Skip to main content
Log in

A matrix based on germanium/ormosil system for all-optical applications

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Germania/ormosil hybrid matrix with large third-order nonlinearity is prepared by a low-temperature sol–gel process. Z-scan measurements indicate that the film fabricated from the pure Germania/ormosil hybrid solution shows an excellent third-order nonlinearity at all measured wavelengths. In order to explore its potential to be a functional matrix, a well-investigated organic dopant disperse red 1 (DR1) azoaromatic chromophore is introduced into the Germania/ormosil system. As a comparison, the poly(methyl methacrylate) (PMMA) polymer is employed and doped with the same content of DR1 molecule. Results indicate that by employing Germania/ormosil matrix system, the figure of merit of DR1-doped material at 532 nm can be greatly improved as compared to that of the PMMA/DR1 polymer film and also other published reports. This improvement helps broaden the limited applications of DR1-doped material and make it acceptable for devices fabrication at 532 nm. Results demonstrate that the as-prepared hybrid matrix might be a promising candidate for all-optical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Ramaswami, K. Sivarajan, G. Sasaki, Optical Networks: A Practical Perspective, 3rd edn. (Morgan Kaufmann Publishers Inc., New York, 2009)

    Google Scholar 

  2. J.M. Hale, S. Barlow, H. Kim, S. Mukhopadhyay, J.L. Brédas, J.W. Perry, S.R. Marder, Chem. Mater. 26, 549–560 (2014)

    Article  Google Scholar 

  3. B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics chap 19 (John Wiley & Sons Inc., 1991) p. 751

  4. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, J. Leuthold, Nat. Photonics 3, 216–219 (2009)

    Article  ADS  Google Scholar 

  5. J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M.L. Scimeca, F. Diederich, B. Frank, C. Koos, Proc. IEEE 97, 1304–1316 (2009)

    Article  Google Scholar 

  6. Z. Li, Y. Liu, H. Kim, J.M. Hales, S.-H. Jang, J. Luo, T. Baehr-Jones, M. Hochberg, S.R. Marder, J.W. Perry, A.K.-Y. Jen, Adv. Mater. 24, 326–330 (2012)

    Google Scholar 

  7. M. Hochberg, T. Baehr-Jones, G.X. Wang, M. Shearn, K. Harvard, J.D. Luo, B.Q. Chen, Z.W. Shi, R. Lawson, P. Sullivan, A.K.Y. Jen, L. Dalton, A. Scherer, Nat. Mater. 5, 703–709 (2006)

    Article  ADS  Google Scholar 

  8. K. Iliopoulos, I. Guezguez, A.P. Kerasidou, A. El-Ghayoury, D. Branzea, G. Nita, N. Avarvari, H. Belmabrouk, S. Couris, B. Sahraoui, Dyes Pigments 101, 229–233 (2014)

    Article  Google Scholar 

  9. J.M. Hales, J. Matichak, S. Barlow, S. Ohira, K. Yesudas, J.-L. Brédas, J.W. Perry, S.R. Marder, Science 327, 1485 (2010)

    Article  ADS  Google Scholar 

  10. K. Kamada, M. Ueda, H. Nagao, K. Tawa, T. Sugino, Y. Shmizu, K. Ohta, J. Phys. Chem. A 104, 4723–4734 (2000)

    Article  Google Scholar 

  11. B. Derkowska, J.C. Mulatier, I. Fuks, B. Sahraoui, X.Nguyen Phu, C. Andraud, J. Opt. Soc. Am. B 18, 610–616 (2001)

    Article  ADS  Google Scholar 

  12. S. Yamakawa, K. Hamashima, T. Knoshita, K. Sasaki, Appl. Phys. Lett. 72, 1562–1564 (1998)

    Article  ADS  Google Scholar 

  13. T. Kolev, I.V. Kityk, J. Ebothe, B. Sahraoui, Chem. Phys. Lett. 443, 309–312 (2007)

    Article  ADS  Google Scholar 

  14. S.F. Fan, D.B. Luo, Optik 122, 142–144 (2011)

    Article  ADS  Google Scholar 

  15. V. Rosso, J. Loicq, Y. Renotte, Y. Lion, J. Non-Cryst. Solids 342, 140–145 (2004)

    Article  ADS  Google Scholar 

  16. I. Papagiannouli, K. Iliopoulos, D. Gindre, B. Sahraoui, O. Krupka, V. Smokal, A. Kolendo, S. Couris, Chem. Phys. Lett. 554, 107–112 (2012)

    Article  ADS  Google Scholar 

  17. R. Rangel-Rojo, S. Yamada, H. Matsuda, D. Yankelevich, Appl. Phys. Lett. 72, 1021 (1998)

    Article  ADS  Google Scholar 

  18. L. De Boni, J.J. Rodrigues Jr, D.S. dos Santos Jr, C.H.T.P. Silva, D.T. Balogh, O.N. Oliveira Jr, S.C. Zilio, L. Misoguti, C.R. Mendonc, Chem. Phys. Lett. 361, 209–213 (2002)

    Article  ADS  Google Scholar 

  19. J. Li, P. Jiang, C. Wei, J. Shi, Dyes Pigments 78, 219–224 (2008)

    Article  Google Scholar 

  20. L. Misoguti, C.R. Mendonca, S.C. Zilio, Appl. Phys. Lett. 74, 1531 (1999)

    Article  ADS  Google Scholar 

  21. L.D. Boni, C. Toro, A.E. Masunov, F.E. Hernández, J. Phys. Chem. A 112, 3886–3890 (2008)

    Article  Google Scholar 

  22. H. El Ouazzani, K. Iliopoulos, M. Pranaitis, O. Krupka, V. Smokal, A. Kolendo, B. Sahraoui, J. Phys. Chem. B 115, 1944–1949 (2011)

    Article  Google Scholar 

  23. W.X. Que, L.L. Wang, T. Chen, Z. Sun, X. Hu, J. Sol-Gel Sci. Techn. 38, 147–152 (2006)

    Article  Google Scholar 

  24. M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 26, 760–769 (1990)

    Article  ADS  Google Scholar 

  25. G.I. Stegeman, Proc. SPIE 1852, 75 (1993)

    Article  ADS  Google Scholar 

  26. J.E. Aber, M.C. Newstein, B.A. Garetz, J. Opt. Soc. Am. B 17, 120–127 (2000)

    Article  ADS  Google Scholar 

  27. W.X. Que, C.Y. Jia, M. Sun, L.L. Wang, Z.J. Zhang, Z. Sun, Nanoelectronics Conference (IEEE 2008) pp.176–181

  28. R. Rangel-rojo, S. Yamada, H. Matsuda, D. Yankelevich, Appl. Phys. Lett. 72, 7073 (1998)

    Article  Google Scholar 

  29. S. Muto, T. Kubo, Y. Kurokawa, K. Suzuki, Thin Solid Films 322, 233–237 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant No. 61078058, by the Research Fund for the Doctoral Program of Higher Education of China under Grant 20120201130004, the Science and Technology Developing Project of Shaanxi Province under Grant No. 2015KW-001, partially by the National Natural Science Foundation of China Major Research Plan on Nanomanufacturing under Grant No. 91323303, and the 111 Project of China (B14040).

Funding

This study was funded by National Natural Science Foundation of China under Grant No. 61078058, by the Research Fund for the Doctoral Program of Higher Education of China under Grant 20120201130004, the 111 Project of China (B14040), and the Science and Technology Developing Project of Shaanxi Province (2015KW-001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenxiu Que.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, T., Que, W. & Wang, Y. A matrix based on germanium/ormosil system for all-optical applications. Appl. Phys. B 122, 144 (2016). https://doi.org/10.1007/s00340-016-6422-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6422-z

Keywords

Navigation