Article  Google Scholar 

  • Tesfaye K, Zaidi PH, Gbegbelegbe S, Boeber C et al (2016) Climate change impacts and potential benefits of heat-tolerant maize in South Asia. Theor Appl Climatol 130:959–970

    Article  Google Scholar 

  • Thomas H, Howarth CJ (2000) Five ways to stay green. J Exp Bot 51:329–337

    Article  CAS  PubMed  Google Scholar 

  • Thussagunpanit J, Jutamanee K, Sonjaroon W, Kaveeta L, Chai-Arree W, Pankean P, Suksamrarn A (2015a) Effects of brassinosteroid and brassinosteroid mimic on photosynthetic efficiency and rice yield under heat stress. Photosynth 53:312–320

    Article  CAS  Google Scholar 

  • Thussagunpanit J, Jutamanee K, Kaveeta L, Chai-arree W, Pankean P, Homvisasevongsa S, Suksamrarn A (2015b) Comparative effects of brassinosteroid and brassinosteroid mimic on improving photosynthesis, lipid peroxidation, and rice seed set under heat stress. J Plant Growth Regul 34:320–331

    Article  CAS  Google Scholar 

  • Tian X, Wang F, Zhao Y et al (2020) Heat shock transcription factor A1b regulates heat tolerance in wheat and Arabidopsis through OPR3 and jasmonate signalling pathway. Plant Biotech J18:1109–1111

    Article  Google Scholar 

  • Tognetti VB, Mühlenbock PE, Van Breusegem F (2012) Stress homeostasis–the redox and auxin perspective. Plant Cell Environ 35:321–333

    Article  CAS  PubMed  Google Scholar 

  • Toh S, Kamiya Y, Kawakami N, Nambara E, McCourt P, Tsuchiya Y (2012) Thermo inhibition uncovers a role for strigolactones in Arabidopsis seed germination. Plant Cell Physiol 53:107–117

    Article  CAS  PubMed  Google Scholar 

  • Tsai WA, Weng SH, Chen MC, Lin JS, Tsai WS (2019) Priming of plant resistance to heat stress and tomato yellow leaf curl Thailand virus with plant-derived materials. Front Plant Sci 10:906

    Article  PubMed  PubMed Central  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K et al (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195

    Article  CAS  PubMed  Google Scholar 

  • Valluru R, Reynolds MP, Davies WJ, Sukumaran S (2017) Phenotypic and genome-wide association analysis of spike ethylene in diverse wheat genotypes under heat stress. New Phytol 214:271–283

    Article  CAS  PubMed  Google Scholar 

  • van Butselaar T, Van den Ackerveken G (2020) Salicylic acid steers the growth-immunity tradeoff. Trends Plant Sci 25:566–576

    Article  PubMed  CAS  Google Scholar 

  • Van Ha C, Leyva-González MA, Osakabe Y, Tran UT, Nishiyama R et al (2014) Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc Natl Acad Sci USA 111:851–856

    Article  PubMed  CAS  Google Scholar 

  • Verma V, Ravindran P, Kumar PP (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16:86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verslues PE, Zhu JK (2007) New developments in abscisic acid perception and metabolism. Curr Opin Plant Biol 10:447–452

    Article  CAS  PubMed  Google Scholar 

  • Veselova SV, Farhutdinov RG, Veselov SY, Kudoyarova GR, Veselov DS, Hartung W (2005) The effect of root cooling on hormone content, leaf conductance and root hydraulic conductivity of durum wheat seedlings (Triticum durum L.). J Plant Physiol 162:21–26

    Article  CAS  PubMed  Google Scholar 

  • Vettakkorumakankav NN, Falk D, Saxena P, Fletcher RA (1999) A crucial role for gibberellins in stress protection of plants. Plant Cell Physiol 40:542–548

    Article  CAS  Google Scholar 

  • Vicente R-S, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338

    Article  CAS  Google Scholar 

  • Vijayan P, Shockey J, Lévesque CA, Cook RJ, Browse J (1998) A role for jasmonate in pathogen defense of Arabidopsis. Proc Natl Acad Sci USA 95:7209–7214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Walker-Simmons M (1987) ABA levels and sensitivity in developing wheat embryos of sprouting resistant and susceptible cultivars. Plant Physiol 84:61–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker-Simmons M, Sesing J (1990) Temperature effects on embryonic abscisic acid levels during development of wheat grain dormancy. J Plant Growth Regul 9:51–56

    Article  CAS  Google Scholar 

  • Wang LJ, Li SH (2006) Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Sci 170:685–694

    Article  CAS  Google Scholar 

  • Wang L, Li S (2007) The effects of salicylic acid on distribution of 14C-assimilation and photosynthesis in young grape plants under heat stress. Acta Hortic 738:779–7851

    Article  CAS  Google Scholar 

  • Wang R, Zhang Y, Kieffer M, Yu H, Kepinski S, Estelle M (2016) HSP90 regulates temperature-dependent seedling growth in Arabidopsis by stabilizing the auxin co-receptor F-box protein TIR1. Nat Commun 7:10269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang LJ, Fan L, Loescher W et al (2010) Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biol 10:34–44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang K, Zhang X, Ervin E (2013) Effects of nitrate and cytokinin on creeping bentgrass under supraoptimal temperatures. J Plant Nutr 36:1549–1564

    Article  CAS  Google Scholar 

  • Wang Y, Zhang H, Hou P, Su X, Zhao P, Zhao H, Liu S (2014a) Foliar-applied salicylic acid alleviates heat and high light stress induced photoinhibition in wheat (Triticum aestivum) during the grain filling stage by modulating the psbA gene transcription and antioxidant defense. Plant Growth Regul 73:289–297

    Article  CAS  Google Scholar 

  • Wang Y, Chang H, Hu S, Lu X, Yuan C, Zhang C, Wang P, Xiao W, Xiao L, Xue GP, Guo X (2014b) Plastid casein kinase2 knockout reduces abscisic acid (ABA) sensitivity, thermotolerance, and expression of ABA-and heat-stress-responsive nuclear genes. J Exp Bot 65:4159–4175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Zhuang L, Shi Y (2017) Up-regulation of HSFA2c and HSPs by ABA contributing to improved heat tolerance in tall fescue and Arabidopsis. Int J Mol Sci 18:E1981

    Article  PubMed  CAS  Google Scholar 

  • Wang A, Hu J, Gao C, Chen G, Wang B, Lin C, Song L, Ding Y, Zhou G (2019) Genome-wide analysis of long noncoding RNAs unveils the regulatory roles in the heat tolerance of Chinese cabbage (Brassica rapa ssp. chinensis). Sci Rep 9:5002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang J, Song L, Gong X, Xu J, Li M (2020) Functions of jasmonic acid in plant regulation and response to abiotic stress. Int J Mol Sci 21:1446

    Article  CAS  PubMed Central  Google Scholar 

  • Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4:162–176

    Article  Google Scholar 

  • Wani W, Masoodi KZ, Zaid A, Wani SH, Shah F, Meena VS, Wani SA, Mosa KA (2018) Engineering plants for heavy metal stress tolerance. Rendiconti Lincei. Sci Fis Nat 29:709–723

    Google Scholar 

  • Wassie M, Zhang W, Zhang Q, Ji K et al (2020) Exogenous salicylic acid ameliorates heat stress-induced damages and improves growth and photosynthetic efficiency in alfalfa (Medicagosativa L.). Ecotox Environ Saf 191:110206

    Article  CAS  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasternack L (2014) Action of jasmonates in plant stress responses and development and applied aspects. Biotechnol Adv 32:31e39

    Article  CAS  Google Scholar 

  • Wen PF, Chen JY, Wan SB, Kong WF, Zhang P, Wang W et al (2008) Salicylic acid activates phenylalanine ammonia-lyase in grape berry in response to high temperature stress. Plant Growth Regul 55:1–10

    Article  CAS  Google Scholar 

  • Wheeler TR, Craufurd PQ, Ellis RH et al (2000) Temperature variability and the yield of annual crops. Agric Ecosyst Environ 82:159–167

    Article  Google Scholar 

  • Wilen RW, Sacco M, Gusta LV, Krishna P (1995) Effects of 24-epibrassinolide on freezing and thermotolerance of bromegrass (Bromus inermis) cell cultures. Physiol Plant 95:195–202

    Article  CAS  Google Scholar 

  • Wit MD, Lorrain S, Fankhauser C (2014) Auxin-mediated plant architectural changes in response to shade and high temperature. Physiol Plant 151:13–24

    Article  PubMed  CAS  Google Scholar 

  • Wu JZ, Lin Y, Zhang XL, Pang DW, Zhao J (2008) IAA stimulates pollen tube growth and mediates the modification of its wall composition and structure in Torenia fournieri. J Exp Bot 59:2529–2543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C, Cui K, Wang W, Li Q, Fahad S, Hu Q, Huang J, Nie L, Mohapatra PK, Peng S (2017) Heat-induced cytokinin transportation and degradation are associated with reduced panicle cytokinin expression and fewer spikelets per panicle in Rice. Front Plant Sci 8:371

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C, Cui K, Wang W, Li Q, Fahad S, Hu Q, Huang J, Nie L, Peng S (2016) Heat-induced phytohormone changes are associated with disrupted early reproductive development and reduced yield in rice. Sci Rep 6:34978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu YS, Yang CY (2019) Ethylene-mediated signaling confers thermotolerance and regulates transcript levels of heat shock factors in rice seedlings under heat stress. Bot Stud 60:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu C, Tang S, Li G, Wang S, Fahad S, Ding Y (2019) Roles of phytohormone changes in the grain yield of rice plants exposed to heat: a review. PeerJ 7:e7792

    Article  PubMed  PubMed Central  Google Scholar 

  • Wuriyanghan H, Zhang B, Cao W-H, Ma B, Lei G, Liu Y-F, Wei W, Wu H-J, Chen L-J, Chen H-W et al (2009) The ethylene receptor ETR2 delays floral transition and affects starch accumulation in rice. Plant Cell 21:1473–1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Ann Rev Plant Physiol 59:225–251

    CAS  Google Scholar 

  • Yang JC, Zhang JH, Ye YX, Wang ZQ, Zhu QS, Liu LJ (2004) Involvement of abscisic acid and ethylene in the responses of rice grains to water stress during filling. Plant Cell Environ 27:1055–1064

    Article  CAS  Google Scholar 

  • Yang DL, Yao J, Mei CS, Tong XH, Zeng LJ, Li Q, Xiao LT, Sun TP, Li J, Deng XW, Lee CM (2012) Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc Natl Acad Sci 109:E1192–E1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang D, Li Y, Shi Y, Cui Z, Luo Y, Zheng M, Chen J, Li Y, Yin Y, Wang Z (2016) Exogenous cytokinins increase grain yield of winter wheat cultivars by improving stay-green characteristics under heat Stress. PLoS ONE 11:e0155437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang J, Duan G, Li C, Liu L, Han G, Zhang Y, Wang C (2019) The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses. Front Plant Sci 10:1349

    Article  PubMed  PubMed Central  Google Scholar 

  • You L, Rosegrant MW, Wood S, Sun D (2009) Impact of growing season temperature on wheat productivity in China. Agric For Meteorol 149:1009–1014

    Article  Google Scholar 

  • Youm JW, Jeon JH, Choi D, Yi SY, Joung H, Kim HS (2008) Ectopic ex- pression of pepper CaPF1 in potato enhances multiple stresses tolerance and delays initiation of in vitro tuberization. Planta 228:701–708

    Article  CAS  PubMed  Google Scholar 

  • Young TE, Meeley RB, Gallie DR (2004) ACC synthase expression regulates leaf performance and drought tolerance in maize. Plant J 40:813–825

    Article  CAS  PubMed  Google Scholar 

  • Zaid A, Bhat JA, Wani SH (2020) Influence of metalloids and their toxicity impact on photosynthetic parameters of plants. Metall Plants 14:113–124

    Article  Google Scholar 

  • Zandalinas SI, Balfagón D, Arbona V, Gómez-Cadenas A, Inupakutika MA, Mittler R (2016) ABA is required for the accumulation of APX1 and MBF1c during a combination of water deficit and heat stress. J Exp Bot 67:5381–5390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zavaleta-Mancera HA, Lopez-Delagdo H, Loza-Tavera H, Mora-Herrera M, Trevilla-Garcia C, Vargas- Suarez M et al (2007) Cytokinin promotes catalase and ascorbate peroxidase activities and preserves the chloroplast integrity during dark-senescence. J Plant Physiol 164:1572–1582

    Article  CAS  PubMed  Google Scholar 

  • Zhang YP, Zhu XH, Ding HD et al (2013) Foliar application of 24-epibrassinolide alleviates high-temperature-induced inhibition of photosynthesis in seedlings of two melon cultivars. Photosynthesis 51:341–349

    Article  CAS  Google Scholar 

  • Zhang YP, He J, Yang SJ et al (2014) Exogenous 24-epibrassinolide ameliorates high temperature-induced inhibition of growth and photosynthesis in Cucumis melo. Biol Plant 58:311–318

    Article  CAS  Google Scholar 

  • Zhang J, Shi Y, Zhang X, Du H, Xu B, Huang B (2017) Melatonin suppression of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (Lolium perenne L.). Environ Exp Bot 138:36–45

    Article  CAS  Google Scholar 

  • Zhang CX, Li GY, Chen TT, Feng BH, Fu WM, Yan JX, Islam MR, Jin QY, Tao LX, Fu GF (2018) Heat stress induces spikelet sterility in rice at anthesis through inhibition of pollen tube elongation interfering with auxin homeostasis in pollinated pistils. Rice 11:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Wang X, Zhuang L, Gao Y, Huang B (2019) Abscisic acid mediation of drought priming-enhanced heat tolerance in tall fescue (Festuca arundinacea) and Arabidopsis. Physiol Plant 167:488–501

    Article  CAS  PubMed  Google Scholar 

  • Zheng Z, Guo Y, Novák O, Chen W, Ljung K, Noel JP, Chory J (2016) Local auxin metabolism regulates environment-induced hypocotyl elongation. Nat Plants 2:16025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Wang J, Li X, Xia XJ, Zhou YH, Shi K, Chen Z, Yu JQ (2014) H2O2 mediates the crosstalk of brassinosteroid and abscisic acid in tomato responses to heat and oxidative stresses. J Exp Bot 65:4371–4383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167:P313–P324

    Article  CAS  Google Scholar 

Download references

Acknowledgements

UCJ conceived the idea and wrote the MS with HN and KHMS. UCJ acknowledges support from the Indian Council of Agricultural Research (ICAR), New Delhi, India. HN is thankful to DBT, DST, MOA, UWA (Perth), ICARDA, and World Vegetable Center for supporting research work on heat stress in food crops.

Funding

No funds were required for writing this article.

Author information

Authors and Affiliations

Authors

Contributions

UCJ conceived the idea and written the MS along with HN and KHMS. HN gave assisted in giving concept of Fig.1 and Fig.2. KHMS edited the MS and improved the quality of MS. All authors read and approved the MS.

Corresponding author

Correspondence to Uday Chand Jha.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Rhonda Peavy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, U.C., Nayyar, H. & Siddique, K.H.M. Role of Phytohormones in Regulating Heat Stress Acclimation in Agricultural Crops. J Plant Growth Regul 41, 1041–1064 (2022). https://doi.org/10.1007/s00344-021-10362-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-021-10362-x

Keywords

Navigation