Skip to main content
Log in

Fullerene functionalized gold nanoparticles for optical limiting of continuous wave lasers

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Due to the increasingly widespread diffusion of lasers in many scientific and technological fields, the engineering and the fabrication of systems able to protect either human eyes or delicate equipment from laser radiation damage is nowadays attracting lots of interest in the scientific community. In this work, the optical limiting properties of fulleropyrrolidine, gold nanoparticles and hybrid systems in solution and in a polycarbonate matrix are investigated using a continuous wave laser at 514 nm, by optical limiting, Z-scan and temporal response measurements. The comparison of the results, obtained with different techniques, has allowed us to show that thermal effects account for most of the nonlinear response in gold nanoparticles and in the hybrid system; moreover, the latter exhibits a lower nonlinear threshold and a faster response compared to the former. This paper provides a contribution to the engineering of efficient protection devices in the continuous wave regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Qu, C. Du, Y. Song, Y. Wang, Y. Gao, Chem. Phys. Lett. 356, 403–408 (2002)

    Article  ADS  Google Scholar 

  2. L. Sarkhosh, H. Aleali, R. Karimzadeh, N. Mansour, Phys. Status Solidi 207, 2303–2310 (2010)

    Article  ADS  Google Scholar 

  3. H. Nadjari, F. Hajiesmaeilbaigi, A. Motamedi, Laser Phys. 20, 859–864 (2010)

    Article  ADS  Google Scholar 

  4. E. Shahriari, W.M.M. Yunus, E. Saion, Braz. J. Phys. 40, 256–260 (2010)

    Article  ADS  Google Scholar 

  5. H. Aleali, L. Sarkhosh, R. Karimzadeh, N. Mansour, J. Nonlinear Opt. Phys. Mater. 21, 1250024 (2012)

    Article  ADS  Google Scholar 

  6. M.H. Majles Ara, Z. Dehghani, R. Sahraei, A. Daneshfar, Z. Javadi, F. Divsar, J. Quant. Spectrosc. Radiat. Transf. 113, 366–372 (2012)

    Article  ADS  Google Scholar 

  7. M.C. Frare, V. Weber, R. Signorini, R. Bozio, Laser Phys. 24, 105901 (2014)

    Article  ADS  Google Scholar 

  8. L.W. Tutt, T. Boggest, Prog. Quant. Electr. 17, 299–338 (1993)

    Article  ADS  Google Scholar 

  9. R. Signorini, M. Meneghetti, R. Bozio, M. Maggini, G. Scorrano, M. Prato, G. Brusatin, P. Innocenzi, M. Guglielmi, Carbon, 38, 1653–1662 (2000)

    Article  Google Scholar 

  10. R.C. Hollins, Curr, Opin. Solid State Mater. Sci. 4, 189–196 (1999)

    Article  Google Scholar 

  11. M. Maggini, G. Scorrano, M. Prato, G. Brusatin, P. Innocenzi, M. Guglielmi, A. Renier, R. Signorini, M. Meneghetti, R. Bozio, Adv. Mater. 7, 404–406 (1995)

    Article  Google Scholar 

  12. N. Sun, Y. Wang, Y. Song, Z. Guo, L. Dai, D. Zhu, Chem. Phys. Lett. 344, 277–282 (2001)

    Article  ADS  Google Scholar 

  13. R.A. Ganeev, A.I. Ryasnyanskiœ, M.K. Kodirov, Sh.R. Kamalov, T. Usmanov, Opt. Spectrosc. 93(5), 789–796 (2002)

    Article  ADS  Google Scholar 

  14. X.-L. Zhang, Z.-B. Liu, X.-Q. Yan, X.-C. Li, Y.-S. Chen, J.-G. Tian, J. Opt. 17015501–17015508 (2015)

  15. D. Dini, M.J.F. Calvete, M. Hanack, Chem. Rev. 116, 13043–13233 (2016)

    Article  Google Scholar 

  16. D.M. Guldi, M. Prato, Acc. Chem. Res. 33, 695–703 (2000)

    Article  Google Scholar 

  17. V. Amendola, G. Mattei, C. Cusan, M. Prato, M. Meneghetti, Synth. Met. 155, 283–286 (2005)

    Article  Google Scholar 

  18. M.C. Frare, R. Signorini, V. Weber, R. Bozio, Proc. SPIE 8901, 890113-1 (2013)

    Google Scholar 

  19. F. Lu, S. Xiao, Y. Li, Y. Song, H. Liu, H. Li, J. Zhuang, Y. Liu, L. Gan, D. Zhu, Inorg. Chem. Commun. 7, 960–962 (2004)

    Article  Google Scholar 

  20. P. Zhang, S. Zhang, J. Li, D. Liu, Z.-X. Guo, C. Ye, D. Zhu, Chem. Phys. Lett. 382, 599–604 (2003)

    Article  ADS  Google Scholar 

  21. H. He, C. Xie, J. Ren, Anal. Chem. 80, 5951–5957 (2008)

    Article  Google Scholar 

  22. M. Maggini, G. Scorrano, M. Prato, J. Am. Chem. Soc. 115, 9798–9799 (1993)

    Article  Google Scholar 

  23. N. Martín, M. Altable, S. Filippone, A. Martín-Domenech, L. Echegoyen, C.M. Cardona, Angew. Chemie 118, 116–120 (2006)

    Article  Google Scholar 

  24. J. Turkevich, P.C. Stevenson, J. Hillier, Discuss. Faraday Soc. 11, 55–75 (1951)

    Article  Google Scholar 

  25. V. Amendola, M. Meneghetti, J. Phys. Chem. 113, 4277–4285 (2009)

    Google Scholar 

  26. M. Sastry, Curr. Sci. 85, 1735–1745 (2003)

    Google Scholar 

  27. J.M. McMahon, S.R. Emory, Langmuir 23, 1414–1418 (2007)

    Article  Google Scholar 

  28. K.G. Thomas, J. Zajicek, P.V. Kamat, Langmuir 18, 3722–3727 (2002)

    Article  Google Scholar 

  29. E. Della Gaspera, M. Guglielmi, G. Perotto, S. Agnoli, G. Granozzi, M.L. Post, A. Martucci, Sens. Actuators B Chem. 161, 675–683 (2012)

    Article  Google Scholar 

  30. M.J. Hostetler, A.C. Templeton, R.W. Murray, Langmuir 15, 3782–3789 (1999)

    Article  Google Scholar 

  31. N. Michieli, R. Pilot, V. Russo, C. Scian, F. Todescato, R. Signorini, S. Agnoli, T. Cesca, R. Bozio, G. Mattei, RSC Adv. 7, 369–378 (2017)

    Article  Google Scholar 

  32. R. Pilot, A. Zoppi, S. Trigari, F.L. Deepak, E. Giorgetti, R. Bozio, Phys. Chem. Chem. Phys. 17, 7355–7365 (2015)

    Article  Google Scholar 

  33. C.H. Walker, J.V.S. John, P. Wisian-Neilson, Am. Chem. Soc. 123, 3846–3847 (2001)

    Article  Google Scholar 

  34. P. Wisian-Neilson, F.J. Garcìa-Alonso, Macromolecules 26, 7156–7160 (1993)

    Article  ADS  Google Scholar 

  35. J.L. Delgado, F. Oswald, F. Cardinali, F. Langa, N. Martìn, J. Org. Chem. 73, 3184–3188 (2008)

    Article  Google Scholar 

  36. P.K. Sudeep, B.I. Ipe, K.G. Thomas, M.V. George, S. Barazzouk, S. Hotchandani, P.V. Kamat, Nano Lett. 2, 29–35 (2002)

    Article  ADS  Google Scholar 

  37. H. Kuzmany, M. Matus, B. Burger, J. Winter, Adv. Mat. 94(10), 731–745 (1994) 6

    Article  Google Scholar 

  38. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, J. Raman Spectr. 27, 351–371 (1996)

    Article  ADS  Google Scholar 

  39. M. Geng, Y. Zhang, Q. Huang, B. Zhang, Q. Li, W. Li, J. Li, Carbon N. Y. 48, 3570–3574 (2010)

    Article  Google Scholar 

  40. P. Larkin, Infrared and Raman Spectroscopy. Principles and Spectral Interpretation (Elsevier, Amsterdam, 2011)

    Google Scholar 

  41. R.D. Glickman, Int. J. Toxicol. 21, 473 (2002)

    Article  Google Scholar 

  42. M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 26, 760–769 (1990)

    Article  ADS  Google Scholar 

  43. F.L.S. Cuppo, A.M.F. Neto, S.L. Gomez, P. Palffy-Muhoray, J. Opt. Soc. Am. B 19, 1342–1348 (2002)

    Article  ADS  Google Scholar 

  44. F. Zhang, Q. Li, Y. Liu, S. Zhang, C. Wu, W. Guo, J. Therm. Anal. Calorim. 123, 431–437 (2016)

    Article  Google Scholar 

  45. F.L.S. Cuppo, A.M.F. Neto, Langmuir 18, 9647–9653 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The Italian Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) is gratefully acknowledged for financial support through the FIRB project ITALNANONET (RBPR05JH2P_001). Authors thank Patrizio Salice for TGA measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Signorini.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 6591 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frare, M.C., Pilot, R., De Filippo, C.C. et al. Fullerene functionalized gold nanoparticles for optical limiting of continuous wave lasers. Appl. Phys. B 125, 47 (2019). https://doi.org/10.1007/s00340-019-7160-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7160-9

Navigation